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Abstract

The hybrid integrator-gain system (HIGS) has been introduced recently with the aim to overcome fundamental limitations
of linear time-invariant (LTI) control systems. To support the analysis and design of HIGS-based controllers, in this paper
a novel frequency-domain condition for stability analysis of the feedback interconnection of an LTI system and HIGS is
presented. Compared to existing frequency-domain stability conditions such as the one extending the circle-criterion, the
condition presented in this paper exploits explicit knowledge regarding HIGS’ switching strategy, thereby potentially providing
a significantly less conservative condition. In particular, the novel condition in this paper guarantees the existence of a quadratic
Lyapunov function that does not need to be positive definite within the full state space. The proposed condition can be verified
graphically in a manner that is reminiscent of the classical Popov plot, as will be illustrated in an experimental case-study.
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1 Introduction

The development of nonlinear control strategies that
can overcome fundamental limitations of linear time-
invariant (LTI) control for LTI systems [1] has a long
history starting with the introduction of the Clegg inte-
grator [2]. Since then, many alternative strategies have
been proposed, including generalized reset elements [3],
[4], [5], [16], [6], split-path nonlinear filters [7], [8], and
hybrid integrator-gain systems (HIGS) [9], [10]. HIGS re-
cently gained a lot of attention due to its ability to over-
come well-known fundamental limitations of LTI control
[10], next to its successful use in several engineering ap-
plications [12], [13]. These promising results indicate the
potential of HIGS-based control, but to enable its wide
dissemination it is important to build a strong analy-
sis and design toolbox. While linear systems lend them-
selves well for robust stability and performance analy-
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sis through frequency-domain tools such as Nyquist and
Bode plots [31], the switching nature of a control sys-
tem with HIGS obstructs direct use of such tools. As
the current industrial control practice highly exploits
frequency-domain tools, it is important to develop sim-
ilar tools for hybrid control strategies such as HIGS as
well to support their wide adoption in practice.

The above need spurred the development of frequency-
domain tools for stability analysis of switched and hy-
brid systems, see, e.g., [19], [20], [22], [21], [23], [24],
[16], [9], [17], [18], [25]. Underlying these tools is the
well-known Kalman-Yakubovich-Popov (KYP) lemma
[27], which allows for establishing the equivalence be-
tween frequency-domain conditions and the existence of
a Lyapunov function. In principle, the frequency-domain
conditions can be verified using measured frequency-
response function (FRF) data of the plant to be con-
trolled, thereby making them useful in practical situa-
tions, where sufficiently accurate state space models of
the plant are often difficult, if not impossible, to obtain.
Moreover, such frequency-domain conditions can be ex-
tended towards robust stability analysis.

Although valuable from a practical perspective, existing
frequency-domain conditions that are applicable to the
class of HIGS-based control systems, such as the ones
presented in, e.g., [9],[19], often provide a rather con-
servative estimate on the region of closed-loop stability.
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To some extent, this conservatism is caused by the fact
that the conditions do not sufficiently take into account
the particular switching characteristics of HIGS, and by
regarding HIGS as a generic sector-bounded nonlinear-
ity its underlying dynamics are ignored [9]. It is inter-
esting to remark that in all aforementioned works, the
Lyapunov function that results from satisfying the con-
ditions is guaranteed to be positive within the full state
space. This may be a restrictive feature of these results,
because HIGS is sector-bounded, and thus trajectories
of a closed-loop system with HIGS are confined to a sub-
set of the state space.

The main contribution of this paper is the development
of novel frequency-domain conditions for stability anal-
ysis of the feedback interconnection of an LTI system
and HIGS. These conditions are novel in the sense that,
if satisfied, they guarantee the existence of a quadratic
Lyapunov function that is not necessarily positive def-
inite within the full state space, but rather in a sub-
set of the state space where HIGS operates. The same
holds true for negative definiteness of its corresponding
time-derivative. To the best of the authors’ knowledge,
frequency-domain conditions for guaranteeing the exis-
tence of a Lyapunov function that does not need to be
positive definite within the full state space have not been
established in the literature before. The new frequency-
domain conditions are a generalization of our prelimi-
nary results in the conference paper [28], and can be ver-
ified graphically in a manner that is comparable with the
classical Popov plot [15]. We will demonstrate by means
of a practical example that our new frequency-domain
condition can show stability in relevant situations where
existing results can not be applied.

The remainder of this paper is organized as follows. Some
preliminary results are introduced in Section 2. The sys-
tem setting and the problem formulation are discussed in
Section 3. In Section 4, the main results of this paper are
presented in the form of a theorem that sets forth graph-
ically verifiable frequency-domain stability conditions.
Application of the presented results is demonstrated on
an experimental motion set-up in Section 5. A summary
of the main conclusions is provided in Section 6.

2 Preliminaries

2.1 Notation and definitions

The following notations and definitions are used. A
single-input single-output (SISO) transfer function
G(s), s ∈ C, with real coefficients, is said to be stable,
if all its poles are located in the open left-half complex
plane. The real and imaginary parts of a (complex)
frequency response function G(jω) ∈ C, ω ∈ R, are de-
noted by Re {G(jω)} and Im {G(jω)}, respectively, and
the complex conjugate is indicated by G∗(jω), which

is equal to G(−jω). The set of real symmetric matri-
ces in Rn×n is denoted by Sn×n. A symmetric matrix
M ∈ Sn×n is positive (semi-)definite, denoted by M � 0
(M � 0), if x>Mx > 0 for all x ∈ Rn \ {0} (x>Mx ≥ 0
for all x ∈ Rn). Negative (semi-)definite matrices are
denoted in a similar manner by reversing the inequali-
ties. A matrix A ∈ Rn×n is said to be Hurwitz, if all its
eigenvalues have strictly negative real part. For matri-
ces we use the shorthand notations He(X) = X + X>

and Pr(X) = X>X. The inequality symbols >,≥, <,≤
for vectors are understood componentwise.

2.2 Fundamental result

A general version of the well-known KYP-lemma, which
is free of any hypothesis on minimality of the system, is
provided. This fundamental result plays a central role in
the proof of the paper’s main theorem.

Theorem 1 ([27, Theorem 1]) Given A ∈ Rn×n,
B ∈ Rn×m, Q ∈ S(n+m)×(n+m) with det(jωI − A) 6= 0
for all ω ∈ R. The next two statements are equivalent:

(1) The following inequality holds for all ω ∈ R ∪ {∞}

[
(jωI −A)−1B

I

]∗
Q

[
(jωI −A)−1B

I

]
≺ 0. (1)

(2) There exists a matrix P ∈ Sn×n such that[
A>P + PA PB

B>P 0

]
+Q ≺ 0. (2)

The equivalence holds for non-strict inequalities in both
(1) and (2), if the pair (A,B) is controllable.

3 System setting and problem formulation

3.1 Closed-loop system description

Throughout this paper, we consider the generic closed-
loop system setting as depicted in Fig. 1.

G
+

H −

y

zu

w

Fig. 1. Interconnection of an LTI system G and HIGS H.
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In Fig. 1, the LTI system G (containing the plant to be
controlled, along with possible LTI controller elements)
is given by

G :

{
ẋg = Agxg +Bgu+Bww,

y = Cgxg,
(3)

with states xg ∈ Rm, exogenous inputs w ∈ Rv, con-
trol input u ∈ R, and output y ∈ R. We assume that
(Ag, Bg, Cg) is minimal and the transfer functions from
u to y and w to y are denoted by[

Gyu(s) Gyw(s)
]

= Cg(sI −Ag)−1
[
Bg Bw

]
. (4)

For many physical systems, such as motion systems con-
taining floating masses, the next assumption on the rel-
ative degree of the system is generally satisfied.

Assumption 2 The transfer functions Gyu(s) and
Gyw(s) given in (4) have a relative degree of at least two,
such that CgBg = CgBw = 0.

The hybrid integrator-gain system H is described by

H :


ẋh = ωhz, if (z, u, ż) ∈ F1,

xh = khz, if (z, u, ż) ∈ F2,

u = xh,

(5)

where xh ∈ R denotes the integrator state, z = −y ∈ R
is the input to HIGS, and u ∈ R is the generated output.
Within the context of Fig. 1 and under Assumption 2, z
is continuously differentiable, and ż = −ẏ = −CgAgxg
denotes the corresponding time-derivative. The param-
eters ωh ∈ (0,∞) and kh ∈ (0,∞) in (5) are the integra-
tor frequency and gain, respectively. The sets F1 and F2

dictating the integrator-mode and gain-mode in (5) are
given by

F1 =
{

(z, u, ż) ∈ R3 | khzu ≥ u2 ∧ (z, u, ż) 6∈ F2

}
,
(6a)

F2 =
{

(z, u, ż) ∈ R3 | u = khz ∧ ωhz
2 > khżz

}
, (6b)

for which the union defines the “[0, kh]-sector”

F := F1 ∪ F2 =
{

(z, u, ż) ∈ R3 | khzu ≥ u2
}
. (7)

The closed-loop system in Fig. 1 with G as in (3), and
H as in (5), (6) can be written as the switched system

ẋ = Aix+Bw, if x ∈ Xi, i ∈ {1, 2} ,
y = Cx,

(8)

with state vector x = [x>g , xh]> ∈ Rn, n = m + 1. The
sets Xi, i ∈ {1, 2}, in (8) are given by

Xi = {x ∈ Rn | Ex ∈ Fi} , (9)

in which the matrix E is such that Ex = [z u ż]
>

, and
is, therefore, given by

E> =

[
−C>g 0 −(CgAg)>

0 1 0

]
. (10)

The mode-dependent system matrices are given by

A1 =

[
Ag Bg

−ωhCg 0

]
, A2 =

[
Ag Bg

−khCgAg 0

]
, (11)

B = [B>w , 0]>, and C = [Cg, 0]. Details on the sets
in (6), as well as an alternative view on the closed-loop
system (8) within the framework of (extended) projected
dynamical systems (ePDS) can be found in [9], [26].

To show the existence and forward completeness of solu-
tions to (8), we rely on the well-posedness result in [26,
Theorem 8]. We consider solutions to the discontinuous
differential equation (8) in the sense of Carathéodory,
i.e., locally absolutely continuous (AC) functions x :
[0, T ]→ Rn that satisfy (8) for almost all times t ∈ [0, T ].
The results in [26] guarantee the existence of solutions
globally, i.e., on [0,∞), given an initial condition x(0) =
x0 and a bounded piecewise continuous input w, i.e.,
w ∈ PC, meaning that there is {tk}k∈N ⊂ [0,∞) with
t0 = 0, tk+1 > tk for all k ∈ N, limk→∞ tk = ∞, w is
continuous for all t 6∈ {tk}k∈N, and limt↓tk w(t) = w(tk),
k ∈ N, and ‖w‖∞ = supt ‖w(t)‖ <∞.

3.2 Problem formulation

We are concerned with deriving sufficient frequency-
domain-based conditions for assessing stability of the
closed-loop system in (8). Stability is studied through
the notion of input-to-state stability (ISS), for which the
following definition 1 is adopted from [11].

Definition 3 The closed-loop system in (8) is said to be
input-to-state stable (ISS), if there exist a KL-function
α and a K-function β such that for any initial condition
x(0) = x0 ∈ {x ∈ Rn | Ex ∈ F} and any input signal
w ∈ PC, all solutions x : R≥0 → Rn to (8) satisfy

‖x(t)‖ ≤ α(‖x(0)‖, t) + β (‖w‖∞) , (12)

for all t ∈ R≥0.

The next theorem presents LMI-based conditions for
guaranteeing ISS of the closed-loop system (8).

1 In Definition 3 we adopt standard definitions for class K-
and class KL-functions, see, e.g., [15, Ch. 40, Sec. 4.4].
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Theorem 4 ([29, Theorem 1]) Consider the closed-
loop system (8). Suppose there exist a matrix P ∈ Sn×n
and constants τi ≥ 0, i ∈ {1, 2, 3}, that satisfy the LMIs

P − τ1S � 0, (13a)

A>1 P + PA1 + τ2S ≺ 0, (13b)

Θ>(A>2 P + PA2 − τ3T )Θ ≺ 0, (13c)

in which

S = C>u H +H>Cu, T = C>u F + F>Cu, (14)

and Θ = [I,−khC>g ]>, with H = khCz − Cu, F =
Cz(khA1 − ωhI), and where

Cz =
[
−Cg 0

]
, and Cu = b> =

[
0m 1

]
. (15)

Then, the closed-loop system (8) is ISS.

Although numerically tractable, solving the LMIs in (13)
requires a state-space model as in (3), which, in prac-
tice, may be hard to obtain with sufficient accuracy.
Moreover, LMI conditions provide limited insights in the
(re)design of HIGS-based controllers for guaranteed (ro-
bust) stability when the set of LMIs (13) turns out to
be infeasible. Motivated by these concerns, the main ob-
jective in this paper is to establish insightful frequency-
domain conditions that exploit frequency-response data
of the plant for guaranteeing ISS. In particular, we are
interested in deriving sufficient frequency-domain con-
ditions that guarantee the existence of a matrix P and
constants τi, i ∈ {1, 2, 3}, that satisfy the inequalities in
(13), thereby transitioning from time-domain conditions
to frequency-domain conditions for guaranteeing ISS.

4 Frequency-domain conditions for ISS

4.1 Existing results

Frequency-domain conditions for guaranteeing ISS of
HIGS-controlled systems have been established in the
literature before. Although useful, these conditions come
with a certain degree of conservatism in the sense that
they guarantee the existence of a particular solution to
the LMI problem in (13). To shed some light on this
possible conservatism, and motivate our new improved
conditions, we recall these existing results.

Theorem 5 ([9, Theorem 6.1]) Suppose the matrix
Ag in (3) is Hurwitz. If the frequency-domain inequality

Re
{
khCg(jωI −Ag)−1Bg

}
> −1 (16)

is satisfied for all ω ∈ R ∪ {∞}, then the LMI prob-
lem in (13) admits a feasible solution of the form P =
diag(M, 1) � 0, with positive definite matrixM ∈ Sm×m,
τ1 = 0, and τ2, τ3 ≥ 0.

Theorem 6 ([28, Theorem 1]) Suppose the matrix
A1 in (11) is Hurwitz. If there exist constants α1 ≥ 0
and α2 ∈ R such that the frequency-domain inequality

Re
{

(F + α1Cz + α2H)(jωI −A1)−1b
}
> −1 (17)

is satisfied for all ω ∈ R ∪ {∞}, then the LMI problem
in (13) admits a feasible solution of the form P � 0,
τ1 = τ2 = 0, and τ3 ≥ 0.

The link between satisfying the frequency-domain in-
equalities in Theorem 5 and 6, and the existence of a
particular solution to the LMI problem in Theorem 4,
allows for establishing the following important insights
regarding possible conservatism of these conditions:

(1) As a consequence of the fact that both theorems
guarantee the existence of a solution to the LMI
problem (13) with τ1 = 0, an ISS-Lyapunov func-
tion V (x) = x>Px is guaranteed to be positive for
all x ∈ Rn \ {0}, while the states of the closed-loop
system (8) only evolve, by design, in part of the
state space. This observation reveals possible con-
servatism induced by the considered class of Lya-
punov functions underlying Theorem 5 and 6.

(2) Theorem 5 is applicable to HIGS-based control sys-
tems for which Gyu is stable. However, in many ap-
plications that may benefit from HIGS-based con-
trol, such as motion systems, the linear part of
the dynamics contains simple integrators, which
renders the circle-criterion-like conditions in Theo-
rem 5 not straightforwardly applicable asGyu is not
stable. For condition (16) also the interplay between
the LTI dynamics and the integrator-dynamics of
HIGS is not exploited, and stability holds for all
(static) sector-bounded nonlinearities. This is also
visible from the fact that the frequency-domain in-
equality in (16) does not depend on the integrator
parameter ωh.

(3) Theorem 6 is only applicable to HIGS-based con-
trol systems having stable linear dynamics in
integrator-mode. This narrows down the scope of
applications for which Theorem 6 may be useful
for stability analysis. In fact, one may argue that
unstable integrator-mode dynamics largely con-
tribute to potential performance improvements
with HIGS, and, therefore, is a desirable property
(see, for instance, [9], [10]).

In conclusion, although the results in Theorem 5 and
Theorem 6 are of interest, they suffer from restrictions
that are not always beneficial for HIGS-based designs.
Therefore, obtaining frequency-domain conditions in
which the above limitations are lifted is considered
important for useful practical application.
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4.2 Main result

To address the previously discussed shortcomings and
provide less restrictive conditions, we present the next
theorem, which forms the main result of this paper.

Theorem 7 Suppose the matrix Ag − khBgCg is Hur-
witz. If there exist constants λ ≥ 0 and k ≥ 1 such that
the frequency-domain inequality

Re
{

(F + β1Cu + β2H) (jωI −A2)
−1
b
}
> −1 (18)

with A2 = A2 + k ωh

kh
bH and β1 = λk, β2 = λ + k ωh

kh
is

satisfied for all ω ∈ R ∪ {∞}, then the LMI problem in
(13) admits a feasible solution of the form

P = M + λH>H + τ1S (19)

with M � 0, and S given in (14), τ1 = λk ≥ 0, τ2 =
τ1(k − 1)ωh

kh
≥ 0, and τ3 = 0.

The main advantages of Theorem 7 as compared to
Theorem 5 and Theorem 6 are as follows. First, the
frequency-domain condition (18) guarantees the exis-
tence of a feasible solution to the LMIs in (13) with
τ1 ≥ 0, such that an ISS-Lyapunov function constructed
as V (x) = x>Px with P in (19) is guaranteed to be
positive for all x ∈ X1 ∪ X2, with Xi, i = {1, 2} given in
(9). Note here that P in (19) itself is not necessarily a
positive definite matrix, as the matrix S given in (14) is
indefinite. Second, the conditions allow for both unsta-
ble plant dynamics, as well as unstable integrator-mode
dynamics, which, from a performance perspective can
be desirable. We will explain below in Section 4.3 how
the frequency-domain condition (18) can be checked in
a manner that is reminiscent of the classical Popov test.

PROOF. By the assumption that the matrix Ag −
khBgCg is Hurwitz and k ≥ 1, the matrix

A2 = A2 + k
ωh

kh
bH

=

[
Ag Bg

−khCgAg 0

]
+ k

ωh

kh

[
0m

1

] [
−khCg −1

] (20)

is Hurwitz as well. To see this, consider the similarity
transformation T A2T −1 with transformation matrices

T =

[
I 0

khCg 1

]
, and T −1 =

[
I 0

−khCg 1

]
, (21)

leading to

Ā2 := T A2T −1 =

[
Ag − khBgCg Bg

0 −k ωh

kh

]
. (22)

Due to its upper triangular structure, the eigenvalues
of the transformed matrix Ā2 in (22) are given by the
eigenvalues of Ag − khBgCg and −kωh/kh. Therefore,
Ā2 is Hurwitz, and thus A2 is Hurwitz as well.

Next, note that the frequency-domain inequality (18)
can be written in the form of (1) with Q given by

Q =

[
0 −(F + β1Cu + β2H)>

? −2

]
. (23)

Under the assumption that (18) is satisfied for all ω ∈
R∪{∞}, and since A2 is Hurwitz, it follows by virtue of
the KYP-lemma (Theorem 1) that there exists a matrix
M = M> ∈ Sn×n such that[
A>2 M +MA2 Mb− (F + β1Cu + β2H)>

? −2

]
≺ 0.

(24)
Define

Mb− (F + β1Cu + β2H)> =
√

2L> (25)

and apply the Schur complement to (24) to find that this
inequality is equivalent to

A>2 M +MA2 ≺ −L>L. (26)

Clearly, as (26) implies A>2 M + MA2 ≺ 0, and A2 is
Hurwitz, it follows immediately from, e.g., [14, Lemma
1.10.1] that M � 0.

We will show that (25), (26) imply satisfaction of (13).
To show (13a), let us construct a suitable matrix P as

P = M + λH>H + λkS. (27)

It clearly follows that (13a) is satisfied with τ1 = λk.
Next, we will show that (13b) is satisfied. To do this, first
we write A2 = A1 + bG with G := F + k ωh

kh
H, where F

is given in (14). Using this identity in (26) implies

A>1 M +MA1 ≺ −G>b>M −MbG− L>L
(25)
= −He

(
λ(kCu +H) +G−

√
2L
)>
G
)
− L>L

= −Pr
(
L−
√

2G
)
−He

(
λ(kCu +H)>G

)
� −λHe

(
(kCu +H)>

(
F + k

ωh

kh
H
))
.

(28)

Observe that by virtue of Assumption 2 we can write

F = Cz(khA1 − ωhI) =
[
−Cg 0

] [khAg − ωhI khBg

−khωhCg −ωh

]
=
[
−khCgAg − ωhCg 0

]
= HA1,
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recalling that H = [−khCg, −1]. As such,

(kCu +H)>F = (kCu +H)>HA1

= (kS +H>H − kH>Cu)A1

= (kS +H>H)A1 − kωhH
>Cz,

(29)

where use is made of the identities S = C>u H + H>Cu

and CuA1 = ωhCz. Substituting (29) in (28) yields

He
(
(M + λH>H + λkS)A1

)
+ λk

ωh

kh
He
((
kCu +H − khCz

)>
H
)
≺ 0.

(30)

The last term in the left-hand side of (30) reads

(kCu +H − khCz)>H = (k − 1)C>u H.

Under the assumption that k ≥ 1, using again the iden-
tity S = C>u H + H>Cu and using P as constructed in
(27) this yields

A>1 P + PA1 + τ2S ≺ 0 (31)

with τ2 = λk(k − 1)ωh/kh ≥ 0. Thus, (13b) is satisfied.

It remains to show that (13c) is satisfied. To this end,
note that from the inequality in (26) and the construc-
tion of P in (27) we find that

0 � A>2 M +MA2 = He
(
(P − λH>H − λkS)A2

)
= He

(
PA2 − λ(H>H + kH>Cu + kC>u H)A2

)
= He

(
PA2 − λH>((H + kCu)A2 + k2

ωh

kh
Cu)

)
= A>2 P + PA2 + (H>Γ> + ΓH)

with Γ = k ωh

kh
(Pb + λkC>u ) − λA>2 (H + kCu)>. Here,

we used that HA2 = 0 and

C>u HA2 = C>u H
(
A2 + k

ωh

kh
bH
)

= −kωh

kh
C>u H. (32)

Since HΘ = 0, we find Θ>(A2P +PA2)Θ ≺ 0 and (13c)
is satisfied with τ3 = 0. This completes the proof. �

4.3 Verifying the frequency-domain conditions

At this point in the analysis it is not immediately clear
how to verify the frequency-domain condition (18) in an
effective manner. This is because (18) is still expressed
in terms of state space matrices that may be difficult to
obtain in practice, and the variables λ, k appear in (18)
in a nonlinear manner. In order to derive an effective
method for verifying the conditions using (measured)

FRF data, we will first derive the relevant transfer func-
tion to be checked. Based on the frequency-domain con-
dition in (18), this transfer function can be identified as

G(s) := C(sI −A2)−1B +D, (33)

where C := F + β1Cu + β2H, B := b, and D := 1. To
rewrite (33) into known transfer functions, it is useful to
first do a similarity transformation using the same trans-
formation matrix T as in (21). Through standard manip-
ulations this results in the equivalent transfer function

G(s) = Ĉ(sI − Â2)−1B̂ + D̂, (34)

where

[
Â2 B̂
Ĉ D̂

]
=

[
T A2T −1 T B
CT −1 D

]
=

 Al Bg 0

0 −k ωh

kh
1

Z K 1

 ,
with Al := Ag−khBgCg, Z := Cg((ωh−khβ1)I−khAg)
and K := β1 − β2. Note the upper-triangular structure
of the matrix Â2 and thus also of sI − Â2. The inverse
of sI − Â2 can be computed as

(sI − Â2)−1 =[
(sI −Ak)−1 (sI −Al)

−1Bg(s+ k ωh

kh
)−1

0 (s+ k ωh

kh
)−1

]
.

(35)

Substituting (35) into (34) yields

G(s) = (Z(sI −Al)
−1Bg +K)

(
s+ k

ωh

kh

)−1
+ 1. (36)

By realizing that Cg(sI − Al)
−1Bg corresponds to the

process sensitivity of the linear gain-mode of the HIGS-
controlled system (i.e., replacing HIGS in Fig. 1 by kh),
we find the transfer function to be checked to be given by

G(s) = (W (s)SP (s) +K)L(s) + 1, (37)

with W (s) = ωh − khβ1 − khs, SP (s) = Gyu(s)(1 +
khGyu(s))−1 and L(s) = (s+ kωh/kh)−1.

With the transfer function G(s) written in terms of
known transfer functions, we can now continue describ-
ing the procedure for verifying the conditions of Theo-
rem 7. As a first check, we should verify if the gain-mode
dynamics are ISS, i.e., we should check if the matrix
Al = Ag − khBgCg is Hurwitz. This can be done by
applying the Nyquist stability criterion [30, Section 6.3]
to the open-loop characteristics 1+khGyu(s). Note that
(part of) the characteristics of Gyu(s) may be obtained
from FRF measurements. For verifying condition (18),
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it is useful to rewrite (37) as

G(s) = Gx(s)− λGy(s) + 1, (38)

where

Gx(s) :=
(

(ωh − khs)SP (s)− kωh

kh

)
L(s), (39a)

Gy(s) := (kkhSP (s) + (1− k))L(s). (39b)

Verifying the inequality in (18) then amounts to finding
parameters λ ≥ 0, k ≥ 1 such that for all ω ∈ R ∪ {∞}
the frequency-domain inequality

1 + Re {Gx(jω)} − λRe {Gy(jω)} > 0 (40)

is satisfied. For a fixed value of k ≥ 1, verifying (40)
can be done graphically by plotting Re {Gy} against
Re {Gx} in a two-dimensional plane and inspecting if
the resulting curve lies to the right of a straight line that
passes through the point (−1, 0) with a slope of 1/λ. This
graphical test shows strong resemblance with the classi-
cal Popov plot [15]. The parameter k should be searched
for in an iterative manner. Note that the effect of chang-
ing k on the (Re {Gx} ,Re {Gy})-curve is directly visi-
ble, and thus such a search can be done efficiently.

5 Case-study on a motion system

In this section, we demonstrate the efectiveness of our
presented tools on an experimental motion system. The
set-up consists of two rotating masses connected by a
thin, flexible shaft as shown in Fig. 4. The measured
FRF of this system from actuator input (left-side) to
load position (right-side) is shown in Fig. 3.

1
2

3

4 4

Fig. 2. Motor-load motion system. 1: actuator (motor side);
2: encoder (load side); 3: flexible shaft; 4: rotating masses.

5.1 Controller design

Consider the feedback control scheme as depicted in
Fig. 4. Given a reference command r : R≥0 → R, a
servo error signal e is constructed using the relation
e(t) = r(t) − q(t), t ∈ R≥0, where q(t) ∈ R represents
the measured output of the motor-load motion system P
at time t ∈ R≥0. This system is subject to an input dis-
turbance d(t) ∈ R for t ∈ R≥0. For dealing with distur-

Fig. 3. Measured FRF of the motor-load motion system.

− + C0 + P

Ci {H}
r q

de v C

Fig. 4. Feedback control set-up with controller C containing
the HIGS-based integrator Ci {H}.

bances, a feedback controller C = (1 + Ci {H})C0 with
integral action is designed. The LTI filter C0 is given by

C0(s) = kp

(
s+ ωz

s+ ωp

)(
ω2
lp

s2 + 2βlpωlps+ ω2
lp

)
, (41)

whereas Ci is a HIGS-based integrator constructed as
Ci {H} = L1HL2, where

L1(s) = ωi

(
s+ ωc

τs+ 1

)
, and L2(s) =

τs+ 1

s
.

This specific design stems from describing function
reasoning and is intended for balancing transient and
steady-state performance properties by exploiting
“phase” advantages of HIGS, see [10] for further details.
Controller tuning is done by initially setting ωh = ∞
such that Ci {H} effectively reduces to an LTI integrator
and the linear scheme C(s) = (1+ ωi

s )C0(s) is recovered.
Using classical loop-shaping techniques [31], a stable
LTI design is obtained with kp = 3.3 Nm, ωi = 8 · 2π
rad/s, ωz = 2 · 2π rad/s, ωp = ωlp = 50 · 2π rad/s, and
βlp = 0.5. After fixing kh = 1 Nm, and τ = 0.002 s, ωh

is reduced to ωh = 5 · 2π rad/s.

To verify ISS of the closed-loop system design, we first
write the configuration in Fig. 4 in terms of the Lur’e
setting in Fig. 1. Specifically, we find the transfer func-

7



Fig. 5. Nyquist plot of the open-loop characteristics of the in-
tegrator-mode (grey) and gain-mode (black) using the mea-
sured FRF of the motor-load motion system.

Fig. 6. Popov-like plot constructed on the basis of the mea-
sured FRF of the motor-load motion system and parameter
values k = {2, 15}, λ = 10.

tion from output u to input y = −z of H to be given by

Gyu(s) = L1(s)

(
C0(s)P (s)

1 + C0(s)P (s)

)
L2(s). (42)

Note that due to the simple integrator in L2(s), the lin-
ear portion of the closed-loop system is not asymptoti-
cally stable. Hence, for verifying ISS one cannot apply
Theorem 5, but should resort to Theorem 6 or Theo-
rem 7. In these theorems, we either need to verify stabil-
ity of the integrator-mode (Theorem 6) or stability of the
gain-mode (Theorem 7). This can be done by inspecting
the Nyquist plots of the integrator-mode in open-loop,
i.e., 1 + ωh

s Gyu(s) and the gain-mode in open-loop, i.e.,
1 + khGyu(s) which are both shown in Fig. 5.

On the basis of the Nyquist stability criterion, it fol-
lows from Fig. 5 that the integrator-mode is unstable,
whereas the gain-mode is stable. Hence, one cannot ap-
ply Theorem 6 either, and, hence, one should resort to
the new result in Theorem 7 for a frequency-domain sta-
bility analysis. Using Gyu(s) as in (42) we can construct
Gx(s) and Gy(s) as in (39) needed for the analysis. The
corresponding Popov-like plot with values k = {2, 15} is

Fig. 7. Measured time-responses of the closed-loop system
with ωh ∈ {5, 10, 100}·2π rad/s when subject to a step input
r(t) = 1 for t ∈ R≥0 and r(t) = 0 otherwise.

shown in Fig. 6. Clearly, for the value k = 2 which corre-
sponds to our preliminary result in [28] it is impossible to
find a value for λ such that the conditions in Theorem 7
are satisfied, as part of the corresponding curve lies to the
left of the point (−1, 0). On the other hand, for the value
k = 15 we find that with λ = 10 the frequency-domain
inequality in (40) is satisfied, such that, together with
stability of the gain-mode subsystem, all conditions of
Theorem 7 are satisfied. Hence, the closed-loop system
is ISS. Note that this was only possible to show with our
new conditions. The smallest value for which ISS could
be shown on the basis of Theorem 7 was found to be
ωh = 1.5 ·2π rad/s. For smaller values of ωh, satisfaction
of the conditions in Theorem 7 is limited by the fact that
the gain-mode dynamics become unstable. Note that in
the set of LMIs (13) the gain-mode matrix A2 does not
necessarily need to be Hurwitz, thereby indicating room
for improvement in the frequency-domain conditions.

Typical step-responses of the closed-loop system for
ωh ∈ {5, 10, 100} · 2π rad/s are shown in Fig. 7, and
demonstrate the beneficial effect of reducing ωh on tran-
sient properties such as overshoot and settling times.

6 Conclusions

In this paper, novel frequency-domain conditions for ISS
of HIGS-controlled systems have been presented. In con-
trast to existing conditions, our new condition allows
for the existence of a quadratic ISS-Lyapunov function
that is strictly positive only within the relevant subre-
gion of the state space, where the dynamics of HIGS are
active, as was shown by linking the conditions to a set of
LMIs. The conditions provide a substantial advantage
over existing results in the sense of significantly reduc-
ing conservatism in the analysis for practically relevant
scenarios. This was shown on an experimental set-up for
which existing frequency-domain tools were not applica-
ble while our new ones were effective. In the example, we
illustrated how the derived frequency-domain conditions
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can be verified graphically in a manner that is compara-
ble to the classical Popov plot. The conditions derived
in this paper may contribute to further development of
less conservative, and practically verifiable frequency-
domain conditions for nonlinear and hybrid systems in
general, and HIGS in particular. Interesting directions
for future work include lifting the relative degree two
assumption and extending the frequency-domain condi-
tions to multivariable systems.
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