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a b s t r a c t

Hybrid integrator–gain systems (HIGS) are nonlinear elements designed for overcoming
fundamental limitations of linear time-invariant integrators. This paper presents numer-
ically robust conditions for time-domain stability and performance of HIGS-controlled
systems. In particular, using piecewise quadratic (PWQ) Lyapunov functions defined
over polyhedral subregions of the state-space, conditions for stability and computations
of upper-bounds on the L2-gain and H2-norm are formulated as convex optimization
problems in terms of numerically tractable linear matrix inequalities (LMIs). In order to
improve accuracy and robustness, the LMIs are constructed in a manner to eliminate
explicit equality constraints typically related to continuity of the PWQ functions. Novel
conditions are presented that guide further refinement of the subregions over which the
PWQ Lyapunov functions are defined in order to increase the accuracy of the approach.
The effectiveness of the presented analysis tools is demonstrated through a numerical
case-study on a motion system.
© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The widespread use of linear time-invariant (LTI) control in industry is often attributed to its simplicity of design and
redictability of performance. However, in view of the ever increasing demands on precision and throughput of high-
erformance systems such as wafer scanners, pick-and-place machines, and industrial printers, the classical trade-offs
ncountered when using LTI control are becoming performance-limiting factors [1,2].
Nonlinear control systems potentially deal with these trade-offs in a different manner, and may therefore provide
means to realize performance that is unattainable by any linear design [3,4]. From a motion control perspective,
onlinear strategies that aim at resembling the behaviour of linear filters such as integrators, while improving upon
he negative effects of the associated phase lag, are of particular interest. Typical examples in this regard include split-
ath nonlinear (SPAN) integrators [5,6], switching control [7,8], reset integrators [9–19], and the recently introduced
ybrid integrator–gain system (HIGS) [20,21]. The main philosophy of the latter two nonlinear integrators is quite
omparable: whenever appropriate algebraic conditions on the input–output pair are satisfied, the integrator buffer is
mptied, either instantaneously as with reset control or gradually as with HIGS, thereby forcing the input–output signals
o have equivalent signs. The potential benefits can be made visible amongst others from a describing function analysis.
or reset control elements as well as for HIGS it is found that the magnitude of the dominant harmonic in the response
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to a sinusoidal input shows a 20 dB/decade amplitude decay, similar to a linear integrator, but with an associated phase
lag that does not exceed 38.15 degrees, see [9,22]. This defies Bode’s gain–phase relationship for linear systems and hints
toward the possibility for performance improvements. The main difference between reset control and HIGS, however, is
that reset control achieves this phase advantage in its describing function by means of discontinuous outputs, whereas
HIGS generates continuous (though non-smooth) outputs. The latter could be beneficial from both a theoretical as well
as a practical point-of-view. Let us also motivate the differences between HIGS-based control and the switched controller
design approach in [7], where a family of LTI controller realizations is constructed that yield a stable closed-loop system
when switching arbitrarily between them. In that work, stability of each of the LTI subsystems is required. Distinctively,
HIGS employs a specific state-based switching strategy that allows for the underlying subsystems to be unstable, thereby
making it fundamentally different from the framework discussed in [7]. Switching between one (or more) unstable modes
is, in fact, believed to be a key contributor to improved system performance with HIGS as will be shown in a numerical
example presented in this paper. Experimental studies on an industrial wafer scanner in [20,22,23] have demonstrated the
practical potential of HIGS, and recently it has been shown in [24] that HIGS can truly overcome fundamental limitations
of LTI control, further supporting its relevance and potential.

This paper is concerned with systematic stability and performance analysis of HIGS-controlled systems. In particular,
rigorous conditions for verifying time-domain stability and performance are presented. These conditions are based on
finding suitable continuous piecewise quadratic (PWQ) functions by solving sets of LMIs. The motivation for considering
PWQ functions comes from their success in reducing conservatism in the analysis of piecewise linear systems, see for
example the seminal works in [25,26]. The use of PWQ functions for system analysis has been successfully applied
to numerous fields of applications, including reset control [12,14,16]. For HIGS-controlled systems, this approach was
pioneered in [21,27]. In these works, the three-dimensional subspace determining the active dynamics of HIGS is
partitioned into polyhedral regions, each to which a local Lyapunov-like function is assigned. Continuity of the functions
over a shared region boundary is guaranteed by posing explicit equality constraints. From a computational point-of-
view, however, such constraints are particularly hard to satisfy since numerical solvers work with finite precision
and can therefore only approximate a solution. A result that most likely violates the equality constraints is returned,
potentially leading to false conclusions on stability [28]. In order to slightly relax the conditions, a small mismatch on the
boundary plane between two successive functions can be allowed [16]. However, choosing an acceptable mismatch is not
straightforward: too small may yield infeasible results, whereas too large can easily result in false conclusions.

The main objective in this paper is to improve upon the stability and performance analysis results presented in [21]
from both a theoretical as well as a numerical point-of-view. In doing so, inspiration is drawn from the work in [25,26]
where a compact matrix parametrization of piecewise quadratic functions on polyhedral partitions is introduced. This
parametrization allows for the continuity requirement to be directly incorporated in the description of each local
Lyapunov-like function. In order to pursue this approach for HIGS-controlled systems, a specific partitioning of HIGS’
input–output space is proposed that allows for systematic construction of the key matrix parametrization, thereby
guaranteeing continuity a priori, and making the need for equality constraints in the eventual set of LMIs redundant.
Moreover, such partitioning strategy provides additional flexibility over the existing polyhedral strategy in [21], since
polyhedral partitions can always be recovered with a simplicial partition, but not vice versa. This positively contributes
to an increased accuracy of the presented conditions for stability and performance.

In line with the above, the paper presents two main contributions. First, rigorous conditions for evaluating stability
and performance of hybrid integrator–gain systems are presented. Performance is expressed in terms of both the L2-gain,
and the H2-norm [29]. By exploiting piecewise quadratic Lyapunov functions with a tailored simplicial partitioning, the
conditions are formulated as LMIs in a manner that is flexible, systematic, and robust from a numerical perspective.
From a theoretical perspective, the approach does not introduce conservatism as compared to the approach in [21], but,
in fact, increases the class of admissible Lyapunov functions. As a second contribution, novel algebraic conditions are
presented that provide relevant insights regarding (in)feasibility of the LMIs. These results rigorously demonstrate the
benefits obtained from exploiting partition refinements, and help in guiding such refinements as to increase the possibility
of finding a solution to the presented LMI conditions. To the best of the authors knowledge, algebraic results formally
demonstrating the benefits of partition refinement have not been presented in the literature before. The effectiveness of
the presented tools is demonstrated in an extensive numerical case study.

The remainder of the paper is organized as follows. Section 2 contains notations and definitions that are used
throughout this paper. In Section 3, HIGS is introduced and its use for feedback control is discussed. In Section 4, time-
domain stability and performance conditions based on PWQ functions are presented in the form of LMIs along with some
necessary conditions for their feasibility. Applicability of the presented analysis tools is demonstrated through a numerical
example in Section 5. Section 6 presents the main conclusions.

2. Notation and definitions

In this paper, the set of real symmetric matrices in Rn×n is denoted by Sn×n, and the set of real symmetric
matrices having non-negative elements is denoted by Sn×n

≥0 . The inequality symbols >, ≥, <,≤ for vectors are understood
componentwise. The interior of a set X is denoted by int(X ) and the closure by X . For a signal t ↦→ x(t), the notation
om x denotes its projection on the time (t) axis, and T = sup dom x indicates the maximal time of the domain.
2
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Fig. 1. Generalized plant interconnection Σ .

Definition 1 (Positive Hull, [30]). The positive hull of a set R ⊂ Rn is the set of all positive combinations of elements from
R, i.e.,

pos (R) =

{
M∑

m=1

λmrm | rm ∈ R, λm ≥ 0,M ∈ N>0

}
.

Definition 2 (Polyhedral Cone, [30]). A polyhedral cone is the positive hull of a set R := {r1, . . . , rM} with a finite number
of elements. In this case R is called the generating set of the polyhedral cone, and r1, . . . , rM are generators.

Definition 3 (Simplicial Cone, [30]). A simplicial cone in Rn is the positive hull of a set R with n linearly independent
generators.

Polyhedral and simplicial cones can be written as

C =
{
x ∈ Rn

| Cx ≥ 0
}
,

for some suitable matrix C ∈ Rq×n of full rank. For simplicial cones it follows that C is a square invertible matrix. The
notation −C indicates the set {x ∈ Rn

| −x ∈ C}. For a more detailed discussion on polyhedral and simplicial cones, the
reader is referred to, e.g., [30, Chapter 1].

Definition 4 (Simplicial Partition, [31]). Let a set F ⊆ Rn and an integer N > 0 be given. A simplicial partition of F is a
family S = {C1, . . . , CN} consisting of a finite number of simplicial cones Ci, i ∈ N := {1, . . . ,N} that satisfy F =

⋃
i∈N Ci,

and int(Ci) ∩ int(Cj) = ∅ for i ̸= j.

3. Control context and system description

The results presented in this paper involve the general control configuration as depicted in Fig. 1. Here, G is the
generalized plant, which is represented as the linear time-invariant (LTI) multi-input multi-output (MIMO) system

G :

(
q
y

)
=

(
G11 G12
G21 G22

)(
w

v

)
, (1)

where q(t) ∈ Rm contains the performance variables, which typically include tracking errors and control actions, and
w(t) ∈ Rn contains the exogenous variables, such as disturbances, noise, and reference profiles at time t ∈ R≥0. The
controller input and output are denoted by y(t) ∈ R, and v(t) ∈ R, respectively, and Gij(s), s ∈ C, i, j ∈ {1, 2}, are transfer
function matrices of appropriate dimensions.

Typically, G contains the physical plant to be controlled, possibly augmented with LTI input- and output weighting
filters. These filters are added for the purpose of including problem specific input knowledge into the system description,
e.g., through known spectra of exogeneous signals, and penalizing regulated output variables. The use of weighting filters
is standard practice in H∞-design problems, see [32].

The generic structure of the single-input single-output (SISO) HIGS-based controller K is shown in Fig. 2, and is
regarded as the interconnection of the hybrid integrator–gain system H, specified in more detail in Section 3.1 below,
and an LTI MIMO system C, the latter given by

C :

(
v

z

)
=

(
C11 C12
C21 C22

)(
y
u

)
, (2)

in which Cij(s) ∈ C, i, j ∈ {1, 2}, are transfer functions associated with the LTI filters, and z(t), u(t) ∈ R denote the input
and output to the HIGS, respectively.
3
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Fig. 2. Generic structure of the HIGS-based controller K.

Fig. 3. Three-dimensional region F defined in (4) which determines the active dynamics of HIGS. Here, F1 (grey) defines the integrator-mode region,
and F2 (green) the gain-mode region. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

3.1. Hybrid Integrator–Gain System (HIGS)

The HIGS has been mathematically formulated in several ways. For instance in [20], it was presented as a discontinuous
piecewise linear (PWL) system, whereas more recently in [21,33] it is formally introduced and modelled in terms of the
extended projected dynamical system (ePDS) framework, which is closer and more natural to the engineering philosophy
behind HIGS. In the latter work it is shown that said representations are equivalent. Throughout the rest of this paper, the
PWL system formulation is adopted as this one is more convenient for the analysis purposes in this paper. In particular,
the HIGS is represented as the PWL system with discontinuous right-hand side given by

H :

⎧⎨⎩
ẋh = ωhz if (z, u, ż) ∈ F1,

xh = khz if (z, u, ż) ∈ F2,

u = xh,
(3)

where xh(t) ∈ R denotes the state of the integrator, z(t) ∈ R is the input, which is assumed to be of class C1, ż(t) ∈ R
is the corresponding time-derivative, and u(t) ∈ R is the generated output. The parameter ωh ∈ R>0 is the integrator
frequency, and kh ∈ R>0 is the gain. In (3), the sets F1 and F2 denote subregions of R3 in which HIGS represents (i) an
integrator or (ii) a gain, respectively. By design, the union of these sets is given by

F := F1 ∪ F2 =
{
(z, u, ż) ∈ R3

| khzu ≥ u2} , (4)

which confines the input–output relation of the HIGS to the [0, kh]-sector. As motivated in [20–22], it is intended for
the HIGS to primarily exhibit integrator dynamics. Therefore, the region F1 is maximized in such a way that a switch
from ‘integrator mode’ to ‘gain mode’ is invoked only when the (z, u, ż)-trajectory tends to escape the sector F in
integrator-mode. This results in the following definitions for F1 and F2:

F1 := F \ F2, (5a)

F2 :=
{
(z, u, ż) ∈ F | u = khz ∧ ωhz2 > khżz

}
, (5b)

where F2 defines a sector on a lower-dimensional space in F with measure zero (in the sense of Lebesgue). The set F , and
corresponding subsets F1 and F2 are visualized in Fig. 3. In fact, the gain-dynamics can be seen as a (partial) projection of
the integrator dynamics on the sector F , see [21,33] for more details on this perspective of projected dynamical systems.
4
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Fig. 4. Describing function of the HIGS (6) with cross-over frequency ωc = ωh|1 + 4j/π |/kh rad/s.

In frequency-domain, the properties of HIGS in (3) can be studied (to some extent) by its describing function D(jω) ∈ C,
.e., the complex mapping from a sinusoidal input z(t) = sin(ωt) to the first harmonic in the corresponding output u(t).
In [22] this mapping has been derived analytically as

D(jω) =
ωh

jω

(
γ

π
+ j

e−2jγ
− 1

2π
− 4j

e−jγ
− 1

2π

)
+ kh

(
π − γ

π
+ j

e−2jγ
− 1

2π

)
, (6)

with γ = 2 arctan(khω/ωh) ∈ [0, π ]. A Bode-like representation of the describing function (6) is depicted in Fig. 4, and
demonstrates first-order low-pass magnitude characteristics, with an induced phase lag of 38.15 degrees at most. Specific
use of HIGS for improving the phase characteristics of LTI filters based on describing function reasoning can be found in,
e.g., [22–24,27].

3.2. Closed-loop system description

The linear portion of the closed-loop system in Fig. 1, resulting from the feedback interconnection of the plant G in
1) with C in (2), is given by

Σlin :

⎧⎨⎩
ẋl = Alxl + Blw + Buu,
q = Clxl + Dlw + Duu,
z = Czxl + Dww + Dzu,

(7)

with states xl(t) ∈ Rp, input u(t) ∈ R generated by HIGS, external inputs w(t) ∈ Rn, and performance output q(t) ∈ Rm,
t time t ∈ R≥0. The output z(t) ∈ R is used as input to the HIGS in (3). Conform Figs. 1 and 2, the system matrices in
7) satisfy (where for the sake of brevity dependency on s is omitted)

Σqu(s) = Cl (sI − Al)
−1 Bu + Du

= G12 (I − C11G22)
−1 C12,

(8)

Σqw(s) = Cl (sI − Al)
−1 Bl + Dl

= G11 + G12 (I − C11G22)
−1 C11G21,

(9)

hich denote the transfers from u to q, and w to q, respectively, and

Σzu(s) = Cz (sI − Al)
−1 Bu + Dz

= C22 + C21G22 (I − C11G22)
−1 C12,

(10)

Σzw(s) = Cz (sI − Al)
−1 Bl + Dw

= C21
(
I + G22 (I − C11G22)

−1 C11
)
G21,

(11)

eing the transfer functions from u to z, and w to z, respectively. To ensure that the interconnected system resulting from
he linear system (7) with HIGS is well-posed, the following assumption is made, see [21] for a formal discussion.

ssumption 1. The transfer functions Σzu(s) in (10) and Σzw(s) in (11) have a relative degree of at least two, i.e.,
= D = 0 and C B = C B = 0.
z w z l z u

5
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The assumption on Σzu(s) removes the occurrence of an algebraic loop when HIGS is in gain-mode, whereas the
ssumption on Σzw(s) results in the absence of a direct feedthrough from the signals (w, ẇ) to (z, ż). The latter will

prove useful for system analysis. Note that the relevant and broad class of motion systems typically satisfy Assumption 1.
Moreover, it directly reflects the filtering hypothesis [34] that is usually made for justifying the use of describing
functions, as the transfer from the output of HIGS to its input, which is governed by Σzu(s), has certain low-pass filtering
haracteristics.
The closed-loop interconnection of (7) with HIGS in (3) then naturally admits the PWL representation

Σ :

{
ẋ = Aix + Bw, if Hx ∈ Fi, i ∈ {1, 2}
q = Cx + Dw

(12)

ith state vector x(t) =
[
xl(t)⊤ xh(t)

]⊤
∈ Rp+1, and performance outputs q(t) ∈ Rm. The matrix H extracts those signals

rom x that determine mode switching of HIGS, i.e., H is such that Hx := [z u ż]⊤, and is, therefore, given by

H⊤
=

[
C⊤
z 0 (CzAl)⊤
0 1 0

]
. (13)

he (mode-dependent) system matrices are given by[
Ai B
C D

]
=

[ Al Bu Bl
Ah,i 0 0
Cl Du Dl

]
, (14)

ith Ah,1 = ωhCz and Ah,2 = khCzAl. Note that the system matrices in gain mode (i = 2) result from explicit
ifferentiation of the algebraic constraint xh = khz in (3). In this regard, it is worth mentioning that the system
escribed in (12) is conceptually different from the systems treated in, e.g., [25,26], as part of the dynamics evolve on
lower-dimensional manifold and the dynamics are discontinuous. Note also that [26] considers piecewise continuously
ifferentiable solutions, while in this paper absolutely continuous solutions are allowed. Care is needed to deal with
he discontinuous nature of the dynamics and corresponding solutions, see, e.g., [35]. The discontinuous nature of the
ynamics renders the existence of solutions not immediate. However, in [21,33] it has been shown that for inputs w

elonging to the class of piecewise Bohl functions [21, Definition 2], forward completeness of solutions to (12) is formally
uaranteed. It is stressed that further improvements on well-posedness properties of the system in (12) are beyond the
cope of this paper.

. Time-domain analysis

In this section, sufficient conditions for stability and performance, the latter characterized in terms of the L2-gain
nd the H2-norm, of the closed-loop system in (12) are presented. The conditions are preferred to be computationally
ractable, and flexible. For that purpose, an approach, which is inspired by the works in [14,21], and exploits piecewise
uadratic (PWQ) functions is pursued.

.1. Partition strategy and constraint matrices

Key in the construction of general PWQ functions is the division of (a subset of) the state-space of the considered system
nto smaller sub-regions. In order to guarantee continuity of the PWQ functions over a boundary shared by two adjacent
egions, different approaches exist. In [14,21], continuity conditions are posed in the form of explicit equality constraints,
hereas in [25] the continuity property is directly incorporated in the construction of the PWQ function. Particularly,

n [25] a compact matrix parametrization of piecewise quadratic functions on polyhedral partitions is introduced as

Vi(x) = x⊤Pix = x⊤F⊤

i ΦFix, (15)

here Fi ∈ Rr×n form the so-called continuity matrices satisfying Fix = Fjx for all x on a boundary shared by two polyhedral
egions, and Φ ∈ Sr×r is a symmetric matrix that contains the decision variables. By construction, continuity of the PWQ
unctions over cell boundaries is guaranteed (see Lemma 4.2 in [25]), thereby making the equality constraints obsolete.
ote that from a numerical perspective this is considered a major benefit, as equality constraints are typically hard to solve
xactly, thereby potentially compromising the stability and performance certificates [28]. Construction of appropriate
ontinuity matrices in (15) depends on the considered partitioning, and may be quite involved (if at all possible), for
xample in the case of polyhedral partitions such as the one proposed for the HIGS in [21]. However, for simplicial partitions
see Definition 4), constructing the continuity matrices can be done in an efficient manner, as will be shown. Moreover,
s each polyhedral region can be partitioned into a finite number of simplicial regions [30, Lemma 1.40], a piecewise
unction defined over polyhedral regions can equivalently be described over simplicial regions (albeit with more regional
escriptions) but not vice versa. Hence, a simplicial partitioning provides additional flexibility that may increase the class
f admissible Lyapunov functions, and in that sense increases the accuracy in the analysis as compared to, for example,
he approach in [21].
6
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Motivated by the preceding discussion and for the sake of (computational) improvement, a simplicial partition of the
hree-dimensional region F is proposed. From (4) and Fig. 3 it can be seen that the set F is formed as the union of two
olyhedral cones K and −K, that is,

F =
{
ξ ∈ R3

| Kξ ≥ 0
}  

:=K

∪
{
ξ ∈ R3

| Kξ ≤ 0
}  

:=−K

. (16)

here ξ = [z, u, ż]⊤ = Hx, and

K =

[
0 1 0
kh −1 0

]
. (17)

he intersection of K and −K is defined by Kξ = 0, and coincides with the line ξ =
{
[0, 0, ż]⊤ | ż ∈ R

}
. According to [30,

Lemma 1.40], polyhedral cones with nonempty interior can always be partitioned into a finite number of simplicial cones.
This result allows the polyhedral cone K in (16) to be partitioned into N simplicial cones Si given by

Si =
{
ξ ∈ R3

| Siξ ≥ 0
}
. (18)

et the simplicial partition of K be denoted by

SK := {S1, . . . , SN} , (19)

nd consider the index set N := {1, . . . ,N}. A generating set RS of the partition SK is constructed as the union of
enerating sets RS

i of each simplicial cone Si ∈ SK, i.e., RS =
⋃

i∈N RS
i . In what follows, it is assumed that the

implicial partition SK is constructed in such a manner that the vectors [0, 0, 1]⊤ and [0, 0, −1]⊤ are generators, and
thus [0, 0, ±1]⊤ ∈ RS . Note that due to symmetry, a partitioning of −K directly results from a partitioning of K, and
is denoted by −SK. A simplicial partition of F is then given by S := SK ∪ −SK. In turn, since F1 = F , a partition of
F1 is equivalent to a partition of F , and, therefore, is given by S , whereas a partition of F2 is formed by M boundary
faces of S . In particular, these boundary faces are described by Tj = pos

{
rmk , rnk

}
, j ∈ M := {1, . . . ,M}, for some k ∈ N

and (m, n) ∈ {1, 2, 3}2. Here, rmk , rnk are generators of Sk that satisfy rmk , rnk ∈ F2. The generating set of Tj is given by
RT

j =
{
rmk , rnk

}
. Clearly, Tj are polyhedral cones in R3 and can alternatively be described by

Tj =
{
ξ ∈ R3

| Tjξ ≥ 0 ∧ Πξ = 0
}
, (20)

here Tj ∈ R2×3 is a full row rank matrix, j ∈ M, and Π := [kh, −1, 0]. Denote the partition of the gain-mode subset F2

by T and observe that

T := {T1, . . . , TM}  
:=TK

∪ {−T1, . . . ,−TM}  
:=−TK

. (21)

he generating set RT of the partition TK is formed as RT :=
⋃

j∈M RT
j , and contains all generators r of S that satisfy

∈ F2. A possible partition of F into simplicial cones is illustrated in Fig. 5. Several efficient numerical procedures can
be employed for constructing an appropriate simplicial division of an n-dimensional space, such as bisection along the
ongest edge techniques [31], and ray-gridding algorithms [36].

One of the main advantages of the partitioning strategy as illustrated in Fig. 5, is the possibility for easy and systematic
onstruction of the matrices Si, Tj in (18) and (20), and the continuity matrices Fi in (15). The former matrices are used
in the upcoming analysis for the construction of S-procedure relaxation terms. The following two propositions present
results for the construction of appropriate matrices associated with a simplicial partitioning of the HIGS’ sector F . These
are based on the ideas outlined in the seminal works [26] and [25, Chapter 8, Section 8.1].

Proposition 1. Consider a simplicial partition S of F . Collect the generators of each simplicial cone Si ∈ S in a matrix
Ri :=

[
r i1, r

i
2, r

i
3

]
∈ R3×3, i ∈ N , and the generators of Tj ∈ T , j ∈ M, in a matrix R̂j := [r j1, r

j
2] ∈ R3×2. Then the matrices

Si = R−1
i , i ∈ N (22)

Tj =

(
R̂⊤

j R̂j

)−1
R̂⊤

j , j ∈ M (23)

and Π = [kh, −1, 0] satisfy the inequalities specified in (18) and (20), respectively.

Proof. First, it is shown that ξ ∈ S ⇐⇒ S ξ ≥ 0.
i i

7
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p

Fig. 5. Simplicial partition of F . Each three-dimensional simplicial cone Si (grey shaded) is spanned by three vectors r1i , r2i , r3i , i.e., Si =

os
{
r1i , r2i , r3i

}
. The green shaded regions correspond to boundary faces Tj that partition the gain-mode region. (For interpretation of the references

to colour in this figure legend, the reader is referred to the web version of this article.)

• ξ ∈ Si ⇒ Siξ ≥ 0. Since Si is a simplicial cone, each ξ ∈ Si can uniquely be written as a positive combination of
columns from Ri, i.e.,

ξ = Riλ, with 0 ≤ λ ∈ R3. (24)

Invertibility of Ri results in λ = R−1
i ξ ≥ 0, which by the choice Si = R−1

i yields the inequality.
• Siξ ≥ 0 ⇒ ξ ∈ Si. Suppose Siξ = λ ≥ 0. Invertibility of Si yields ξ = Riλ and thus ξ ∈ pos

{
r1i , r

2
i , r

3
i

}
= Si. The

result follows.

Next it is shown that ξ ∈ Ti ⇐⇒ Tiξ ≥ 0, Πξ = 0.

• ξ ∈ Tj ⇒ Tjξ ≥ 0, Πξ = 0. The equality follows immediately from the observation that Tj ⊂ F2. Since Tj is a
polyhedral cone, each ξ ∈ Tj can be written as the positive combination of columns in R̂j, that is

ξ = R̂jλ, with 0 ≤ λ ∈ R2. (25)

Since R̂j has linearly independent columns, it follows that the matrix product R̂⊤

j R̂j also has linearly independent
columns and, therefore, is invertible. Multiplying (25) from the left by (R̂⊤

j R̂j)−1R̂⊤

j yields(
R̂⊤

j R̂j

)−1
R̂⊤

j ξ = λ ≥ 0.

From the choice for Tj in (23) the result follows.
• Tjξ ≥ 0, Πξ = 0 ⇒ ξ ∈ Tj. Suppose Tjξ = λ with λ ≥ 0. Pre-multiplication of this equality with R̂⊤

j R̂j yields
R̂⊤

j ξ = R̂⊤

j R̂jλ, which, in turn, yields

R̂⊤

j

(
ξ − R̂jλ

)
= 0. (26)

Clearly, there is no unique solution to this equation. Consider a solution that satisfies ξ − R̂jλ ̸= 0. Since the columns
of R̂j both belong to the plane defined by ker(Π ), it must hold that the vector ξ − R̂jλ is perpendicular to this plane.
However, since R̂jλ ∈ ker(Π ), this contradicts the assumption that ξ ∈ ker(Π ). As such, the only solution that can
satisfy (26) when Πξ = 0 holds, is ξ = R̂jλ. For λ ≥ 0 this implies ξ ∈ pos

{
r j1, r

j
2

}
= Tj. □

Proposition 2. Consider a simplicial partition S of F . Define the set R̄S := RS \
{
[0, 0, −1]⊤

}
, and collect its elements in

the matrix R̄ :=
[
r1, . . . , rp

]
∈ R3×p. Let the matrices Ei ∈ Rp×3, i ∈ N have its qth row equal to zero for all q ∈ {1, . . . , p}

such that rq ̸∈ Si, and the remaining rows equal to the rows of a three-dimensional identity matrix such that R̄Ei = Ri. Here,
no distinction is made between rq = [0, 0, 1]⊤ and rq = [0, 0, −1]⊤. Then the matrices

Fi = Ei
(
R̄Ei
)−1

, i ∈ N , (27)

satisfy the property F ξ = F ξ for all ξ ∈ S ∩ S and ξ ∈ −S ∩ −S , i, j ∈ N × N , i ̸= j, and all ξ ∈ S ∩ −S , i, j ∈ N × N .
i j i j i j i j

8
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Fig. 6. Partitioning of the (z, ż)-space.

Proof. The proof follows similar arguments as in [25, Section A.4]. First, the continuity property is shown for all ξ ∈ Si∩Sj,
, j ∈ N × N , i ̸= j. Observe that each ξ ∈ Si can be written as a linear combination of elements from R̄S , such that

ξ =

p∑
q=1

rqwq = R̄wi, (28)

here wi
= [wi

1, . . . , w
i
p]

⊤
∈ Rp collects the weights. One can set wi

q = 0 for all q such that rq ̸∈ Si (where no distinction
s made between rq = [0, 0, 1]⊤ and rq = [0, 0, −1]⊤). By doing so, it follows that wi

= EiE⊤

i wi, such that (28) can
quivalently be written as ξ = R̄EiE⊤

i wi. Since Ei extracts those columns from R̄ that coincide with the generators of Si,
it follows that the columns of the matrix R̄Ei are linearly independent and thus R̄Ei is invertible. From this, one finds the
mapping wi = Ei

(
R̄Ei
)−1

ξ . On the boundary shared by two simplicial cones Si and Sj, the only nonzero elements of wi, wj
re those that describe this common boundary. Therefore, wi(ξ ) = wj(ξ ) for all ξ ∈ Si ∩ Sj. The result trivially follows for
∈ −Si ∩ −Sj, i, j ∈ N × N , i ̸= j.
It remains to show that (27) also yields the continuity property for ξ ∈ Si ∩−Sj, i, j ∈ N ×N which corresponds to the

line ξ = [0, 0, ż]⊤. Since [0, 0, −1]⊤ is excluded, this common boundary is represented by only one column in R̄, being
[0, 0, 1]⊤. Therefore, for each ξ ∈ Si ∩ −Sj, i, j ∈ N × N , the only nonzero element in wi and wj describes this common
boundary. This concludes the proof. □

Example 1. In order to emphasize the subtlety in Proposition 2 of making no distinction between the vectors [0, 0, ±1]⊤

for constructing the continuity matrices, consider Fig. 6 which shows an example of a simplicial partitioning of the
two-dimensional (z, ż)-plane.

The generating set RS of the partitioning in Fig. 6 is given by RS = {r1, r2, r3, r4} , with generators

r1 =

[
1
0

]
, r2 =

[ 1
2

1
2

√
3

]
, r3 =

[
−

1
2

1
2

√
3

]
, r4 =

[
−1
0

]
,

nd R̄S = RS \ {r4}. The selection matrices are given by

E1 =

[1 0
0 1
0 0

]
, E2 =

[0 0
1 0
0 1

]
, and E3 =

[1 0
0 0
0 1

]
,

nd the continuity matrices follow as

F1 =

⎡⎣1 −
1
3

√
3

0 2
3

√
3

0 0

⎤⎦ , F2 =

⎡⎣ 0 0
1 1

3

√
3

−1 1
3

√
3

⎤⎦ , F3 =

⎡⎣1 1
3

√
3

0 0
0 2

3

√
3

⎤⎦ .

Consider the point ξ = (ż, z) = ( 12 ,
1
2

√
3) which is located on the boundary between the region S1 and S2. For this point

ne finds F1ξ = F2ξ = [0, 1, 0]⊤. Consider also the point ξ = (ż, z) = (−1, 0), which is located on the boundary between
3 and −S1. In this case one has F1ξ = F3ξ = [−1, 0, 0]⊤. If the vector r4 would have been taken into account for
onstructing the matrices Fi, i = 1, 2, 3, then one finds for ξ = (−1, 0) that F1ξ = [−1, 0, 0, 0]⊤ and F3ξ = [0, 0, 0, 1]⊤.
n that case the continuity property does not hold over the boundary shared by the regions ±S1 and ∓S3 as this boundary
s described by two different vectors in R̄S . Elimination of the vector r4 (alternatively r1) ensures that this boundary is
epresented by a single vector in R̄ .
S

9
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In order to use the matrices Si, Tj and Fi for an LMI based analysis of the closed-loop system in (12), these are
transformed to

S̄i = SiH, T̄j = TjH, and F̄i =
[
(FiH)⊤, I

]⊤
, (29)

where H is defined in (13), and the continuity matrix is appended with an identity matrix for ensuring full rank.
It is important to stress that the simplicial partitioning presented in this paper does not introduce any conservatism in

the analysis as compared to the approach in [21]. Since each polyhedral cone with non-empty interior can be partitioned
into a finite number of simplicial cones [30, Lemma 1.40], when defining a continuous function over a polyhedral
partitioning such as discussed in [21], this same function can be defined over a simplicial partitioning as well. The converse,
however, is not necessarily true, thereby indicating improved flexibility of the simplicial partitioning proposed here.

Remark 1. If the input signals w are directly input to the HIGS, z and ż depend on x, w, and ẇ. Consequently, due to
he specific partitioning of F and the construction of the continuity matrices Fi as in Proposition 2, a function of the form
15) becomes dependent on w and ẇ. Different from the approach in [14] in which dependency of the partitioning on
he inputs necessarily led to a common quadratic function rather than a piecewise quadratic one (see also the discussion
n [14, Section 4.2]), here this dependency is not necessarily restrictive. However, it requires knowledge about w and ẇ,
hich may generally not be available. In the current setting this is dealt with by Assumption 1. In case specific knowledge

s available, input (impulse response) filters can be used to embed this knowledge in (15) as reflected by the filter state
ariables corresponding to w and ẇ. In that case, one may also relax the assumption on the relative degree of the transfer
unction Σzw(s) in (11).

.2. Main results

Before presenting the main results, appropriate definitions for input-to-state stability and L2-gain are given.

efinition 5. The HIGS-controlled system (12) is said to be pre-input-to-state stable (pre-ISS), if there exist a KL-
unction σ and a K-function φ such that for any initial condition x(0) = x0 ∈ Rp+1 and any bounded input signal w, all
orresponding solutions to (12) satisfy

∥x(t)∥ ≤ σ (∥x(0)∥, t) + φ

(
sup
0≤τ≤t

∥w(τ )∥
)

, (30)

or all t ∈ dom x.

efinition 6. The L2-gain of the HIGS-controlled system (12) subject to input w is defined as

∥Σ∥∞ = sup
w∈L2\{0}

dom qw ̸={0}

∥qw∥2

∥w∥2
, (31)

here qw is the output satisfying (12) with x(0) = 0, and ∥ · ∥2 denotes the L2-norm, which is defined as ∥v∥2 =

(
∫ Tv
0 ∥v(t)∥2dt)1/2 with Tv = sup dom v.

Remark 2. The notion of pre-ISS and L2-gain on possibly finite time intervals is adopted to indicate the possibility of
(maximal) solutions not being forward complete, e.g., solutions of which the domain is not defined for all times t ∈ R≥0.
Allowing for this situation separates conditions for forward completeness of solutions from conditions on stability and
performance, see also the discussion in [37, Section 3.1] and [15, Remark 5]. For inputs to (12) that belong to the class of
piecewise Bohl functions, see [21, Definition 2], forward completeness of solutions (i.e., sup dom x = ∞) can be formally
uaranteed [21,33].

heorem 1. Consider the system given in (12) with w ∈ L2, and let S be a simplicial partition of F . Suppose there exist
atrices Ui, Wi ∈ S3×3

≥0 for all i ∈ N , and Vi ∈ S2×2
≥0 , Li ∈ Rq for all i ∈ M, a matrix Φ ∈ Sq×q, and constant γ > 0, such that

i = F̄⊤

i Φ F̄i satisfies the following LMI conditions:

Pi − S̄⊤

i WiS̄i ≻ 0, for all i ∈ N , (32)⎡⎣Â⊤

k Pi + PiÂk + Gi,k PiBk C⊤

B⊤

k Pi −γ I D⊤

C D −γ I

⎤⎦ ≺ 0, (33)

or (k, i) ∈ (({1} × N ) ∪ ({2} × M)), in which Â1 = A1, and Â2 = A2 + ∆, with

∆ = α
[
0 Λ⊤

]⊤
, (34)
10
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w
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with α ∈ R a fixed number, Λ = ΠH, and

Gi,1 = S̄⊤

i UiS̄i, (35a)

Gi,2 = T̄⊤

i ViT̄i + LiΛ + (LiΛ)⊤ , (35b)

here S̄i, T̄i, and F̄i are given in (29). Then for all x(0) ∈ Rp+1, the closed-loop system in (12) is pre-ISS and has a finite L2-gain
rom w to q smaller than or equal to γ .

Remark 3. The motivation for using the extended system matrix Â2 = A2 + ∆ rather than A2, comes from numerical
considerations. Since A2 results from explicit differentiation of the algebraic constraint in gain-mode, this matrix is
singular. Consequently, the LMI problem in (32), (33) becomes ill-conditioned, which potentially leads to numerical issues;
note that this corresponds to α = 0 in (34). By appending A2 with an additional matrix ∆, the resulting matrix Â2
becomes non-singular, thereby leading to numerically more favourable conditions. Note that the gain-mode dynamics
remain unchanged, that is, A2x = Â2x for all Hx ∈ F2. A suitable choice for α may be one that minimizes the condition
number of Â2.

Proof. Consider the piecewise quadratic function

V (x) = Vi(x) := x⊤Pix, when Hx ∈ Si, i ∈ N , (36)

with Pi = F̄⊤

i Φ F̄i. The proof is based on showing that under the conditions of the theorem, (36) classifies as a suitable
storage function with supply rate matching L2-gain guarantees [38,39] for the closed-loop system (12), and simultaneously
qualifies as a non-smooth ISS Lyapunov function, see, e.g., [35, Definition 3.2].

First, observe that V is composed by locally Lipschitz continuous functions. By virtue of Proposition 2, V is con-
tinuous over the boundaries of the partitioning, making V a (non-smooth) locally Lipschitz continuous function on
{x ∈ Rn

| Hx ∈ F}.
Positive definiteness of V is implied by (32). Indeed, from the results in Proposition 1 and non-negativity of the

elements in Wi, it follows that

x⊤S̄⊤

i WiS̄ix ≥ 0, when x ∈ Si, i ∈ N . (37)

Application of the S-procedure then shows that

V (x) > x⊤S̄⊤

i WiS̄ix ≥ 0 if 0 ̸= x ∈ Si, i ∈ N . (38)

The strict inequality implies the existence of some sufficiently small α1 > 0 such that V (x) ≥ α1∥x∥2. Furthermore, due
to the piecewise quadratic construction of V there exists α2 > 0 such that V (x) ≤ α2∥x∥2. Hence, one finds

α1∥x∥2
≤ V (x) ≤ α2∥x∥2, (39)

which yields the corresponding result.
Since solutions to (12) are locally absolutely continuous, the composite function t ↦→ V (x(t)) is locally absolutely

continuous and almost everywhere differentiable with respect to time, i.e., d
dt V (x(t)) exists almost everywhere.

Next, it is shown that for (k, i) ∈ {1} × N ∪ {2} × M condition (33) implies
d
dt

V (x(t)) ≤ −ϵ∥x(t)∥2
− ∥q(t)∥2

+ γ 2
∥w(t)∥2 (40)

to hold almost everywhere. Following the same arguments as in [35, Theorem 3.3], it can be concluded that for almost
all times t

d
dt

V (x(t)) ≤ max
(k,i)∈KI

∇Vi(x(t)) (Akx(t) + Bw(t)) , (41)

where KI := {1} × N ∪ {2} × M. In integrator-mode, ∇Vi(x)(A1x + Bw) evaluates to

∇Vi(x)(A1x + Bw) = x⊤
(
A⊤

1 Pi + PiA1
)
x + 2x⊤PiBw,

for all i ∈ N . Using the results from Proposition 1, and non-negativity of the elements in Ui, one finds that x⊤Gi,1x ≥ 0
when Hx ∈ Si. Application of the S-procedure in combination with the Schur complement of (33) shows that the inequality
in (33) implies for k = 1, i ∈ N that

∇Vi(x)(A1x + Bw) = x⊤
(
A⊤

1 Pi + PiA1
)
x + 2x⊤PiBw

≤ −ϵ∥x∥2
− (Cx + Dw)⊤ (Cx + Dw) + γ 2

∥w∥
2

= −ϵ∥x∥2
− ∥q∥2

+ γ 2
∥w∥

2.

In a similar manner, in gain-mode one finds

∇V (x)(A x + Bw) = x⊤
(
A⊤P + P A

)
x + 2x⊤P Bw,
i 2 2 i i 2 i

11
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for all i ∈ M. Combining the results of Proposition 1 with non-negativity of the elements in Vi shows that x⊤Gi,2x ≥ 0 for
all Hx ∈ Ti. Application of the S-procedure, Finsler’s lemma and the Schur complement then shows that the inequality in
(33) for k = 2, i ∈ M implies

∇Vi(x)(A2x + Bw) = x⊤
(
A⊤

2 Pi + PiA2
)
x + 2x⊤PiBw + 2x⊤Pi∆x  

=0

≤ −ϵ∥x∥2
− (Cx + Dw)⊤ (Cx + Dw) + γ 2

∥w∥
2

= −ϵ∥x∥2
− ∥q∥2

+ γ 2
∥w∥

2,

where the algebraic relation ∆x = 0 is used, which holds true for all Hx ∈ Ti, i ∈ M. From this, one may conclude that the
upper-bound on the time-derivative of V as in (40) holds almost everywhere. The proof can be completed in a standard
manner by using well-known comparison results, see, e.g., [40]. □

Besides the L2-gain, which is typically considered as a steady-state root-mean-square (RMS) gain, one is often
interested in measures reflecting the transient performance of a system. For linear systems, such a measure is given
by the H2-norm, which, amongst others, can be interpreted as the energy in the response of the system to an impulse
(starting from an initial condition x(0) = 0) [41]. This characterization has been extended to reset control systems in [14].
In the following, the approach presented in [14] is adopted for calculating the H2-norm for HIGS-controlled systems.
In particular, through the use of stable input filters, the energy in the response of the system subject to specific input
signals, such as a step input or a sinusoid, can be approximated. Note that for the system in (12) the impulse response is
obtained by setting w(t) = 0 for all t ∈ R≥0, and considering an appropriate set of non-zero initial conditions x(0) = B
that correspond to unitary impulses on the input channels. Conform Remark 2, since w = 0 is a ‘‘Bohl input’’, forward
completeness of solutions is guaranteed. The H2-norm is defined as follows.

Definition 7. The H2-norm of a HIGS-controlled system (12) corresponding to an initial value x(0) = x0 = B is defined
as

∥Σ∥2,x0 = ∥q∥2,T , (42)

where q is the output satisfying (12) with w = 0, x(0) = B and T = sup dom q.

Theorem 2. Consider the system in (12) with w = 0 and initial condition x(0) = x0 = B. Let S be a simplicial partitioning
of F . Suppose there exist matrices Ui, Wi ∈ S3×3

≥0 , Vi ∈ S2×2
≥0 , Li ∈ Rq, Φ ∈ Sq×q, and a constant γ > 0, such that Pi = F̄⊤

i Φ F̄i
satisfies:

Pi − S̄⊤

i WiS̄i ≻ 0, (43)

Â⊤

k Pi + PiÂk + Gi,k + C⊤C ≺ 0, (44)

γ 2
− B⊤PjB ≥ 0, (45)

for (k, i) ∈ (({1} × N ) ∪ ({2} × M)), with Â1 = A1, Â2 = A2 + ∆, Gi,k defined in (35), and j ∈ J (x0) := {i ∈ N | x0 ∈ Si}.
Then, the closed-loop system (12) is exponentially stable with H2-norm for initial condition x0 smaller than or equal to γ .

Proof. Similar to the proof of Theorem 1, now with w = 0, conditions (43), (44) imply ∥Σ∥
2
2,x0

= ∥q∥2
2 ≤ V (x0). Using

(45) with x0 = B one finds

∥q∥2 ≤ γ , (46)

which yields an upper-bound on ∥Σ∥2,x0 defined in (42). Exponential stability immediately follows from the proof of
Theorem 1 with w = 0. This completes the proof. □

Remark 4. It is well-known [37] that robust stability issues can arise in a discontinuous piecewise-linear system such
as (12). For obtaining robust stability guarantees, one may consider the Krasovskii regularization of a discontinuous
dynamical system. Similar to [21], the Krasovskii regularization of (12) is formulated as

ẋ ∈

{
A1x + B1w if Hx ∈ F1 \ F2,

co(A1x + B1w, A2x + B2w) if Hx ∈ F2,
(47)

n which co(X ) denotes the closed convex hull of a set X ⊂ Rn. Different from the original system description in (12) which
oes not possess sliding-modes, the Krasovskii regularized system in (47) allows convex combinations of the integrator-
nd gain-mode dynamics at certain states. In this regard, note that within a cell Si ⊂ F1 of the partitioning that contains
boundary plane Tj ⊂ F2 (see also Fig. 5), a ‘‘common quadratic function’’ V (x) = x⊤Pix is defined so that on this
oundary plane the LMI conditions in Theorems 1 and 2 hold true for the convex combination of integrator- and gain-
ode dynamics, and thus for the Krasovskii regularized dynamics in (47). As such, Theorems 1 and 2 provide certain

obust stability and performance guarantees, see also [21, Remark 8].
12
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Remark 5. Regarding the computational complexity of the LMIs in Theorems 1 and 2, note that the number of decision
ariables D in the LMIs scales at least proportionally to the number of partitionings according to D ∝ 2N + M .

Depending on the solver, the numerical complexity of the LMI conditions may, in turn, scale proportionally to D3, see,
for instance [42]. Though mathematically there is no a priori limit on the maximum number of partitions, the increasing
computational burden may pose a practical limit.

4.3. On infeasibility of the LMI conditions

When the LMIs in Theorem 1 or Theorem 2 turn out to be infeasible for a certain partitioning, this partitioning can be
iteratively refined to increase the possibility of finding a solution, if existing. In this regard, it might be useful to know
in advance under which conditions and for which partitioning the LMIs will not be feasible, such that these cases do not
have to be considered. In general, this is difficult to assess since the LMI conditions are only sufficient. However, some
insights can be obtained into infeasibility of the LMIs when one or both submodes of the HIGS-controlled system are
unstable. This is formalized in the following proposition.

Proposition 3. Let a simplicial partitioning S of F be given. The LMI conditions in Theorems 1 and 2 do not admit a feasible
solution for that specific S if one (or both) of the following conditions holds.

C1. The matrix A1 given in (14) has eigenvalues λ ∈ C with Re(λ) > 0 that satisfy for some i ∈ N⎧⎨⎩
⎡⎣ Re(λ)

ωh
Re(λ)2 − Im(λ)2

⎤⎦ ,

[ Im(λ)
0

2Re(λ)Im(λ)

]⎫⎬⎭ ⊂ Si ∪ −Si. (48)

C2. The matrix Al + khBuCz with Al, Bu, Cz given in (7) has eigenvalues λ ∈ C with Re(λ) > 0 that satisfy for some i ∈ M{[
1

Re(λ)

]
,

[
0

Im(λ)

]}
⊂ Ti ∪ −Ti. (49)

Proof. For proving infeasibility of the LMIs (32), (33) and (43)–(45), it is sufficient to prove that the LMIs

Pi − S̄⊤

i WiS̄i ≻ 0, (50a)

Â⊤

k Pi + PiÂk + Gi,k ≺ 0, (50b)

with Gi,k defined in (35) and S̄i given in (29), cannot be feasible for some (k, i) ∈ {1}×N ∪{2}×M under conditions (48)
and/or (49).

C1. Consider the integrator-mode subsystem (k = 1). If feasible, the conditions in (50) imply that for any complex
nonzero vector v ∈ Cm and its complex conjugate v̄ the inequalities

v̄⊤
(
Pi − S̄⊤

i WiS̄i
)
v > 0 and v̄⊤

(
A⊤

1 Pi + PiA1 + S̄⊤

i UiS̄i
)
v < 0

are satisfied. Choose v to be an eigenvector of A1 such that A1v = λv with λ ∈ C the corresponding eigenvalue. Observe
the identity

Hv
(13)
=

[ Cz 0
0 1

CzAl 0

]
v =

⎡⎣ 1
ωh

CuA1

Cu
1
ωh

CuA2
1

⎤⎦ v = ρCuv (51)

with Cu := [01×p, 1], ρ :=

[
λ
ωh

1 λ2

ωh

]⊤

and the matrices Cz , A1 are given in (7) and (14), respectively. Note that here
use is made of the fact that CzBu = 0. Assume λ ∈ C such that

ρ =
1
ωh

⎛⎝⎡⎣ Re(λ)
ωh

Re(λ)2 − Im(λ)2

⎤⎦+ j

[ Im(λ)
0

2Re(λ)Im(λ)

]⎞⎠ . (52)

y construction of S̄i as in (29), it follows that

S̄iv = R−1
i Hv = R−1

i ρCuv

= R−1
i (Re(ρ) + jIm(ρ)) Cuv.

(53)

ote that additionally

S̄ v̄ = R−1 Re(ρ) − jIm(ρ) C v̄.
i i ( ) u

13
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If Re(ρ), Im(ρ) ∈ Si then R−1
i Re(ρ) ≥ 0 and R−1

i Im(ρ) ≥ 0 hold entry-wise. Similarly, for Re(ρ), Im(ρ) ∈ −Si one has
−1
i Re(ρ) ≤ 0 and R−1

i Im(ρ) ≤ 0. Moreover, if Re(ρ) ∈ ±Si and Im(ρ) ∈ ∓Si, then R−1
i Re(ρ) and R−1

i Im(ρ) have opposite
igns. For any symmetric matrix Xi with non-negative elements one finds

v̄⊤S⊤

i XiSiv = v̄⊤C⊤

u

[
Re(ρ)
Im(ρ)

]⊤

Qi

[
Re(ρ)
Im(ρ)

]
Cuv ≥ 0, (54)

ith Qi = diag
(
R−⊤

i XiR−1
i , R−⊤

i XiR−1
i

)
a block diagonal matrix. Note that the cross product of real and imaginary parts

ancels. Suppose (50a) holds. Through (54) with Xi = Wi, this implies v̄⊤Piv > 0, which, in turn, for Re(λ) > 0 implies

v̄⊤
(
A⊤

1 Pi + PiA1
)
v + v̄⊤S̄⊤

i UiS̄iv

= 2Re(λ)v̄⊤Piv + v̄⊤S̄⊤

i UiS̄iv > 0.
(55)

ence, under condition (48) the inequalities in (50) cannot be satisfied, which shows that the LMIs in Theorems 1 and 2
re infeasible in this case.
C2. Consider the gain-mode subsystem (k = 2). As these dynamics are defined in a lower-dimensional region of F ,

amely F2 in (5b), it follows from Finsler’s lemma that for k = 2 and any i ∈ M, the LMIs in (50) can equivalently be
ritten as

Θ⊤
(
Pi − S̄⊤

i WiS̄i
)
Θ ≻ 0, (56a)

Θ⊤
(
A⊤

2 Pi + PiA2
)
Θ + Θ⊤T̄⊤

i ViT̄iΘ ≺ 0, (56b)

ith Θ = [I, khC⊤
z ]

⊤ and A2 is given in (14). Next, observe that

A2Θ =

[
Al Bu

khCzAl 0

][
I

khCz

]
=

[
Al + khBuCz

khCzAl

]
= ΘĀ2,

here Ā2 := Al + khBuCz with Al, Bu, Cz given in (14), and use is made of the fact that CzBu = 0. Consider v ∈ Cm−1 to be
n eigenvector of Ā2 such that Ā2v = λv with λ ∈ C the corresponding eigenvalue. Then the following identity holds

HΘv =

[ Cz 0
0 1

CzAl 0

][
I

khCz

]
v =

⎡⎣ Cz
khCz

Cz Ā2

⎤⎦ v = ρCzv, (57)

ith ρ :=
[
1 kh λ

]⊤. Assume λ ∈ C such that

ρ =

[ 1
kh

Re(λ)

]
+ j

[ 0
0

Im(λ)

]
. (58)

he vectors Re(ρ) and Im(ρ) both belong to the plane in F defined by Πξ = [kh, −1, 0]ξ = 0, ξ ∈ R3, i.e., the two-
imensional plane in F on which the gain-mode is defined. Consequently, since Ti, i ∈ M is a subset of this plane, and

Ti ⊂ Si for all i ∈ M, it follows that{[
1

Re(λ)

]
,

[
0

Im(λ)

]}
⊂ Ti ⇔ {Re(ρ), Im(ρ)} ⊂ Si.

Using a similar reasoning as before, it follows that if (49) is true, then the inequalities v̄⊤Θ S̄⊤

i WiS̄iΘv ≥ 0 and
v̄⊤Θ T̄⊤

i ViT̄iΘv ≥ 0 hold. Suppose (56a) is feasible. Together with the above this implies v̄⊤P̄iv > 0 with P̄i := Θ⊤PiΘ .
onsequently it must be true that

v̄⊤
(
Ā⊤

2 P̄i + P̄iĀ2
)
v + v∗Θ T̄⊤

i ViT̄iΘv

= 2Re(λ)v̄⊤P̄iv + v̄⊤Θ T̄⊤

i ViT̄iΘv > 0.
(59)

his contradicts (56), which implies that (50) cannot be feasible when (49) is true. In turn, this shows that for this case
he LMIs in Theorems 1 and 2 cannot be feasible. This completes the proof. □

The result of Proposition 3 clearly shows the benefits of considering a partitioning in the full (z, u, ż)-space in contrast
o e.g., a partitioning in the (z, u)-space as considered in [27]. Namely, when (48) and/or (49) are true, one can refine
he partitioning to render these conditions false, whereas for a simpler partitioning such flexibility may be limited. For
xample, in case the gain-mode region is not partitioned, (49) is always satisfied for any eigenvalue λ of the matrix
l + khBuCz that satisfies 0 ≤ Re(λ) ≤

ωh
kh

and Im(λ) ∈ R. When the gain-mode region is partitioned, this is not
necessarily true. With these conditions one may test upfront if a simpler, computationally less demanding partitioning
(recall Remark 5) could potentially work, or a more involved three-dimensional partitioning should be considered. The
application and relevance of Proposition 3 is illustrated in Section 5.
14
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Closer inspection of the results in Proposition 3 reveals that, under some simple conditions on the eigenvalues related
o the system matrices in integrator-mode and gain-mode, there exists no partitioning for which the LMIs are feasible.
hese conditions are summarized in the following corollary.

orollary 1. The LMI conditions in Theorems 1 and 2 do not admit a feasible solution for any simplicial partitioning S of F
f one or both of the following conditions hold:

(i) there is a real eigenvalue λ of A1 that satisfies λ >
ωh
kh
;

(ii) there is a real eigenvalue λ of Al + khBuCz that satisfies 0 ≤ λ <
ωh
kh
.

roof. Consider the vectors

v1 =

⎡⎣ Re(λ)
ωh

Re(λ)2 − Im(λ)2

⎤⎦ , and v2 =

[ 1
kh

Re(λ)

]
. (60)

uppose that (i) holds. Since Im(λ) = 0 by assumption, it follows that v1 ∈ F1. As Si ⊂ F1 for all i ∈ N , there always
xists a region Si such that v1 ∈ Si. Similarly, assume that (ii) holds such that v2 ∈ F2. Since Im(λ) = 0 and Ti ⊂ F1 for
ll i ∈ M, there always exists a region Ti such that v2 ∈ Ti. Consequently, condition (48) and/or (49) are satisfied for any
artitioning, and thus the LMIs are not feasible. □

Interestingly, these algebraic conditions can directly be interpreted in terms of unstable closed-loop system behaviour.
ndeed, the vectors v1 and v2 in (60) define a possible direction along which the (z, u, ż)-trajectory can evolve in the
ectors F1 or F2. When condition (i) in Corollary 1 is satisfied, the z-trajectory evolves at a rate of at least 1/kh times
aster than the u-trajectory, i.e., 0 ≤ du/dz < kh. Consequently, the sector boundary u = khz cannot be reached such that
otentially stabilizing switching is not initiated. A similar interpretation is given for the gain-mode. When condition (ii)
s satisfied, the ż-trajectory evolves at least ωh/kh times slower than the z-trajectory. As such, 0 ≤ dż/dz < ωh/kh and the
witching boundaries ωhz = khż or z = 0 cannot be reached. Note that a condition on the magnitude of the eigenvalues is
hus a consequence of the sector-boundedness of the HIGS. The above observations can even be translated into necessary
onditions for input-to-state stability as formalized in the following theorem.

heorem 3. A necessary condition for the HIGS-controlled system (12) to be input-to-state stable (ISS) in the sense of
efinition 6 is that none of the conditions in Corollary 1 hold.

roof. If the conditions in Corollary 1 are satisfied, then one (or both) of the sub-modes is unstable, and according to
orollary 1 it follows that the eigenvector v ∈ Rm corresponding to the unstable real eigenvalue satisfies Hv ∈ F1 or
Θv ∈ F2. When starting in the integrator-mode with initial condition x(0) = v and w = 0, trajectories evolve according
o x(t) = eλtv. For the integrator-mode one finds for all t ≥ 0

(z(t), u(t), ż(t)) = eλtHv ∈ F1. (61)

imilarly, starting with initial condition x(0) = Θv in gain-mode yields x(t) = eλtΘv such that for t ≥ 0

(z(t), u(t), ż(t)) = eλtHΘv ∈ F2. (62)

he (z, u, ż)-trajectory moves along the line spanned by Hv ∈ F1 or HΘv ∈ F2. The system cannot switch: it remains in
he unstable linear mode and thus trajectories diverge exponentially from the origin. This directly violates the property
f an ISS system that for zero inputs, the origin is asymptotically stable for any admissible initial condition x0 ∈ Rp+1 as
mplied by the upper-bound in (30). □

emark 6. For planar HIGS-controlled systems, being the interconnection of HIGS with a one-dimensional plant, the
onditions in Theorem 3 are necessary and sufficient, see also related results for reset systems in [43, Theorem 3] and
inear complementary systems in [44, Theorem III.3].

emark 7. The above results shed some light on the choices for ωh and kh in terms of feasibility of the LMIs, and thus
rovide initial direction toward parameter tuning. Namely, the algebraic conditions in Proposition 3 and Corollary 1 allow
or finding a (possibly conservative) range for ωh and kh for which the LMIs will never admit a feasible solution (despite
he partitioning), and as a result of Theorem 3 will lead to an unstable closed-loop system.

. Numerical case study

In this section, applicability of the presented stability and performance analysis tools is demonstrated for the class
f HIGS-controlled motion systems through simulated experiments. Particularly, the conservatism in the time-domain
nalysis is evaluated.
15
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Fig. 7. Schematic representation of the closed-loop system considered in the numerical example.

5.1. System description and controller design

Consider a motion system represented by the fourth-order transfer function

P(s) =
1

ms2
−

1
m(s2 + 2β0ω0s + ω2

0)
, (63)

hich is a combination of rigid-body and non-rigid-body dynamics, and where m = 18 kg, ω0 = 1200 · 2π rad/s, and
0 = 0.03. This system is placed in feedback with a controller K being the series interconnection of a linear PID-filter
pid(s), a second order low-pass filter Clp(s), and a notch filter Cn(s). The individual filters are constructed as

Cpid(s) = kp

(
1 +

ωi

s
+

s
ωd

)
, (64)

Clp(s) =
ω2

lp

s2 + 2βωlps + ω2
lp

, (65)

Cn(s) =
ω2

p

ω2
z

·
s2 + 2βzωzs + ω2

z

s2 + 2βpωps + ω2
p
. (66)

or this case study, the design of a HIGS-based low-pass filter as presented in [23] is considered. Here, HIGS is added in
eries to the low-pass filter (65) together with an additional transfer function Cz(s) =

s+ωc
ωc

with ωc =
ωh
kh

|1 +
4j
π
|. The

inear portion of the controller is given by

C(s) = Cz(s)Clp(s)Cpid(s)Cn(s). (67)

he system is subject to a bounded input disturbance d ∈ L2, and a unit step-input r(t) = 1 for t ≥ 0, r(t) = 0 otherwise,
hich is approximated by the impulse response filter Ur (s) :=

1
s+ϵ

, with ϵ = 10−6 > 0 a small offset added for technical
easons, see [29] for a discussion on this well-known technicality in H∞-control, and initial condition xr (0) = 1. The
specific closed-loop configuration is depicted in Fig. 7, and satisfies Assumption 1.

An initial controller is designed by means of a describing-function-based loop-shaping-like procedure, guided by an
autotuner (see, e.g., Section IV in [27]). Here, the aim is to maximize the bandwidth, i.e., the frequency at which the
quasi-linear open-loop frequency response function defined as L(jω) := P(jω)C(jω)D(jω) crosses 0 dB for the first time,
hile satisfying a peaking constraint of 5 dB on the quasi-linear sensitivity function S(jω) := (1+L(jω))−1. The following
arameter values are obtained: kp = 3.01 · 107 N/m, ωi = 100 · 2π rad/s, ωd = 180 · 2π rad/s, ωlp = 1500 · 2π rad/s,

β = 0.7, ωz = 1160 · 2π rad/s, βz = 0.02, ωp = 850 · 2π , βp = 0.4, ωh = 270 · 2π rad/s, kh = 1, and the bandwidth is
250 Hz. A Nyquist-like plot of the quasi-linear open-loop frequency response function L(jω) is shown in Fig. 8. For the
purpose of providing an intuitive feeling for the effect of the HIGS parameter ωh on the closed-loop system behaviour,
Fig. 8 additionally shows the quasi-linear open-loop frequency response function of two designs with ωh = 150 ·2π rad/s,
and ωh → ∞, of which the latter approaches the characteristics of a linear system. From a quasi-linear perspective, ωh has
a direct effect on the phase margin of the closed-loop system. Interestingly, this is in accordance with the time-domain
step-response as depicted in Fig. 9. That is, an increase in the phase margin as predicted by the quasi-linear analysis leads
to a reduction in overshoot, see also [24].

Remark 8. For the specific configuration as depicted in Fig. 7, the effect of choosing kh ̸= 1 can equivalently be regarded
as a proportional scaling of both the output of HIGS as well as the parameter ωh. Hence, one can lump the effect of
choosing kh ̸= 1 into the proportional gain kp of the linear part of the controller together with an appropriate scaling of

h, thereby allowing for the choice kh = 1 without loss of generality. Note that, in this regard, the parameter kh appears
as a redundant parameter if used in conjunction with other control elements, which, therefore, renders the results for
this specific example insensitive to a different choice for kh.

5.2. Stability analysis

For verifying input-to-state stability of the resulting design, the conditions in Theorem 1 are solved without minimizing
γ . The conservatism in the analysis is studied by varying the loop-gain k and HIGS parameter ω over a grid. The
p h
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Fig. 8. Describing function based Nyquist plot of the open-loop frequency response function L(jω).

Fig. 9. Step-response for different values of ωh .

emaining parameters are kept similar to the initial design. The choice for varying kp and ωh comes from the possibility
o directly manipulate the gain margin through kp and the phase margin through ωh. The LMI-conditions are solved by
eans of the MATLAB toolbox YALMIP [45] together with the external solver MOSEK [46]. To improve overall numerical

conditioning, a Gramian-based balancing of the closed-loop state-space realization is performed. Hereto, a similarity
transformation xb = Tx is computed on the basis of the state-space description in integrator-mode, which is subsequently
applied to both the integrator-mode and gain-mode state-space models for constructing a balanced closed-loop model.
In order to demonstrate the relevance of Proposition 3, the LMIs in Theorem 1 are first solved with a two-dimensional
partitioning (see [27, Section III]), and second with the more involved three-dimensional partitioning. The results are
presented in Fig. 10. The stable region found by means of extensive time-series simulations is indicated by the grey area.

In Fig. 10(a), the conditions of Proposition 3 are violated in the region right to the dotted black line. As expected,
with a two-dimensional partitioning no feasible solutions to the LMIs are found in that region. The benefits of a three-
dimensional partitioning are clearly visible in Fig. 10(b) as feasible solutions are found beyond the dotted black curve.
The results in Fig. 10(b) show a close correspondence between the results from Theorem 1 (LMIs) and the time-domain
simulations, underlining the accuracy of the LMIs. In fact, the results seem to closely resemble what would be expected
from a necessary condition for closed-loop stability of the nonlinear feedback system.

5.3. L2-gain

Next, the results of Theorem 1 are used for finding the smallest possible upper-bound on the L2-gain from an arbitrary
input d ∈ L2 to the output e by minimizing γ . Compared to a linear controller, ωh provides an additional degree of freedom
in the HIGS-based controller and may thus be considered as an extra performance variable. It is therefore of interest to
analyse the L2-gain for different values of ωh. Note that in the analysis it is chosen to set xr (0) = 0 so the reference r = 0.
The results from solving the LMIs with a different number of regional partitionings are shown in Fig. 11.
17
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Fig. 10. Stability of the closed-loop system evaluated on the basis of (i) the conditions in Theorem 1 (black dots) with different partitionings, and
(ii) time-domain simulations (grey area). The results are shown in terms of dimensionless ratios, where ω∗

h = 270 ·2π rad/s and k∗
p = 3.01 ·107 N/m

orrespond to the initial design.

In addition, an estimate obtained from simulated experiments is provided. For this purpose, a truncated sinusoid
efined by d(t) = sin(ωt) for all t ∈ [0, T ] and d(t) = 0 otherwise, with T = 10 · 2π/ω is applied to the closed-loop
ystem at various frequencies. The simulation time is set to Tf = 5 · T s to ensure the response has sufficiently settled. A
ower-bound on the L2-gain is then estimated by taking the maximum ratio of the computed input and output L2-norms.

The result in Fig. 11 clearly depicts the benefits of a partition refinement as the estimates become tighter and tighter.
rom Fig. 11, a closer correspondence between the results from Theorem 1 (LMIs) and the time-series simulations is
bserved for increasing values of ωh. For decreasing values of ωh, however, a clear discrepancy is visible. This may be
aused by (i) remaining conservatism in the analysis, (ii) numerical artefacts, and (iii) the chosen class of input signals,
hich may only provide a lower-bound for the true L2-gain, that is, γsim ≤ γ ≤ γLMI.

.4. H2-norm

Finally, the conditions presented in Theorem 2 are used for estimating the energy in the error response to a unit-step
nput approximated by Ur (s) with xr (0) = 1. Again, ωh is varied. As shown previously, increasing the phase margin in the
uasi-linear design by varying ωh translates to improved transient response as may be reflected in the H2-norm. No input
isturbance is considered, i.e., d = 0. The results of solving the LMIs for different partitionings are shown in Fig. 12, along
ith the H2-norm obtained from simulated time-series (grey). Note that, in contrast to the estimation of the L2-gain, the
2-norm obtained from simulations is exact.
Again Fig. 12 shows the benefits of a partition refinement, particularly for decreasing values of ωh. For increasing values

f ω , the LMI-results are in fair agreement with the true energy in the error response when the system is subject to a
h
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Fig. 11. Estimated L2-gain by means of (i) Theorem 1 with a different number of regional partitionings, N = 3 ( ), N = 30 ( ), and N = 100
), and (ii) time-domain simulations (grey) as a function of the dimensionless ratio ωh/ω

∗

h with ω∗

h = 270 · 2π rad/s.

Fig. 12. Estimated H2-norm for a unit-step input on the basis of (i) Theorem 2 with a different number of regional partitionings, N = 3 ( ),
N = 30 ( ), and N = 100 ( ), and (ii) time-series simulations (grey) as a function of the dimensionless ratio ωh/ω

∗

h with ω∗

h = 270 · 2π rad/s.

nit-step input. The difference between the simulations and LMI predictions may be caused by (i) remaining conservatism,
nd (ii) numerical artefacts/computational power. Note that the computational complexity significantly increases with an
ncreasing number of regional partitions.

. Conclusion

In this paper, rigorous conditions for stability and performance analysis of hybrid integrator–gain systems are
resented. Two performance measures are considered: the L2-gain and the H2-norm. To potentially reduce conservatism

in the analysis and obtain tighter performance estimates, flexible piecewise quadratic functions with a tailored and a
numerically robust partition are proposed. In particular, for constructing such functions, the full region that determines
mode-switching of HIGS is partitioned into smaller simplicial regions, each to which a quadratic Lyapunov-like function
is assigned. The conditions are formulated as a convex optimization problem in terms of numerically verifiable LMIs. For
achieving some more insight in feasibility of the LMIs with a regional partitioning, sufficient conditions are given under
which the LMIs cannot be solved, guiding partition refinements which are important for obtaining accurate stability and
performance estimates. The effectiveness of the presented tools has been demonstrated on a numerical example.
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