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a b s t r a c t

The hybrid integrator-gain system (HIGS) has been introduced recently with the aim to overcome
fundamental limitations of linear time-invariant (LTI) control systems. To support the analysis and
design of HIGS-based controllers, in this paper a novel frequency-domain condition for stability
analysis of the feedback interconnection of an LTI system and HIGS is presented. Compared to existing
frequency-domain stability conditions such as the one extending the circle-criterion, the condition
presented in this paper exploits explicit knowledge regarding HIGS’ switching strategy, thereby
potentially providing a significantly less conservative condition. In particular, the novel condition in
this paper guarantees the existence of a quadratic Lyapunov function that does not need to be positive
definite within the full state space. The proposed condition can be verified graphically in a manner
that is reminiscent of the classical Popov plot, as will be illustrated in an experimental case-study.

© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The development of nonlinear control strategies that can over-
ome fundamental limitations of linear time-invariant (LTI) con-
rol for LTI systems (Freudenberg, Middleton, & Stefanopoulou,
000) has a long history starting with the introduction of the
legg integrator (Clegg, 1958). Since then, many alternative
trategies have been proposed, including generalized reset el-
ments (Nesic, Teel, & Zaccarian, 2011; Prieur, Queinnec, Tar-
ouriech, & Zaccarian, 2018; van Loon, Gruntjens, Heertjes, van de
ouw, & Heemels, 2017; Zhao, Nesic, Tan, & Hua, 2019; Zheng,
hait, Hollot, Steinbuch, & Norg, 2000), split-path nonlinear fil-
ers (Foster, Giesenking, & Waymayer, 1996; Sharif, van der Maas,
an de Wouw, & Heemels, 2022), and hybrid integrator-gain
ystems (HIGS) (Deenen et al., 2021; van den Eijnden, Heertjes,
eemels, & Nijmeijer, 2020). HIGS recently gained a lot of at-
ention due to its ability to overcome well-known fundamental
imitations of LTI control (van den Eijnden et al., 2020), next
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to its successful use in several engineering applications (Shi,
Nikooienejad, Petersen, & Moheimani, 2022; van den Eijnden,
Knops, & Heertjes, 2018). These promising results indicate the
potential of HIGS-based control, but to enable its wide dissemina-
tion it is important to build a strong analysis and design toolbox.
While linear systems lend themselves well for robust stability
and performance analysis through frequency-domain tools such
as Nyquist and Bode plots (Skogestad & Postlethwaite, 2005),
the switching nature of a control system with HIGS obstructs
direct use of such tools. As the current industrial control practice
highly exploits frequency-domain tools, it is important to develop
similar tools for hybrid control strategies such as HIGS as well to
support their wide adoption in practice.

The above need spurred the development of frequency-domain
tools for stability analysis of switched and hybrid systems, see,
e.g., Arcak, Larsen, and Kokotovic (2003), Beker, Hollot, Chait, and
Han (2014), Dastjerdi, Astolfi, and HosseinNia (2020), Deenen
et al. (2021), Griggs, King, Shorten, Mason, and Wulff (2010),
Kamenetskiy (2017, 2019), King, Griggs, and Shorten (2011),
Kunze, Karimi, and Longchamp (2008), Shorten, Corless, Wulff,
Klinge, and Middleton (2009) and van Loon et al. (2017). Under-
lying these tools is the well-known Kalman–Yakubovich–Popov
(KYP) lemma (Rantzer, 1996), which allows for establishing the
equivalence between frequency-domain conditions and the exis-
tence of a Lyapunov function. In principle, the frequency-domain
conditions can be verified using measured frequency-response
function (FRF) data of the plant to be controlled, thereby making
them useful in practical situations, where sufficiently accurate
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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tate space models of the plant are often difficult, if not impossi-
le, to obtain. Moreover, such frequency-domain conditions can
e extended towards robust stability analysis.
Although valuable from a practical perspective, existing

requency-domain conditions that are applicable to the class
f HIGS-based control systems, such as the ones presented in,
.g., Deenen et al. (2021) and Kamenetskiy (2017), often provide a
ather conservative estimate on the region of closed-loop stabil-
ty. To some extent, this conservatism is caused by the fact that
he conditions do not sufficiently take into account the particular
witching characteristics of HIGS, and by regarding HIGS as a
eneric sector-bounded nonlinearity its underlying dynamics are
gnored (Deenen et al., 2021). It is interesting to remark that
n all aforementioned works, the Lyapunov function that results
rom satisfying the conditions is guaranteed to be positive within
he full state space. This may be a restrictive feature of these
esults, because HIGS is sector-bounded, and thus trajectories of
closed-loop system with HIGS are confined to a subset of the
tate space.
The main contribution of this paper is the development of

ovel frequency-domain conditions for stability analysis of the
eedback interconnection of an LTI system and HIGS. These con-
itions are novel in the sense that, if satisfied, they guarantee the
xistence of a quadratic Lyapunov function that is not necessarily
ositive definite within the full state space, but rather in a subset
f the state space where HIGS operates. The same holds true
or negative definiteness of its corresponding time-derivative. To
he best of the authors’ knowledge, frequency-domain conditions
or guaranteeing the existence of a Lyapunov function that does
ot need to be positive definite within the full state space have
ot been established in the literature before. The new frequency-
omain conditions are a generalization of our preliminary results
n the conference paper (van den Eijnden, Heertjes, Heemels, &
ijmeijer, 2021), and can be verified graphically in a manner
hat is comparable with the classical Popov plot (Khalil, 2002).
e will demonstrate by means of a practical example that our
ew frequency-domain condition can show stability in relevant
ituations where existing results cannot be applied.
The remainder of this paper is organized as follows. Some

reliminary results are introduced in Section 2. The system set-
ing and the problem formulation are discussed in Section 3. In
ection 4, the main results of this paper are presented in the
orm of a theorem that sets forth graphically verifiable frequency-
omain stability conditions. Application of the presented results
s demonstrated on an experimental motion set-up in Section 5.
summary of the main conclusions is provided in Section 6.

. Preliminaries

.1. Notation and definitions

The following notations and definitions are used. A single-
nput single-output (SISO) transfer function G(s), s ∈ C, with
eal coefficients, is said to be stable, if all its poles are located in
he open left-half complex plane. The real and imaginary parts
f a (complex) frequency response function G(jω) ∈ C, ω ∈

R, are denoted by Re {G(jω)} and Im {G(jω)}, respectively, and
the complex conjugate is indicated by G∗(jω), which is equal to
G(−jω). The set of real symmetric matrices in Rn×n is denoted by
Sn×n. A symmetric matrix M ∈ Sn×n is positive (semi-)definite,
denoted by M ≻ 0 (M ⪰ 0), if x⊤Mx > 0 for all x ∈ Rn

\ {0}
(x⊤Mx ≥ 0 for all x ∈ Rn). Negative (semi-)definite matrices
are denoted in a similar manner by reversing the inequalities.
A matrix A ∈ Rn×n is said to be Hurwitz, if all its eigenvalues
have strictly negative real part. For matrices we use the shorthand
notations He(X) = X + X⊤ and Pr(X) = X⊤X . The inequality
symbols >, ≥, <,≤ for vectors are understood componentwise.
2

Fig. 1. Interconnection of an LTI system G and HIGS H.

.2. Fundamental result

A general version of the well-known KYP-lemma, which is free
f any hypothesis on minimality of the system, is provided. This
undamental result plays a central role in the proof of the paper’s
ain theorem.

heorem 1 (Rantzer, 1996, Theorem 1). Given A ∈ Rn×n, B ∈ Rn×m,
∈ S(n+m)×(n+m) with det(jωI −A) ̸= 0 for all ω ∈ R. The next two

statements are equivalent:

(1) The following inequality holds for all ω ∈ R ∪ {∞}[
(jωI − A)−1B

I

]∗

Q
[
(jωI − A)−1B

I

]
≺ 0. (1)

(2) There exists a matrix P ∈ Sn×n such that[
A⊤P + PA PB

B⊤P 0

]
+ Q ≺ 0. (2)

he equivalence holds for non-strict inequalities in both (1) and (2),
f the pair (A, B) is controllable.

. System setting and problem formulation

.1. Closed-loop system description

Throughout this paper, we consider the generic closed-loop
ystem setting as depicted in Fig. 1.
In Fig. 1, the LTI system G (containing the plant to be con-

rolled, along with possible LTI controller elements) is given by

:

{
ẋg = Agxg + Bgu + Bww,

y = Cgxg ,
(3)

ith states xg ∈ Rm, exogenous inputs w ∈ Rv , control input
∈ R, and output y ∈ R. We assume that (Ag , Bg , Cg ) is minimal

and the transfer functions from u to y and w to y are denoted by

[
Gyu(s) Gyw(s)

]
= Cg (sI − Ag )−1 [Bg Bw

]
. (4)

For many physical systems, such as motion systems containing
floating masses, the next assumption on the relative degree of
the system is generally satisfied.

Assumption 2. The transfer functions Gyu(s) and Gyw(s) given
n (4) have a relative degree of at least two, such that CgBg =

gBw = 0.

The hybrid integrator-gain system H is described by

:

⎧⎨⎩
ẋh = ωhz, if (z, u, ż) ∈ F1,

xh = khz, if (z, u, ż) ∈ F2, (5)

u = xh,
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here xh ∈ R denotes the integrator state, z = −y ∈ R is
the input to HIGS, and u ∈ R is the generated output. Within
the context of Fig. 1 and under Assumption 2, z is continuously
differentiable, and ż = −ẏ = −CgAgxg denotes the corresponding
time-derivative. The parameters ωh ∈ (0, ∞) and kh ∈ (0, ∞) in
(5) are the integrator frequency and gain, respectively. The sets
F1 and F2 dictating the integrator-mode and gain-mode in (5)
are given by

F1 =
{
(z, u, ż) ∈ R3

| khzu ≥ u2
∧ (z, u, ż) ̸∈ F2

}
, (6a)

F2 =
{
(z, u, ż) ∈ R3

| u = khz ∧ ωhz2 > khżz
}
, (6b)

for which the union defines the ‘‘[0, kh]-sector’’

F := F1 ∪ F2 =
{
(z, u, ż) ∈ R3

| khzu ≥ u2} . (7)

The closed-loop system in Fig. 1 with G as in (3), and H as in (5),
(6) can be written as the switched system

ẋ = Aix + Bw, if x ∈ Xi, i ∈ {1, 2} ,

y = Cx,
(8)

with state vector x = [x⊤
g , xh]⊤ ∈ Rn, n = m + 1. The sets Xi,

i ∈ {1, 2}, in (8) are given by

i =
{
x ∈ Rn

| Ex ∈ Fi
}
, (9)

n which the matrix E is such that Ex = [z u ż]⊤, and is, therefore,
iven by

⊤
=

[
−C⊤

g 0 −(CgAg )⊤

0 1 0

]
. (10)

he mode-dependent system matrices are given by

1 =

[
Ag Bg

−ωhCg 0

]
, A2 =

[
Ag Bg

−khCgAg 0

]
, (11)

= [B⊤
w, 0]⊤, and C = [Cg , 0]. Details on the sets in (6), as

well as an alternative view on the closed-loop system (8) within
the framework of (extended) projected dynamical systems (ePDS)
can be found in Deenen et al. (2021) and Heemels and Tanwani
(2023).

To show the existence and forward completeness of solutions
to (8), we rely on the well-posedness result in Heemels and
Tanwani (2023, Theorem 8). We consider solutions to the discon-
tinuous differential equation (8) in the sense of Carathéodory, i.e.,
locally absolutely continuous (AC) functions x : [0, T ] → Rn that
atisfy (8) for almost all times t ∈ [0, T ]. The results in Heemels
and Tanwani (2023) guarantee the existence of solutions globally,
i.e., on [0, ∞), given an initial condition x(0) = x0 and a bounded
piecewise continuous input w, i.e., w ∈ PC, meaning that there is
{tk}k∈N ⊂ [0, ∞) with t0 = 0, tk+1 > tk for all k ∈ N, limk→∞ tk =

∞, w is continuous for all t ̸∈ {tk}k∈N, and limt↓tk w(t) = w(tk),
k ∈ N, and ∥w∥∞ = supt ∥w(t)∥ < ∞.

3.2. Problem formulation

We are concerned with deriving sufficient frequency-domain-
based conditions for assessing stability of the closed-loop sys-
tem in (8). Stability is studied through the notion of input-to-
state stability (ISS), for which the following definition1 is adopted
from Sontag and Wang (1995).

Definition 3. The closed-loop system in (8) is said to be input-to-
state stable (ISS), if there exist a KL-function α and a K-function
β such that for any initial condition x(0) = x0 ∈ {x ∈ Rn

| Ex ∈ F}

1 In Definition 3 we adopt standard definitions for class K- and class
L-functions, see, e.g., Khalil, 2002, Ch. 40, Sec. 4.4.
 a

3

and any input signal w ∈ PC, all solutions x : R≥0 → Rn to (8)
atisfy

x(t)∥ ≤ α(∥x(0)∥, t) + β (∥w∥∞) , (12)

or all t ∈ R≥0.

The next theorem presents LMI-based conditions for guaran-
eeing ISS of the closed-loop system (8).

heorem 4 (van den Eijnden, Heemels, Heertjes, & Nijmeijer, 2022,
heorem 1). Consider the closed-loop system (8). Suppose there exist
matrix P ∈ Sn×n and constants τi ≥ 0, i ∈ {1, 2, 3}, that satisfy

the LMIs

P − τ1S ≻ 0, (13a)

A⊤

1 P + PA1 + τ2S ≺ 0, (13b)
⊤(A⊤

2 P + PA2 − τ3T )Θ ≺ 0, (13c)

n which

= C⊤

u H + H⊤Cu, T = C⊤

u F + F⊤Cu, (14)

nd Θ = [I, −khC⊤
g ]

⊤, with H = khCz − Cu, F = Cz(khA1 − ωhI),
nd where

z =
[
−Cg 0

]
, and Cu = b⊤

=
[
0m 1

]
. (15)

hen, the closed-loop system (8) is ISS.

Although numerically tractable, solving the LMIs in (13) re-
uires a state–space model as in (3), which, in practice, may
e hard to obtain with sufficient accuracy. Moreover, LMI con-
itions provide limited insights in the (re)design of HIGS-based
ontrollers for guaranteed (robust) stability when the set of LMIs
13) turns out to be infeasible. Motivated by these concerns, the
ain objective in this paper is to establish insightful frequency-
omain conditions that exploit frequency-response data of the
lant for guaranteeing ISS. In particular, we are interested in de-
iving sufficient frequency-domain conditions that guarantee the
xistence of a matrix P and constants τi, i ∈ {1, 2, 3}, that satisfy
he inequalities in (13), thereby transitioning from time-domain
onditions to frequency-domain conditions for guaranteeing ISS.

. Frequency-domain conditions for ISS

.1. Existing results

Frequency-domain conditions for guaranteeing ISS of HIGS-
ontrolled systems have been established in the literature before.
lthough useful, these conditions come with a certain degree of
onservatism in the sense that they guarantee the existence of a
articular solution to the LMI problem in (13). To shed some light
n this possible conservatism, and motivate our new improved
onditions, we recall these existing results.

heorem 5 (Deenen et al., 2021, Theorem 6.1). Suppose the matrix
g in (3) is Hurwitz. If the frequency-domain inequality

e
{
khCg (jωI − Ag )−1Bg

}
> −1 (16)

s satisfied for all ω ∈ R∪{∞}, then the LMI problem in (13) admits
feasible solution of the form P = diag(M, 1) ≻ 0, with positive
efinite matrix M ∈ Sm×m, τ1 = 0, and τ2, τ3 ≥ 0.

heorem 6 (van den Eijnden et al., 2021, Theorem 1). Suppose the
atrix A1 in (11) is Hurwitz. If there exist constants α1 ≥ 0 and
2 ∈ R such that the frequency-domain inequality

e
{
(F + α1Cz + α2H)(jωI − A1)−1b

}
> −1 (17)

s satisfied for all ω ∈ R∪{∞}, then the LMI problem in (13) admits

feasible solution of the form P ≻ 0, τ1 = τ2 = 0, and τ3 ≥ 0.
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The link between satisfying the frequency-domain inequalities
in Theorems 5 and 6, and the existence of a particular solution
to the LMI problem in Theorem 4, allows for establishing the
following important insights regarding possible conservatism of
these conditions:

(1) As a consequence of the fact that both theorems guarantee
the existence of a solution to the LMI problem (13) with
τ1 = 0, an ISS-Lyapunov function V (x) = x⊤Px is guaran-
teed to be positive for all x ∈ Rn

\ {0}, while the states
of the closed-loop system (8) only evolve, by design, in
part of the state space. This observation reveals possible
conservatism induced by the considered class of Lyapunov
functions underlying Theorems 5 and 6.

(2) Theorem 5 is applicable to HIGS-based control systems
for which Gyu is stable. However, in many applications
that may benefit from HIGS-based control, such as motion
systems, the linear part of the dynamics contains simple in-
tegrators, which renders the circle-criterion-like conditions
in Theorem 5 not straightforwardly applicable as Gyu is not
stable. For condition (16) also the interplay between the
LTI dynamics and the integrator-dynamics of HIGS is not
exploited, and stability holds for all (static) sector-bounded
nonlinearities. This is also visible from the fact that the
frequency-domain inequality in (16) does not depend on
the integrator parameter ωh.

(3) Theorem 6 is only applicable to HIGS-based control sys-
tems having stable linear dynamics in integrator-mode.
This narrows down the scope of applications for which
Theorem 6 may be useful for stability analysis. In fact,
one may argue that unstable integrator-mode dynamics
largely contribute to potential performance improvements
with HIGS, and, therefore, is a desirable property (see, for
instance, Deenen et al. (2021) and van den Eijnden et al.
(2020)).

In conclusion, although the results in Theorems 5 and 6 are
of interest, they suffer from restrictions that are not always ben-
eficial for HIGS-based designs. Therefore, obtaining frequency-
domain conditions in which the above limitations are lifted is
considered important for useful practical application.

4.2. Main result

To address the previously discussed shortcomings and provide
less restrictive conditions, we present the next theorem, which
forms the main result of this paper.

Theorem 7. Suppose the matrix Ag − khBgCg is Hurwitz. If there
exist constants λ ≥ 0 and k ≥ 1 such that the frequency-domain
inequality

Re
{
(F + β1Cu + β2H) (jωI − A2)

−1 b
}

> −1 (18)

with A2 = A2 + kωh
kh
bH and β1 = λk, β2 = λ + kωh

kh
is satisfied

or all ω ∈ R∪ {∞}, then the LMI problem in (13) admits a feasible
olution of the form

= M + λH⊤H + τ1S (19)

ith M ≻ 0, and S given in (14), τ1 = λk ≥ 0, τ2 = τ1(k−1)ωh
kh

≥ 0,
and τ3 = 0.

The main advantages of Theorem 7 as compared to Theorem 5
and Theorem 6 are as follows. First, the frequency-domain con-
dition (18) guarantees the existence of a feasible solution to the
LMIs in (13) with τ1 ≥ 0, such that an ISS-Lyapunov function
constructed as V (x) = x⊤Px with P in (19) is guaranteed to be
4

positive for all x ∈ X1 ∪ X2, with Xi, i = {1, 2} given in (9).
Note here that P in (19) itself is not necessarily a positive definite
matrix, as the matrix S given in (14) is indefinite. Second, the
conditions allow for both unstable plant dynamics, as well as
unstable integrator-mode dynamics, which, from a performance
perspective can be desirable. We will explain below in Section 4.3
how the frequency-domain condition (18) can be checked in a
manner that is reminiscent of the classical Popov test.

Proof. By the assumption that the matrix Ag − khBgCg is Hurwitz
and k ≥ 1, the matrix

A2 = A2 + k
ωh

kh
bH

=

[
Ag Bg

−khCgAg 0

]
+ k

ωh

kh

[
0m
1

] [
−khCg −1

] (20)

is Hurwitz as well. To see this, consider the similarity transfor-
mation T A2T −1 with transformation matrices

T =

[
I 0

khCg 1

]
, and T −1

=

[
I 0

−khCg 1

]
, (21)

leading to

Ā2 := T A2T −1
=

[
Ag − khBgCg Bg

0 −kωh
kh

]
. (22)

ue to its upper triangular structure, the eigenvalues of the
ransformed matrix Ā2 in (22) are given by the eigenvalues of
g − khBgCg and −kωh/kh. Therefore, Ā2 is Hurwitz, and thus A2

is Hurwitz as well.
Next, note that the frequency-domain inequality (18) can be

written in the form of (1) with Q given by

Q =

[
0 −(F + β1Cu + β2H)⊤
⋆ −2

]
. (23)

Under the assumption that (18) is satisfied for all ω ∈ R ∪ {∞},
and since A2 is Hurwitz, it follows by virtue of the KYP-lemma
(Theorem 1) that there exists a matrix M = M⊤

∈ Sn×n such that[
A⊤

2 M + MA2 Mb − (F + β1Cu + β2H)⊤
⋆ −2

]
≺ 0. (24)

Define

Mb − (F + β1Cu + β2H)⊤ =
√
2L⊤ (25)

nd apply the Schur complement to (24) to find that this inequal-
ty is equivalent to
⊤

2 M + MA2 ≺ −L⊤L. (26)

learly, as (26) implies A⊤

2 M+MA2 ≺ 0, and A2 is Hurwitz, it fol-
ows immediately from, e.g., Leonov, Ponomarenk, and Smirnova
1996, Lemma 1.10.1) that M ≻ 0.

We will show that (25), (26) imply satisfaction of (13). To show
13a), let us construct a suitable matrix P as

= M + λH⊤H + λkS. (27)

t clearly follows that (13a) is satisfied with τ1 = λk. Next, we will
how that (13b) is satisfied. To do this, first we writeA2 = A1+bG
ith G := F + kωh

kh
H , where F is given in (14). Using this identity

n (26) implies
⊤

1 M + MA1 ≺ −G⊤b⊤M − MbG − L⊤L
(25)
= −He

(
λ(kCu + H) +

(
G −

√
2L
)⊤

G
)

− L⊤L

= −Pr
(
L −

√
2G
)

− He
(
λ(kCu + H)⊤G

)
⪯ −λHe

(
(kCu + H)⊤

(
F + k

ωhH
))

.

(28)
kh
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bserve that by virtue of Assumption 2 we can write

= Cz(khA1 − ωhI) =
[
−Cg 0

] [khAg − ωhI khBg

−khωhCg −ωh

]
=
[
−khCgAg − ωhCg 0

]
= HA1,

ecalling that H = [−khCg , −1]. As such,

kCu + H)⊤F = (kCu + H)⊤HA1

= (kS + H⊤H − kH⊤Cu)A1

= (kS + H⊤H)A1 − kωhH⊤Cz,

(29)

here use is made of the identities S = C⊤
u H +H⊤Cu and CuA1 =

hCz . Substituting (29) in (28) yields

e
(
(M + λH⊤H + λkS)A1

)
+ λk

ωh

kh
He
((

kCu + H − khCz

)⊤

H
)

≺ 0.
(30)

he last term on the left-hand side of (30) reads

kCu + H − khCz)⊤H = (k − 1)C⊤

u H.

nder the assumption that k ≥ 1, using again the identity S =
⊤
u H + H⊤Cu and using P as constructed in (27) this yields
⊤

1 P + PA1 + τ2S ≺ 0 (31)

ith τ2 = λk(k − 1)ωh/kh ≥ 0. Thus, (13b) is satisfied.
It remains to show that (13c) is satisfied. To this end, note that

rom the inequality in (26) and the construction of P in (27) we
ind that

≻ A⊤

2 M + MA2 = He
(
(P − λH⊤H − λkS)A2

)
= He

(
PA2 − λ(H⊤H + kH⊤Cu + kC⊤

u H)A2
)

= He
(
PA2 − λH⊤((H + kCu)A2 + k2

ωh

kh
Cu)
)

= A⊤

2 P + PA2 + (H⊤Γ ⊤
+ Γ H)

with Γ = kωh
kh
(Pb + λkC⊤

u ) − λA⊤

2 (H + kCu)⊤. Here, we used that
HA2 = 0 and

C⊤

u HA2 = C⊤

u H
(
A2 + k

ωh

kh
bH
)

= −k
ωh

kh
C⊤

u H. (32)

ince HΘ = 0, we find Θ⊤(A2P+PA2)Θ ≺ 0 and (13c) is satisfied
ith τ3 = 0. This completes the proof. □

.3. Verifying the frequency-domain conditions

At this point in the analysis it is not immediately clear how
o verify the frequency-domain condition (18) in an effective
anner. This is because (18) is still expressed in terms of state
pace matrices that may be difficult to obtain in practice, and
he variables λ, k appear in (18) in a nonlinear manner. In order
o derive an effective method for verifying the conditions using
measured) FRF data, we will first derive the relevant transfer
unction to be checked. Based on the frequency-domain condition
n (18), this transfer function can be identified as

(s) := C(sI − A2)−1B + D, (33)

where C := F + β1Cu + β2H , B := b, and D := 1. To
rewrite (33) into known transfer functions, it is useful to first do
a similarity transformation using the same transformation matrix
T as in (21). Through standard manipulations this results in the
equivalent transfer function

G(s) = Ĉ(sI − Â )−1B̂ + D̂, (34)
2

5

where[
Â2 B̂
Ĉ D̂

]
=

[
T A2T −1 T B
CT −1 D

]
=

⎡⎢⎣Al Bg 0
0 −kωh

kh
1

Z K 1

⎤⎥⎦ ,

with Al := Ag − khBgCg , Z := Cg ((ωh − khβ1)I − khAg ) and
K := β1−β2. Note the upper-triangular structure of the matrix Â2
and thus also of sI − Â2. The inverse of sI − Â2 can be computed
as
(sI − Â2)−1

=[
(sI − Al)−1 (sI − Al)−1Bg (s + kωh

kh
)−1

0 (s + kωh
kh
)−1

]
.

(35)

ubstituting (35) into (34) yields

(s) = (Z(sI − Al)−1Bg + K )
(
s + k

ωh

kh

)−1
+ 1. (36)

y realizing that Cg (sI−Al)−1Bg corresponds to the process sensi-
tivity of the linear gain-mode of the HIGS-controlled system (i.e.,
replacing HIGS in Fig. 1 by kh), we find the transfer function to be
checked to be given by

G(s) = (W (s)SP (s) + K )L(s) + 1, (37)

ith W (s) = ωh − khβ1 − khs, SP (s) = Gyu(s)(1 + khGyu(s))−1 and
(s) = (s + kωh/kh)−1.
With the transfer function G(s) written in terms of known

ransfer functions, we can now continue describing the procedure
or verifying the conditions of Theorem 7. As a first check, we
hould verify if the gain-mode dynamics are ISS, i.e., we should
heck if the matrix Al = Ag − khBgCg is Hurwitz. This can be done
y applying the Nyquist stability criterion (Franklin, Powell, &
mami-Naeini, 2005, Section 6.3) to the open-loop characteristics
+ khGyu(s). Note that (part of) the characteristics of Gyu(s) may
e obtained from FRF measurements. For verifying condition (18),
t is useful to rewrite (37) as

(s) = Gx(s) − λGy(s) + 1, (38)

here

Gx(s) :=

(
(ωh − khs) SP (s) − k

ωh

kh

)
L(s), (39a)

y(s) := (kkhSP (s) + (1 − k)) L(s). (39b)

erifying the inequality in (18) then amounts to finding param-
ters λ ≥ 0, k ≥ 1 such that for all ω ∈ R ∪ {∞} the
requency-domain inequality

+ Re {Gx(jω)} − λRe
{
Gy(jω)

}
> 0 (40)

s satisfied. For a fixed value of k ≥ 1, verifying (40) can be
one graphically by plotting Re

{
Gy
}

against Re {Gx} in a two-
imensional plane and inspecting if the resulting curve lies to the
ight of a straight line that passes through the point (−1, 0) with a
lope of 1/λ. This graphical test shows strong resemblance with
he classical Popov plot (Khalil, 2002). The parameter k should
e searched for in an iterative manner. Note that the effect of
hanging k on the (Re {Gx} , Re

{
Gy
}
)-curve is directly visible, and

hus such a search can be done efficiently.

. Case-study on a motion system

In this section, we demonstrate the effectiveness of our pre-
ented tools on an experimental motion system. The set-up con-
ists of two rotating masses connected by a thin, flexible shaft as
hown in Fig. 2. The measured FRF of this system from actuator
nput (left-side) to load position (right-side) is shown in Fig. 3.
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Fig. 2. Motor-load motion system. 1: actuator (motor side); 2: encoder (load
side); 3: flexible shaft; 4: rotating masses.

Fig. 3. Measured FRF of the motor-load motion system.

.1. Controller design

Consider the feedback control scheme as depicted in Fig. 4.
iven a reference command r : R≥0 → R, a servo error signal

e is constructed using the relation e(t) = r(t) − q(t), t ∈ R≥0,
where q(t) ∈ R represents the measured output of the motor-
load motion system P at time t ∈ R≥0. This system is subject
o an input disturbance d(t) ∈ R for t ∈ R≥0. For dealing with
isturbances, a feedback controller C = (1 + Ci {H})C0 with
ntegral action is designed. The LTI filter C0 is given by

0(s) = kp

(
s + ωz

s + ωp

)(
ω2

lp

s2 + 2βlpωlps + ω2
lp

)
, (41)

hereas Ci is a HIGS-based integrator constructed as Ci {H} =

1HL2, where

1(s) = ωi

(
s + ωc

τ s + 1

)
, and L2(s) =

τ s + 1
s

.

his specific design stems from describing function reasoning and
s intended for balancing transient and steady-state performance
roperties by exploiting ‘‘phase’’ advantages of HIGS, see van den
ijnden et al. (2020) for further details.
Controller tuning is done by initially setting ωh = ∞ such

hat Ci {H} effectively reduces to an LTI integrator and the linear
cheme C(s) = (1 +

ωi
s )C0(s) is recovered. Using loop-shaping

techniques (Skogestad & Postlethwaite, 2005), a stable LTI design
is obtained with kp = 3.3 Nm, ωi = 8 ·2π rad/s, ωz = 2 ·2π rad/s,
ωp = ωlp = 50 · 2π rad/s, and βlp = 0.5. After fixing kh = 1 Nm,
and τ = 0.002 s, ωh is reduced to ωh = 5 · 2π rad/s.

To verify ISS of the closed-loop system design, we first write
the configuration in Fig. 4 in terms of the Lur’e setting in Fig. 1.
6

Fig. 4. Feedback control set-up with motor-load motion system P and controller
C containing the HIGS-based integrator Ci {H}.

Fig. 5. Nyquist plot of the open-loop characteristics of the integrator-mode
(grey) and gain-mode (black) using the measured FRF of the motor-load motion
system.

Fig. 6. Popov-like plot constructed on the basis of the measured FRF of the
motor-load motion system and parameter values k = {2, 15}, λ = 10.

pecifically, we find the transfer function from output u to input
= −z of H to be given by

yu(s) = L1(s)
(

C0(s)P(s)
1 + C0(s)P(s)

)
L2(s). (42)

ote that due to the simple integrator in L2(s), the linear portion
f the closed-loop system is not asymptotically stable. Hence, for
erifying ISS one cannot apply Theorem 5, but should resort to
heorem 6 or Theorem 7. In these theorems, we either need to
erify stability of the integrator-mode (Theorem 6) or stability
f the gain-mode (Theorem 7). This can be done by inspecting
he Nyquist plots of the integrator-mode in open-loop, i.e., 1 +
ωh
s Gyu(s) and the gain-mode in open-loop, i.e., 1+ khGyu(s) which
re both shown in Fig. 5.
On the basis of the Nyquist stability criterion, it follows from

ig. 5 that the integrator-mode is unstable, whereas the gain-
ode is stable. Hence, one cannot apply Theorem 6 either, and,
ence, one should resort to the new result in Theorem 7 for a
requency-domain stability analysis. Using Gyu(s) as in (42) we
an construct Gx(s) and Gy(s) as in (39) needed for the analysis.
The corresponding Popov-like plot with values k = {2, 15} is

shown in Fig. 6. Clearly, for the value k = 2 which corresponds to
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Fig. 7. Measured time-responses of the closed-loop system with ωh ∈

5, 10, 100} · 2π rad/s when subject to a step input r(t) = 1 for t ∈ R≥0 and
(t) = 0 otherwise.

ur preliminary result in van den Eijnden et al. (2021) it is impos-
ible to find a value for λ such that the conditions in Theorem 7
re satisfied, as part of the corresponding curve lies to the left of
he point (−1, 0). On the other hand, for the value k = 15 we find
hat with λ = 10 the frequency-domain inequality in (40) is satis-
ied (note that in the limit cases we find limω→0(1+Re {G(jω)}) =
1
k −

λ
k

kh
ωh

= 0.045 and limω→∞(1+Re {G(jω)}) = 1). Together with

stability of the gain-mode subsystem, all conditions of Theorem 7
are satisfied, hence the closed-loop system is ISS. Note that this
was only possible to show with our new conditions. The smallest
value for which ISS could be shown on the basis of Theorem 7
was found to be ωh = 1.5 · 2π rad/s. For smaller values of ωh,
atisfaction of the conditions in Theorem 7 is limited by the fact
hat the gain-mode dynamics become unstable. Note that in the
et of LMIs (13) the gain-mode matrix A2 does not necessarily
eed to be Hurwitz, thereby indicating room for improvement in
he frequency-domain conditions.

Measured step-responses of the closed-loop system for ωh ∈

{5, 10, 100} · 2π rad/s are shown in Fig. 7, and demonstrate the
beneficial effect of reducing ωh on transient properties such as
reduced overshoot and settling times.

6. Conclusions

In this paper, novel frequency-domain conditions for ISS of
HIGS-controlled systems have been presented. In contrast to ex-
isting conditions, our new condition allows for the existence of
a quadratic ISS-Lyapunov function that is strictly positive only
within the relevant subregion of the state space, where the dy-
namics of HIGS are active, as was shown by linking the conditions
to a set of LMIs. The conditions provide a substantial advan-
tage over existing results in the sense of significantly reducing
conservatism in the analysis for practically relevant scenarios.
This was shown on an experimental set-up for which exist-
ing frequency-domain tools were not applicable while our new
ones were effective. In the example, we illustrated how the de-
rived frequency-domain conditions can be verified graphically
in a manner that is comparable to the classical Popov plot. The
conditions derived in this paper may contribute to further devel-
opment of less conservative, and practically verifiable frequency-
domain conditions for nonlinear and hybrid systems in general,
and HIGS in particular. Interesting directions for future work
include lifting the relative degree two assumption and extending
the frequency-domain conditions to multivariable systems.
7
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