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Abstract— The notion of convergent systems provides a pow-
erful tool for the analysis and design of nonlinear systems. This
paper is concerned with establishing convergence properties
of a linear time-invariant (LTI) system placed in feedback
with a sector-bounded hybrid integrator, the latter enabling
performance such as reduced overshoot inaccessible to any
linear integrator. By exploiting key properties of the hybrid
integrator’s discontinuous vector field that hold only in certain
subregions of the state-space, a tailored piecewise quadratic
incremental Lyapunov function is constructed by appropriately
‘connecting’ local incremental storage functions. Based on this
result, computable conditions for convergence are formulated
in the form of linear matrix inequalities (LMIs).

I. INTRODUCTION
Inspired by reset control solutions [1], [2], [3], [4], sector-

bounded hybrid integrators have been developed recently to
overcome fundamental performance limitations of LTI con-
trol systems [6], [7]. The hybrid integrator is characterized
by its ability to switch between integrator and gain character-
istics in a manner that produces continuous (but non-smooth)
outputs, while adhering to the key idea of keeping the output
of similar sign to the input at all times. The switching
functionality gives access to integrator characteristics with
a phase lag of only 38.15 degrees as observed through
describing function analysis [7]. The alleged phase lag re-
duction may be exploited for enhancing transient and steady-
state properties of a closed-loop controlled system, which is
particularly useful for high-precision mechatronic systems,
see, e.g., [5] for an industrial application of this type of
control strategy. In [7], [8] it was shown that hybrid integrator
designs can overcome important fundamental limitations of
LTI control, further supporting their relevance.

When dealing with the design and analysis of nonlinear
systems, the notion of convergent systems has proved to be
very useful [9], [11]. Convergent systems enjoy the property
that, when excited by an arbitrary bounded input, there exists
a unique time-varying solution (related to the input) that is
bounded on the whole time axis and is globally asymptot-
ically stable. As such, all other solutions, regardless of the
initial conditions, converge to this steady-state solution. Con-
trary to asymptotically stable linear systems, this property
does not hold for nonlinear systems in general. However,
proving the convergence property leads to the guarantee of
having a unique and bounded steady-state response. The
latter opens up several possibilities for (frequency-domain)
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design, and accurate performance characterizations. For ex-
ample, instead of using the generic L2-gain as a performance
measure, convergent systems allow for studying specific
response characteristics in the presence of specific inputs,
thereby possibly better reflecting the actual performance
objective of the system under study [11]. Notions related
to convergence in the sense of describing the property of
solutions converging to each other, are known in the literature
as incremental stability and contraction [12], [13], [14].

This paper is concerned with establishing the important
convergence property of the feedback interconnection of an
LTI system and a sector-bounded hybrid integrator. Over
the years, several conditions for verifying the convergence
property for nonlinear systems have been established. For ex-
ample, [9] presents sufficient conditions for convergence un-
der additional assumptions on differentiability of the closed-
loop system’s vector field. With the development of absolute
stability theory, it was shown in [10], [25] that for Lur’e type
systems, i.e., a linear system in feedback connection with a
scalar nonlinearity, the circle criterion guarantees the conver-
gence property for any nonlinearity satisfying an incremental
sector condition. Hybrid integrators, however, inherently
violate incremental sector conditions due to their underlying
dynamics in combination with the discontinuous nature of the
involved vector fields, which may significantly complicate a
convergence analysis. In [17], [18], [19], [20], conditions
for convergence of piecewise affine (PWA) systems with
discontinuous right-hand sides are formulated in terms of
linear matrix inequalities (LMIs). In [17] the discontinuities
may only occur due to affine terms in the dynamics, whereas
in [18], [19], [20] little knowledge regarding the explicit
system dynamics is taken into account, thereby restricting
the potential of these approaches, particularly for the class
of discontinuous dynamical systems studied here.

In this paper, we contribute to the development of tools
for convergence analysis of discontinuous dynamical sys-
tems. In particular, a piecewise quadratic approach toward
convergence analysis is pursued for systems containing a
hybrid integrator. Different from the results in [18], [19],
[20], specific incremental properties regarding the hybrid
integrator’s vector field are taken into account. By partition-
ing the integrator’s incremental input-output space, different
incremental dissipativity and incremental gain properties
are established that can be conveniently exploited for con-
structing an appropriate piecewise incremental Lyapunov
function. Essentially, this function results from ‘connecting’
two separate incremental storage functions (each linked to
different incremental properties) in a suitable manner. The
approach provides an alternative view on how to tackle
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incremental analysis of discontinuous (switched) systems,
which potentially aids further research in this area.

In line with the above, the contribution of this paper is
twofold. First, a generalization of the hybrid integrator-gain
system in [6] is proposed that adds more flexibility to the
controller design. Several key incremental properties associ-
ated to the vector field are derived accordingly. Second, novel
time-domain conditions for convergence are formulated in
terms of numerically tractable LMIs. Detailed proofs of the
main results are included in [24]. The effectiveness of the
presented conditions is demonstrated through an example.

The remainder of this paper is organized as follows. In
Section II the system setup is discussed and the hybrid
integrator is presented. In Section III the incremental form of
the dynamics is considered, and key properties are derived.
The main results are presented in Section IV, and a numerical
example is given in Section V. Section VI summarizes the
main conclusions.
Notation: The Euclidean inner product between two vectors
a ∈ Rn and b ∈ Rn, denoted by 〈a, b〉, is defined as 〈a, b〉 =
a>b. The space of bounded signals is denoted by L∞ and is
endowed with the L∞-norm, defined as |v|∞ = supt |v(t)|.
A function w : R≥0 → R is said to be piecewise continuous,
denoted by w ∈ PC, when there exists a sequence {tk}k∈N
with tk+1 > tk > t0 = 0 for all k ∈ N and tk → ∞
when k → ∞ such that w is continuous on (tk, tk+1)
where limt↑tk w(t) exists for all k ∈ N>0 and limt↓tk w(t)
exists for all k ∈ N with limt↓tk w(t) = w(tk). The set of
bounded piecewise continuous functions is denoted by PC∞.
Standard definitions for class K-functions, KL-functions, and
K∞-functions are adopted from [22, Chapter 4, Section 4.4].

II. SYSTEM DESCRIPTION

Consider the system depicted in Fig. 1, representing the
feedback interconnection of an LTI system G, and a hybrid
integrator H, the latter which will be specified in more detail
in Section II-A below.

G
Σ

H Σ

y

−
zu

w

Fig. 1: Feedback interconnection of an LTI system G and a
sector-bounded hybrid integrator H.

The linear part of the configuration in Fig. 1 is given by

G :

{
ẋg = Axg +Bu+Bww,

y = Cxg
(1)

with state xg(t) ∈ Rm, external input w(t) ∈ R, which is
assumed to be piecewise continuous and bounded, control

input u(t) ∈ R, and output y(t) ∈ R at time t ∈ R≥0. It is
assumed that (A,B,C) is minimal, and

Gyu(s) = C (sI −A)
−1
B, (2a)

Gyw(s) = C (sI −A)
−1
Bw (2b)

denote the transfer functions from u to y, and w to y,
respectively. The transfer functions in (2) are assumed to
have a relative degree of at least two, such that CB =
CBw = 0. This assumption ensures that switching of H
is not directly influenced by its generated output u and the
external input w, which will be required for ensuring a well-
defined behaviour (see also [6, Section 3]).

A. Sector-bounded hybrid integrator

The general form of the hybrid integrator, extending the
description of HIGS in [6], is mathematically formulated as
the scalar-state switched nonlinear system

H :


ẋh = f(xh, z), if (z, u, ż) ∈ F1,

xh = khz, if (z, u, ż) ∈ F2,

u = xh,

(3a)
(3b)
(3c)

with state xh(t) ∈ R, input z(t) := −y(t) = −Cxg(t) ∈ R,
output u(t) ∈ R at time t ∈ R≥0, and where f : R×R→ R
is a nonlinear function. Here, z is assumed to be continuously
differentiable, and ż denotes the time-derivative, which due
to the relative degree assumption on the plant G leading to
CB = CBw = 0 is given by ż = −Cẋg = −CAxg and
thus does not directly depend on the input w. The flow sets
F1 and F2 dictating the active mode in (3) are given by

F1 :=

{
(z, u, ż) ∈ R3 | zu ≥ u2

kh
∧ (z, u, ż) 6∈ F2

}
, (4a)

F2 :=
{

(z, u, ż) ∈ R3 | u = khz ∧ f(xh, z)z > khżz
}

(4b)

of which the union forms the [0, kh]-sector defined as

F := F1 ∪ F2 =

{
(z, u, ż) ∈ R3 | zu ≥ u2

kh
, ż ∈ R

}
. (5)

The sets F1 and F2 in (4) define regions where H operates
in either a dynamic mode or a static mode. The dynamic
mode is referred to as ‘integrator-mode’, since, essentially,
the state value xh is obtained from integration. The static
mode is referred to as ‘gain-mode’. Note that the definition
of the set F in (5) shows the input-output pair (z, u) of
the hybrid integrator in (3) to have an equivalent sign at all
times, which may benefit transient properties of a closed-loop
system. For a further motivation of the sets in (4), along with
a visualization, the reader is referred to [6, Section 3].

Concerning the vector field in (3a), the following assump-
tions are made.

Assumption 1. The function f in (3) satisfies f(0, 0) = 0,
and f(0, z)z ≥ 0 for all z ∈ R.

Assumption 2. There exist constants c1, c2 ∈ R such that f
satisfies for all xh,i, zi ∈ R, i = {1, 2}

(f(xh,1, z1)− f(xh,2, z2))δxh ≤ c1δx2h + c2δxhδz, (6)
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where δxh := xh,1 − xh,2, and δz := z1 − z2.

Assumption 1 ensures (xh, z) = (0, 0) to be an equi-
librium point of (3) for zero input, and ensures for xh =
0, z 6= 0 that the vector field in integrator-mode points toward
the interior of F . The latter is important for guaranteeing
that trajectories of (3) cannot escape the [0, kh]-sector in (5)
through the line (z, u) = (z, 0). Assumption 2 is reminiscent
of a one-sided Lipschitz condition (or a monotonicity-type
of condition) see, e.g., [26], [21], and plays a central role
in proving convergence properties. For functions f of the
form f(xh, z) = g(xh) + ωhz with ωh ≥ 0 and g being
a globally Lipschitz continuous function, and g(0) = 0,
Assumptions 1 and 2 are trivially satisfied. A simple choice
for g includes g(xh) = αxh, α ∈ R, leading to first-order
linear dynamics in (3a). Such dynamics strongly link to first-
order reset elements (FORE) as considered in, e.g., [3]. In
fact, when f is linear, H in (3) has comparable properties as
the FORE, but with the distinct advantage that the generated
control outputs are continuous.

B. Closed-loop dynamics

Due to the piecewise nonlinear nature of H in (3), the
closed-loop system admits the state-space form

Σ :


ẋ = A1x+ bf̄(x) + Bw if q ∈ F1,

ẋ = A2x+ Bw if q ∈ F2,

y = Cx
(7)

with states x(t) = [x>g (t), xh(t)]> ∈ Rm+1, input w(t) ∈ R,
output y(t) ∈ R at time t ∈ R≥0, and f̄(x) = f(xh,−Cxg).
The system matrices are given by

A1 =

[
A B
0 0

]
, A2 =

[
A B

−khCA 0

]
, (8)

b = [0m 1]>, B = [B>w 0]>, C = [C 0]. The signals q =
(z, u, ż)> ∈ R3 determine mode switching of the system.
The matrix A2 in (8) results from explicit differentiation of
the algebraic constraint xh − khz = 0 in gain-mode.

A few words on well-posedness properties of the closed-
loop system in (7) are in order. For f(xh, z) = ωhz, global
existence of absolutely continuous solutions to (7) is formally
guaranteed in [6] for all inputs w that belong to the class
of piecewise Bohl functions [6, Definition 2.2]. The proof
exploits, amongst others, local existence of solutions in each
mode. For f(xh, z) = αxh + ωhz the proof can easily
be extended, but for other (nonlinear) choices of f such a
proof is more involved and may require certain regularity
properties of f . In the remainder, it is assumed that locally
absolutely continuous solutions to (7) exist for all t ∈ R≥0
and for bounded piecewise continuous inputs w ∈ PC∞.

C. Problem formulation and definitions

The main objective in this paper is to derive sufficient and
computable conditions for assessing convergence properties
of the discontinuous closed-loop system in (7).

Definition 1 ([9]). System (7) is said to be uniformly
convergent (UC), if

1) all solutions x(t) are well-defined for all t ∈ [0,∞),
all inputs w ∈ PC∞, and all initial conditions x0 =
x(0) ∈ Rn;

2) there exists a solution x̄w(t), depending on the input
w ∈ PC∞, that is defined and bounded for all t ∈ R;

3) the solution x̄w(t) is uniformly asymptotically stable,
i.e., there exists a function β ∈ KL such that for all
initial conditions x(0) ∈ Rn and all inputs w ∈ PC∞,
all solutions x to (7) satisfy

‖x(t)− x̄w(t)‖ ≤ β(‖x(0)− x̄w(0)‖, t)

for all times t ∈ R≥0.

Definition 2 ([9]). System (7) is said to be input-to-state
convergent (ISC), if it is UC and there exist functions β ∈ KL
and γ ∈ K∞ such that for all w, ŵ ∈ PC∞, and all solutions
x corresponding to (7) satisfy

‖x(t)− x̄w(t)‖ ≤ β(‖x(0)− x̄w(0)‖, t) + γ (|ŵ − w|∞)

for all times t ∈ R≥0.

III. INCREMENTAL SYSTEM

For studying convergence properties of the closed-loop
system (7), it is convenient to consider the incremental forms
of the subsystems (1) and (3). In this section, the incremental
systems are given along with some key properties.

A. Incremental dynamics

Define δxg(t) := xg,1(t)−xg,2(t) ∈ Rm as the difference
between two trajectories xg,1(t) = xg(t, xg,1(0), w1) and
xg,2(t) = xg(t, xg,2(0), w2) generated by the linear system
(1) subject to bounded piecewise continuous inputs w1, w2 :
R≥0 → R, and initial conditions xg,1(0), xg,2(0) ∈ Rm. The
incremental form of (1) reads

δG :

{
δẋg = Aδxg +Bδu+Bwδw,

δy = Cδxg
(9)

with δu(t) := u1(t)− u2(t) ∈ R, δw(t) := w1(t)−w2(t) ∈
R, and δy(t) := y1(t) − y2(t) ∈ R the incremental control
input, external input, and output at time t ∈ R≥0.

Next, consider the incremental dynamics of the hybrid
integrator in (3), which are given by

δẋh =
f(xh,1, z1)− f(xh,2, z2), if (q1, q2) ∈ F1 ×F1,

khδż, if (q1, q2) ∈ F2 ×F2,

f(xh,1, z1)− khż2, if (q1, q2) ∈ F1 ×F2,

khż1 − f(xh,2, z2), if (q1, q2) ∈ F2 ×F1

(10)

with δxh(t) := xh,1(t) − xh,2(t) ∈ R the increment of the
integrator state, δz(t) := z1(t) − z2(t) = −δy(t) ∈ R the
incremental input at time t ∈ R≥0, and where (q1, q2) =
(q>1 , q

>
2 )> with qi = (zi, ui, żi), i = {1, 2}, the signals

that determine mode switching of the system. The output
generated by the incremental dynamics (10) is given by
δu = δxh. Note that the last three lines in (10) result from
differentiating the gain-mode constraint xh = khz.
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B. Properties

The following properties of the incremental dynamics in
(10) are key in studying convergence properties of (7). These
essentially show that, under Assumption 2, (10) satisfies
incremental gain and incremental dissipativity properties in
subregions of the incremental input-output space.

Property 1. Suppose Assumption 2 is satisfied. Then, the
incremental system in (10) satisfies

δx2h ≤ khδzδxh, if (δz, δxh) ∈ Ω1, (11a)
(δẋh)δxh ≤ (c1δxh + c2δz)δxh, if (δz, δxh) ∈ Ω2, (11b)

where

Ω1 :=

{
(δz, δxh) ∈ R2 | δzδxh ≥

1

kh
δx2h

}
, (12a)

Ω2 := R2 \ Ω1. (12b)

Property 2. Suppose Assumption 2 is satisfied. Then, the
incremental system in (10) satisfies for all (δz, δxh) ∈ Ω2

δẋh(δxh − khδz) ≤ (c1δxh + c2δz)(δxh − khδz), (13)

where Ω2 is defined in (12).

Interestingly, (11b) and (13) resemble one-sided Lipschitz-
like characteristics of the hybrid integrator’s vector field. This
concept plays an important role in characterizing asymp-
totic/incremental stability and convergence through quadratic
Lyapunov functions. Recently, in [21], comparable properties
are exploited for deriving incremental stability of (discon-
tinuous) projected dynamical systems (PDS), which show
strong parallels with the formulation in (3). Properties 1 and
2 will turn out to be instrumental in formulating conditions
for input-to-state convergence, as will be shown next.

IV. MAIN RESULTS

Before presenting the main results of this paper, some of
the machinery used in non-smooth analysis is revisited.

Definition 3 ([15], [16]). For a locally Lipschitz function
V : Rn → R the generalized gradient of V at x is defined
as

∂V (x) = co
{

lim
i→∞

∇V (xi) | xi → x, xi 6∈ ΩV

}
, (14)

where co denotes the closed convex hull, ∇V denotes the
gradient of V (at states where it is defined), and ΩV ⊂ Rn
is the set of measure zero where the gradient of V is not
defined.

Theorem 1. Let V : Rn → R≥0 be a locally Lipschitz
continuous function and x a locally absolutely continuous
solution to the differential inclusion ẋ(t) ∈ F (x(t), w(t))
for some bounded piecewise continuous input w ∈ PC∞.
Then t 7→ V (x(t)) is locally Lipschitz continuous and

d

dt
V (x(t)) ≤ max

p∈∂V (x(t))
max

f∈F (x(t),w(t))
〈p, f〉 (15)

for almost all times t.

The above result provides a basis for the definition of
non-smooth Lyapunov functions for discontinuous dynamical
systems. Before presenting computable conditions for con-
vergence of the closed-loop system in (7), a more generic
Lyapunov-based result for convergence, adopted from [11]
and modified to fit the non-smooth system setting here, is
given first.

Theorem 2. Consider the closed-loop system in (7). If there
exist a locally Lipschitz continuous function V : Rn×Rn →
R, function α1 ∈ K∞, and functions α2, α3, γ ∈ K satisfying
for all x1, x2 ∈ Rn and all inputs w1, w2 ∈ R

α1(‖x1 − x2‖) ≤ V (x1, x2) ≤ α2(‖x1 − x2‖), (16a)
max

p∈∂V (x1,x2)
max

f∈F (x1,w1,x2,w2)
〈p, f〉

≤ −α3(‖x1 − x2‖) + γ(‖w1 − w2‖),
(16b)

where F (x1, w1, x2, w2) arises from interconnecting the in-
cremental subsystems in (9) and (10), then the closed-loop
system (7) is input-to-state convergent (ISC) in the sense of
Definition 2.

Note that the existence of a function V in Theorem 2
ensures input-to-state stability of both the incremental system
(9), (10) as well as the non-incremental system (7). By
the latter, the existence of a compact positively invariant
set Mw for a bounded input w can be guaranteed, and,
in turn, guarantees that there exists at least one solution
x̄w(t) (starting in Mw) that depends on w and is defined
and bounded for all t ∈ R.

The next theorem presents explicit conditions in the form
of LMIs for finding an appropriate function V .

Theorem 3. Consider the closed-loop system in (7), and
suppose that Assumption 2 is satisfied. If there exists a real
constant τ > 0 and a symmetric positive definite matrix
P = P> � 0 that satisfy the LMI conditions[

A>P + PA PB
B>P 0

]
+ S1 ≺ 0, (17a)[

A>P + PA PB
B>P 0

]
+ τS2 ≺ 0 (17b)

with

S1 =

[
0 −khC>

−khC −2

]
, (18a)

S2 =

[
−khc2C>C

(
γI + kh

2 A
>)C>

C
(
γI + kh

2 A
)

2c1

]
(18b)

and γ = khc1
2 − c2, then the closed-loop system in (7) is

input-to-state convergent (ISC) in the sense of Definition 2.

Feasibility of the LMI conditions in Theorem 3 guarantees
the function

V (δx) = δx>g Pδxg + τmax {0, v(δxh, δz)} (19)

with v(δxh, δz) := δxh(δxh − khδz) to be an incremental
Lyapunov function for the closed-loop system in (7). The
intuition behind a function of this specific form is as follows.
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For all (δz, δxh) ∈ Ω1 with Ω1 defined in (12a) it
follows from Property 1 that the incremental input-output
pair (δz, δxh) satisfies an incremental sector condition. In
this case, a natural incremental Lyapunov function candidate
for this region is one that stems from the circle-criterion [22]
and is given by W (δxg) = δx>g P1δxg .

On the other hand, for all (δz, δxh) ∈ Ω2, with Ω2 defined
in (12b) it follows from Property 1 and Property 2 that the
incremental dynamics in (10) satisfy an incremental passivity
condition. In this case a natural Lyapunov function candidate
for this specific region would be one that stems from typical
passivity techniques [22], [23], and is of the form U(δx) =
δx>P2δx, with δx = [δx>g , δxh]>.

The question that arises at this point is how to appropri-
ately “connect” these functions over the boundaries shared
by Ω1 and Ω2. It turns out that one way to do so is to
set W (δxg) = δx>g P1δxg = δx>g Pδxg and specifically
define the function U as U(δx) = W (δxg) + τv(δxh, δz).
This results precisely in the piecewise quadratic function V
defined in (19), which, by feasibility of the LMI conditions
in Theorem 3 is guaranteed to be an incremental Lyapunov
function for the closed-loop system in (7). Note that in
these conditions, regional information is exploited through
application of the S-procedure [10]. The exact details of the
full proof can be found in [24].

V. NUMERICAL EXAMPLE

To demonstrate applicability of the presented conditions,
and illustrate the use of convergence for performance anal-
ysis, consider a fourth-order LTI system described by

Gyw(s) = Gyu(s) =
1.1s+ 0.83

(s2 + 0.9s+ 5)(s2 + 0.19s+ 1)
.

This system is placed in feedback with the hybrid integrator
in (3) where kh = 1, f(xh, z) = −αxh+ωhz with α = 1.5,
and ωh = 2 rad/s. For this choice, Assumption 2 is satisfied
with c1 = −α and c2 = ωh. Regarding the set-up of Fig. 1
note that G(s) = [Gyv(s), Gyw(s)]>. A feasible solution to
the LMIs in (17) is given by τ = 0.6346 and

P =


1.4261 0.1964 0.3078 −0.0481
0.1964 1.5413 0.0066 0.2535
0.3078 0.0066 1.6049 0.0093
−0.0481 0.2535 0.0093 1.5711


with λmin(P ) = 1.0865 > 0, thereby showing the input-to-
state convergence property due to Theorem 3.

The system is simulated for ten different sets of ini-
tial conditions and with an input w(t) = sin(2πt). The
corresponding (steady-state) outputs y and u are given in
Fig. 2. As a consequence of convergence, all solutions
converge to a unique steady-state solution (in black) that
has the same fundamental period of 1 Hz as the input w,
which follows directly from the convergence (or incremental
stability) properties in [11, Property 2.23] and [12]. Note the
integrator output u to be continuous, but non-smooth.

To evaluate steady-state performance properties of the
system, the root-mean-square (RMS) ratio from a periodic

0 10 20 30

-1

0

1

0 10 20 30

-1

0

1

Fig. 2: Time-series response of the closed-loop system sub-
ject to a sine input, and different initial conditions. The
steady-state response is indicated in black.

input w(t) = w(t+T ) with period time T > 0 to the output
y is considered. Specifically, this ratio is given by

‖y‖2
‖w‖2

=

√√√√∫ τ+T
τ

|y(t)|2dt∫ τ+T
τ

|w(t)|2dt
, (20)

with τ the time from which all transient effects are suf-
ficiently settled, and the system is considered to be in
steady-state. Performance is evaluated for inputs of the form
w(t) = sin(ωt) with ω ∈ [10−2, 10] rad/s. Note that in
this case, the ratio in (20) closely links to the (process)
sensitivity function as typically used for analyzing input
disturbance rejection properties of LTI systems. The result
is shown in Fig. 3 and demonstrates an increased sensitivity
to inputs around 0.1−0.4 rad/s, and low-pass characteristics
for higher frequencies. At low frequencies the closed-loop
characteristics tend to a gain of 0.1424 which corresponds
to the value Gyu(0)/(1 + khGyu(0)).

Note that generating the unique Bode-like characteristics
in Fig. 3 is only possible by the grace of having guaranteed
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the convergence property, thereby illustrating its use for
performance analysis.
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Fig. 3: Performance analysis of the closed-loop system.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, conditions for convergence of systems
consisting of the feedback interconnection of an LTI plant
and a hybrid integrator are given. The conditions arise
from deriving and combining incremental properties of the
hybrid integrator’s vector field that hold only in a subset
of the state-space. Each property allows for constructing
a local incremental storage function, which subsequently
is connected in a suitable manner to form an incremental
Lyapunov function. The results lead to numerically tractable
LMI conditions for guaranteeing convergence. The approach
provides a different and new view on how to tackle con-
vergence of non-smooth (switched) systems, which may
potentially aid further research, also for different classes of
hybrid dynamical systems.
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