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Abstract. In this paper, we study the stability of Networked Control
Systems (NCSs) that are subject to time-varying transmission intervals
and communication constraints in the sense that, per transmission, only
one node can access the network and send its information. The order
in which nodes send their information is dictated by a network proto-
col, such as the well-known Round Robin (RR) or Try-Once-Discard
(TOD) protocol. Focussing on linear plants and linear continuous-time
or discrete-time controllers, we model the NCS with time-varying trans-
mission intervals as a discrete-time switched linear uncertain system. We
obtain bounds for the allowable range of transmission intervals in terms
of both minimal and maximal allowable transmission intervals. Hereto, a
new convex overapproximation of the uncertain switched system is pro-
posed, using a polytopic system with norm-bounded uncertainty, and
new stability results for this class of hybrid systems are developed. On
the benchmark example of a batch reactor, we explicitly exploit the lin-
earity of the system, leading to a significant reduction in conservatism
with respect to the existing approaches.

1 Introduction

In many control applications nowadays, controllers are implemented on a system
having spatially distributed sensors and actuators that are closed over a shared
real-time network. These Networked Control Systems (NCSs) offer several ad-
vantages such as less wiring and cost, increased system’s flexibility and ease of
installation and maintenance. To harvest the advantages that NCSs can offer,
control algorithms are needed that can deal with communication imperfections
and constraints. This latter aspect is recognised widely as is evidenced by the
broad attention received by NCSs recently, see, e.g., the overview papers [1–4].

One source of communication imperfections is the fact that sensors/con-
trollers/actuators do not operate synchronously anymore causing variations in
sampling/transmission intervals. Also the presence of the network results in de-
lays between the transmittal and the arrival of the data packets. The finite word
length of the packets causes quantisation errors in the transmitted interval. More-
over, communication constraints are induced by restrictions of the network in
the sense that not all sensor and control values can be transmitted at the same



time. Typically, at each transmission time only a selected set of sensors and
actuators (called a node) has access to the shared network to communicate its
data. The effects of quantisation and communication delays in NCSs are studied
in, e.g., [5, 6] and [7–9], respectively. In this paper, we will focus on the stability
of NCSs with time-varying transmission intervals and the presence of communi-
cation constraints in the sense that, per transmission, only one node can access
the network.

The communication constraints in NCSs give rise to the problem of how
to schedule which nodes are given access to the network and when. The algo-
rithms that dictate the scheduling of tasks are often referred to as protocols.
Some well-known and often used protocols are, the Round Robin (RR) proto-
col and the Try-Once-Discard (TOD) protocol [10–14]. The stability assessment
of NCSs with communication constraints and time-varying transmission inter-
vals has already been considered in [10, 14–17]. These papers provide criteria
for computing the so-called Maximal Allowable Transmission Interval (MATI).
Stability is guaranteed as long as the transmission interval is smaller than the
MATI. These results apply for general nonlinear plants and controllers and a
wide class of protocols (including the RR and TOD protocols) and are based on
a continuous-time modelling paradigm related to hybrid inclusions [18]. How-
ever, these results do not include the possibility that the controller is formulated
in a discrete-time form, which is of interest in many practical situations due to
digital implementations. Only recently, the case of discrete-time controllers has
been considered in [19], however, assuming a fixed transmission interval. Another
difference is that in [10, 14–17] always a zero lower-bound on the transmission
intervals (i.e., hk ∈ (0,MATI]) is considered, while we also allow for non-zero
lower bounds, which is often more realistic in many situations. Although the
work in [10, 14–17] presents a research line that is very general and can accom-
modate for many nonlinear NCSs, their results might become conservative when
more structure is present in the NCS such as, e.g., linearity of the controller and
plant.

In this paper, we will focus on linear plants and linear controllers and study
the stability of the corresponding NCS in the presence of communication con-
straints and time-varying transmission intervals, possibly having a non-zero
lower bound. Moreover, we allow that the controller can be either continuous-
time or discrete-time, which requires a different approach than in [10, 14–17].
To be more precise, for the RR protocol, the TOD protocol and the newly in-
troduced class of quadratic protocols we will provide techniques for assessing
stability of the NCS with time-varying transmission intervals hk ∈ [h, h̄] using
Linear Matrix Inequalities (LMIs). In contrast with [10, 14–17], we will apply
a discrete-time modelling framework that leads to a switched linear uncertain
system. Hybrid stability methods will be used to determine the stability of this
NCS model based on a polytopic overapproximation. To obtain this overapprox-
imation, we will present a novel technique that combines ideas from gridding
as in [20] and norm-bounding as in [21]. We will show the effectiveness of the
presented approach on the benchmark example of the batch reactor as used also



in [10, 14–17]. Moreover, we will show that the linearity of plant and controller
can indeed be exploited and leads to a significant reduction of conservatism with
respect to the existing approaches.

The following notational conventions will be used: diag(A1, . . . , An) denotes a
block-diagonal matrix with the entries A1, . . . , An on the diagonal, ‖x‖ :=

√
x>x

the Euclidean norm of a vector x ∈ Rn, and ‖A‖ :=
√
λmax(A>A) the spectral

norm, which is the square-root of the maximum eigenvalue of the matrix A>A.

2 The Networked Control System & Problem Formulation

In this section, we introduce the Networked Control System (NCS) under study,
a discrete-time model describing it and give the problem formulation.

2.1 Description of the NCS

Both the plant and the controller are linear time-invariant systems, where the
plant is given in continuous-time by{

ẋ(t) = Ax(t) +Bû(t), û(t) = û(tk) ∀t ∈ [tk, tk+1)
y(t) = Cx(t)

(1)

and the controller is given in discrete-time, i.e.,{
ξk+1 = Acξk +Bcŷk

uk = Ccξk +Dcŷk−1.
(2)

In these descriptions, x ∈ Rnx and ξ ∈ Rnξ denote the states of the plant and
controller, respectively, y ∈ Rny denotes the measured plant output, u ∈ Rnu the
controller output. The description given by (1) and (2) can cover the situation
of a single plant having multiple inputs and outputs, as well as separate plants
with separate controllers that share a common network. In the latter case, both
(1) and (2) typically have a diagonal structure. Furthermore, tk, k ∈ N, denote
the transmission times at which the controller is updated. Since the plant and
controller are communicating through a network, the actual input of the plant
û ∈ Rnu is not equal to u and the actual input of the controller ŷ ∈ Rny is not
equal to y. Instead, û and ŷ are ‘networked versions’ of u and y, respectively.

To introduce these networked versions û and ŷ properly, we have to explain
the functioning of the network. The plant is equipped with ny sensors and with
nu actuators. These sensors and actuators are grouped into N ≤ ny +nu nodes,
where we assume that actuators and sensors are not in the same nodes. At each
transmission time tk, k ∈ N, one node obtains access to the network and its
corresponding values in u or y are transmitted. In this work, as in [10, 14, 16,
19], we assume that the data is not delayed and packet loss does not occur. Only



the transmitted values will be updated in û and ŷ, while the other values in û
and ŷ remain the same. Such constrained data exchange can be expressed as{

ŷk = Γ yσkyk + (I − Γ yσk)ŷk−1

ûk = Γuσkuk + (I − Γuσk)ûk−1,
(3)

where Γσk = diag
(
Γ yσk , Γ

u
σk

)
is a diagonal matrix taken from the set G =

{Γ1, . . . , ΓN}, with
Γi = diag (γi,1I1, . . . , γi,NIN ) . (4)

In (4), Ij denotes the identity matrix with dimensions corresponding to the
number of sensors or actuators in node j. The elements γi,j , with j ∈ {1, . . . , N},
of the each matrix Γi is given by γi,j = 1, when j = i, and γi,j = 0, when j 6= i.
Note that Γσk ∈ G also formalises the assumption that actuators and sensors
cannot be in the same node, since for each i only one γi,j can be equal to one.

The value of σk lies in {1, . . . , N} and its value indicates which node is
given access to the network at transmission time tk. Indeed, (3) reflects that the
values in û and ŷ corresponding to node σk are updated with the corresponding
transmitted values, while the others stay the same. A protocol determines the
values of (σ0, σ1, . . .), which are made explicit later. Note that because of the
functioning of the network, the direct feed-through of the controller is based on
yk−1, instead of yk, as in [19].

The transmission times tk, k ∈ N, are not necessarily distributed equidis-
tantly in time. Hence, the transmission intervals hk = tk+1−tk are time-varying.
We assume that these variations are bounded and lie in the set [h, h]. Hence,
hk ∈ [h, h] for all k ∈ N. Note that in [10, 14, 16], only h = 0 was allowed, while
here h > 0 is considered. This latter situation is more natural when using a
discrete-time controller, since such a controller is implicitly designed for some
nominal transmission interval larger than zero.

2.2 Discrete-Time NCS and Problem Formulation

To arrive at a discrete-time model for the NCS, we have to obtain a discrete-
time equivalent of (1). Since the inputs of the controller are constant between
subsequent transmissions due to the zero-order hold, we can exactly discretise
the plant (1) at the transmission times tk resulting in{

xk+1 = eAhkxk +
∫ hk
0

eAsdsBûk

yk = Cxk,
(5)

where xk := x(tk) and uk := u(tk), k ∈ N. If we define the network-induced
error ek = [(eyk)>(euk)>]>, by {

eyk := ŷk−1 − yk
euk := ûk−1 − uk,

(6)



we can obtain the complete NCS model by combining (2), (3), (5), and (6). This
results in

x̄k+1 :=


xk+1

ξk+1

eyk+1

euk+1

 = Ãσk,hk


xk
ξk
eyk
euk

 , (7)

where Ãσk,hk ∈ Rn×n, with n = nx + nξ + ny + nu, is given by

Ãσk,hk=

 eAhk + EhkBDcC EhkBCc EhkBDc EhkB(I − Γuσk )

BcC Ac Bc(I − Γyσk ) 0

C(I−eAhk−EhkBDcC) −CEhkBCc I−Γyσk−CEhkBDc −CEhkB(I − Γuσk )

−CcBcC Cc(I − Ac) DcΓ
y
σk
−CcBc(I−Γyσk ) I − Γuσk

 (8)

and Ehk =
∫ hk
0

eAsds.
In this paper, we focus on two commonly used protocols, see [10, 14–17],

namely the Try-Once-Discard (TOD) and the Round-Robin (RR) protocol. In
the TOD protocol, the node that has the largest network-induced error, i.e., the
difference between the most recently received value and the current value of the
node, is granted access to the network. To make this more precise, assume that
ek is partitioned as ek = [(e1k)>, . . . , (eNk )>]>, according to the nodes. Hence,
eik is the networked induced error for the signals corresponding to node i. For
the TOD protocol, the switching function is now given by

σk = arg max
{
‖e1k‖, . . . , ‖eNk ‖

}
. (9)

In the case that two nodes have the same values, one of them is chosen arbitrarily.
For the RR protocol, each node is granted access periodically and the switching
function is given by

σk =


1, if k = 1 + jN, for some j ∈ N
2, if k = 2 + jN, for some j ∈ N
...
N, if k = N, for some j ∈ N.

(10)

The above modelling approach now provides a description of the NCS system
in the form of an uncertain switched linear system given by (7) and one of
the protocols (9) and (10). The system switches between N linear uncertain
systems and the switching is due to the fact that only one node accesses the
network at each transmission time. The uncertainty is caused by the fact that
the transmission interval hk ∈ [h, h] is time-varying. Let us now formally define
stability for the NCS.

Definition 1 (Uniform Global Exponential Stability). System (7) with
(9) or (10), is said to be uniformly globally exponentially stable (UGES) if
there exist c > 0 and 0 ≤ λ < 1, such that for any initial condition x̄0 ∈ Rn,
and any sequence of transmission intervals (h0, h1, . . .), with hk ∈ [h, h], for all
k ∈ N, it holds that

‖x̄k‖ ≤ c‖x̄0‖λk. (11)



The problem studied in this paper is to determine the UGES of the NCS
model (7) with (9) or (10) given the bounds hk ∈ [h, h], or to find these bounds.

Remark 1. In Definition 1, we defined UGES of the uncertain discrete-time NCS
model (7), whereas the states of the plant (1) actually evolve in continuous-time.
In [22], it is shown that the intersample behaviour is bounded as a function of the
states on the transmission times, and consequently, stability of the discrete-time
NCS model also implies stability of the continuous-time NCS. �

Remark 2. Although, we mainly focus on the case of a discrete-time controller
(2), we can also incorporate continuous-time controllers in our framework. In-
deed, in case of the continuous-time controller{

ξ̇ = Ãcξ + B̃cŷ

u = Ccξ +Dcŷ
(12)

the Ac and Bc-matrices in (8) for the NCS model (7) have to be modified to

Ac = eÃchk and Bc =
∫ hk

0

eÃcsdsB̃c, (13)

which then also become uncertain and time-varying. �

2.3 Overapproximation of the NCS model by a polytopic system

The form (7) is not really convenient to obtain efficient techniques for stability
analysis due to the nonlinear appearance of the uncertain parameter hk in (8).
Therefore, we will provide a procedure that overapproximates system (7) with a
polytopic system with a norm-bounded additive uncertainty of the form

x̄k+1 =
M∑
l=1

(
αk,lĀσk,l + αk,lB̄l∆kC̄σk

)
x̄k, (14)

where B̄l ∈ Rn×m, C̄σk ∈ Rm×n, and αk = [αk,1 . . . αk,M ]> ∈ A denotes an
unknown time-varying vector with

A =

{
α ∈ RM |

M∑
l=1

αl = 1, αl ≥ 0

}
. (15)

Moreover ∆k ∈∆, where ∆ is a set of matrices in Rm×m, describing the additive
uncertainty, which possibly has some structure, as we will see below. Equation
(14) should be an overapproximation of (7) in the sense that

{
Ãσk,hk | hk ∈ [h, h]

}
⊆

{
M∑
l=1

αk,l
(
Āσk,l + B̄l∆kC̄σk

)
| αk ∈ A, ∆k ∈∆

}
.

(16)



In this paper, we use the idea of [20] to obtain Āσk,l by gridding (8) at a
collection of selected transmission intervals. However, we choose to allow for
convex combinations of the vertices corresponding to the grid points, whereas in
[20], the system switches between these vertices. For that reason, we can grid at a
priori chosen points h̃1, . . . , h̃M ∈ [h, h], and construct a norm-bounded additive
uncertainty ∆ ∈ ∆ to capture the remaining approximation error, as done in,
e.g., [21]. Hence, Āσk,l := Ãσk,h̃l in (14), with l ∈ {1, . . . , N}. In contrast with
[20], this procedure prevents the problem of an iterative procedure in which the
number of grid points can become large, resulting in intractability. Furthermore,
we obtain smaller bounds on the additive uncertainty than in [21]. This explains
that the newly proposed method performs better with respect to both complexity
and approximation accuracy.

By specifying the grid points, and thereby determining Āσk,l, it only remains
to show how to specify B̄l∆kCσk in (14) and ∆ as this should be used to sat-
isfy (16). This additive uncertainty is used to capture the approximation error
between the original system (7) and the polytopic system

x̄k+1 =
M∑
l=1

αk,lĀσk,lx̄k, (17)

which consists of the convex combination of the gridded matrices. In order for
(16) to hold, for each h and each σ, these should exist some α ∈ A and ∆ ∈∆,
such that

M∑
l=1

αlB̄l∆C̄σ = Ãσ,h −
M∑
l=1

αlĀσ,l. (18)

Hence, we should determine the worst-case distance between the real system (7)
and the polytopic system (17), leading to an upper bound of the approximation
error, see Fig. 1. To obtain a tight bound, we construct different uncertainty
bounds between each two grid points. Indeed, for each two grid points h̃l, h̃l+1,
we compare for h ∈ [h̃l, h̃l+1], Ãσk,h with {α̃Āσk,l + (1 − α̃)Āσk,l+1 | α ∈ [0, 1]}
and compute the worst-case bound between them for all h ∈ [h̃l, h̃l+1]. Finally,
we will scale all these bound to get a common additive uncertainty set ∆.

This procedure is formalised in the theorem below. For ease of exposition, we
will focus on the case where A is diagonalisable with real eigenvalues only. The
procedure above also applies for general A, using the real Jordan form, although,
in these cases, the structure of ∆ is different than indicated below in (23).

Theorem 1. Let the NCS model (7) be given with h ∈ [h, h] and A := TΛT−1

for some invertible matrix T ∈ Rnx×nx and Λ = diag (λ1, . . . , λnx) with λi ∈ R,
i ∈ {1, . . . , nx}. Furthermore, consider the system (14) in which Āσ,l := Ãσ,h̃l ,
l ∈ {1, . . . ,M}, is obtained by evaluating (8) at M distinct transmission intervals
{h̃1, . . . , h̃M}, with h =: h̃0 ≤ h̃1 < . . . < h̃M ≤ h̃M+1 := h. Moreover,

C̄σ :=
[

T−1 0 0 0
T−1BDcC T−1BCc T−1BDc T−1B(I − Γuσ )

]
(19)
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Fig. 1: The procedure of obtaining the overapproximation.

and

B̄l :=


T T
0 0
−CT −CT

0 0

 · diag
(
max{δ?1,l, δ?1,l+1}, . . . ,max{δ?2nx,l, δ

?
2nx,l+1}

)
(20)

in which

δ?i,l =


sup

h∈[h̃l−1,h̃l]

|eλih − α?heλih̃l−1 + (α?h − 1)eλih̃l |, if 1 ≤ i ≤ nx

sup
h∈[h̃l−1,h̃l]

|
∫ h

h̃l

eλi−nxsds+ α?h

∫ h̃l

h̃l−1

eλi−nxsds|, if nx + 1 ≤ i ≤ 2nx,

(21)
for each l ∈ {1, . . . ,M + 1} and α?h is given for h ∈ [h̃l−1, h̃l] by

α?h = arg inf
α̃∈[0,1]

‖

[
eΛh − α̃eΛh̃l−1 + (α̃− 1)eΛh̃l 0

0
∫ h
h̃l
eΛsds+ α̃

∫ h̃l
h̃l−1

eΛsds

]
‖.

(22)

The additive uncertainty set is given by

∆ :=
{

diag (δ1, . . . , δ2nx) ∈ R2nx×2nx | δi ∈ [−1, 1]
}
. (23)

Then, (7) holds meaning that (14) is an overapproximation of (7).

Proof. The proof is omitted for the sake of brevity, but can be found in the
technical report [23]. �

The stability of (7) with (9) or (10), where hk ∈ [h, h], can now be guaran-
teed by proving stability of (14) with αk ∈ A, ∆k ∈ ∆, k ∈ N, as (14) is an
overapproximation of (7).



Remark 3. In case of a continuous-time controller as in Remark 2, a similar
procedure applies. �

3 Stability of Switched Systems with Parametric
Uncertainty

In the previous section, we discussed the NCS model and introduced an effective
way to overapproximate it by a switched polytopic system with a norm-bounded
uncertainty. Given this uncertain switched system, we can analyse whether a
switching sequence, as induced by a protocol, renders the switched system UGES.

We will start with so-called quadratic protocols that include the well-known
TOD protocol as a particular case. The analysis is based on extensions of ideas
in [24], in which only switched linear systems without any form of uncertainty
is considered. Hence, extensions are needed to include switched polytopic sys-
tems with norm-bounded uncertainties as in (14). After the stability analysis for
quadratic and the TOD protocols, we show how we can analyse stability for the
RR protocol.

For proving stability of system (14), we will employ the so-called full block
S-procedure [25], which is presented in the following lemma.

Lemma 1 (Full block S-procedure). Let P̄ be given and let

∆̄ :=

{
∆ |

[
∆
I

]> [
Q S
S> R

] [
∆
I

]
� 0

}
(24)

for some matrices Q = Q>, S, and R = R> � 0 of appropriate dimensions.
Then, the following statements are equivalent:

1. [
I 0
Ā B̄

]>
P̄

[
I 0
Ā B̄

]
+
[

0 I
C̄ 0

]> [
Q S
S> R

] [
0 I
C̄ 0

]
≺ 0. (25)

2. For all ∆̄ ∈ ∆̄, it holds that[
I

Ā+ B̄∆̄C̄

]>
P̄

[
I

Ā+ B̄∆̄C̄

]
≺ 0. (26)

By choosing a suitable P̄ , (26) can lead to a sufficient condition for stability
of (14), as we will show later. To use this result we aim at constructing the
matrices Q, S, and R such that the actual additive uncertainty set given by ∆
as in (23) is equal to ∆̄ as in (24).

Lemma 2. Consider ∆ as in (23). If[
Q S
S> R

]
=
[
−R 0
0 R

]
with R ∈ R = {diag (r1, . . . , rm) | ri > 0} , (27)

then ∆̄ as in (24) is equal to ∆ i.e., ∆ = ∆̄.

Proof. It follows by direct calculation, exploiting the diagonal structure of (23). �



3.1 Quadratic Protocols

In this section, we assume that the switching function is given by

σk = arg min
i=1,...,N

x̄>k Pix̄k, (28)

where Pi with i ∈ {1, . . . , N} are certain given positive definite matrices. We call
protocols of the form (28) quadratic protocols. We will show later that the TOD
protocol is actually a special case of this type of protocols. To analyse stability
of (14) having switching law (28), we introduce the non-quadratic Lyapunov
function

V (x̄k) = min
i=1,...,N

x̄>k Pix̄k = min
ν∈N

x̄>k

N∑
i=1

νiPix̄k, (29)

where

N :=

{
ν ∈ RN |

N∑
i=1

νi = 1, νi ≥ 0

}
. (30)

Furthermore, we introduce the class of so-called Metzler matrices given by

M :=

Π ∈ RN×N |
N∑
j=1

πji = 1, πji ≥ 0

 . (31)

The main result of this section is presented in the following theorem.

Theorem 2. Assume that there exist a matrix Π ∈ M, a set of positive def-
inite matrices {P1, . . . , PN}, and a set of positive definite diagonal matrices
{R1,1, . . . , RN,1, . . . , R1,M , . . . , RN,M}, with Ri,l ∈ R, with R the set of diag-
onal matrices as in (27), satisfying[

Ā>i,l
∑N
j=1 πjiPjĀi,l − Pi + C̄>i Ri,lC̄i Ā>i,l

∑N
j=1 πjiPjB̄l

B̄>l
∑N
j=1 πjiPjĀi,l B̄>l

∑N
j=1 πjiPjB̄l −Ri,l

]
≺ 0, (32)

for all i ∈ {1, . . . , N} and l ∈ {1, . . . ,M}. Then, the switching law (28) renders
the system (14) UGES. Consequently, the NCS (7) is also UGES if the switching
law (28) is employed as the protocol.

Proof. The proof is based on showing that V (x̄k) as in (29) is a Lyapunov
function for the switched uncertain system (14) with switching law (28). Note
that V (x̄k) = x̄>k Pix̄k, with σk = i, due to (28). Now, we obtain using (29) and
(14) that

V (x̄k+1) = min
ν∈N

x̄>k+1

N∑
j=1

νjPj x̄k+1 ≤ x̄>k+1

N∑
j=1

πjiPj x̄k+1 =

M∑
l1=1

αk,l1 x̄
>
k

(
Āi,l1 + B̄l1∆kC̄i

)> N∑
j=1

πjiPj

M∑
l2=1

αk,l2
(
Āi,l2 + B̄l2∆kC̄i

)
x̄k. (33)



UGES is now implied by requiring that the Lyapunov function is strictly de-
creasing in the sense that (due to (33))

M∑
l1=1

αk,l1
(
Āi,l1 + B̄l1∆C̄i

)> N∑
j=1

πjiPj

M∑
l2=1

αk,l2
(
Āi,l2 + B̄l2∆C̄i

)
−Pi ≺ 0. (34)

for all i ∈ {1, . . . , N}. By taking a Schur complement, and realising that∑N
j=1 πjiPj � 0, we obtain that (34) is equivalent to

M∑
l=1

αl

[
Pi

(
Āi,l + B̄l∆C̄i

)>∑N
j=1 πjiPj∑N

j=1 πjiPj
(
Āi,l + B̄l∆C̄i

) ∑N
j=1 πjiPj

]
︸ ︷︷ ︸

Gi,l

� 0 (35)

for all i ∈ {1, . . . , N}. A sufficient condition for the satisfaction of (35) is that
Gi,l � 0 for all i ∈ {1, . . . , N} and l ∈ {1, . . . ,M}. Using again a Schur comple-
ment, we can rewrite the condition Gi,l � 0 as follows:

Pi −
(
Āi,l + B̄l∆C̄i

)> N∑
j=1

πjiPj
(
Āi,l + B̄l∆C̄i

)
� 0 (36)

or equivalently,[
I

Āi,l + B̄l∆C̄i

]> [−Pi 0
0
∑N
j=1 πjiPj

] [
I

Āi,l + B̄l∆C̄i

]
≺ 0, (37)

for all i ∈ {1, . . . , N} and l ∈ {1, . . . ,M}. As (37) has the form of (26) of Lemma
1, it can, therefore, be rewritten in a form equivalent to (25) in which we use
(27). This yields (32) for all i ∈ {1, . . . , N} and all l ∈ {1, . . . ,M}. Hence,
we can conclude that V (x̄k) is strictly decreasing in spite of the presence of
the uncertainty if the inequalities (32) are feasible. Standard Lyapunov-based
stability arguments now prove that (14) with (28) is UGES. �

Remark 4. The results of Theorem 2 can be exploited in two ways: (i) For the
design of a stabilising protocol. Then the conditions in (32) are not LMIs, but
Bilinear Matrix Inequalities (BMIs) due to the presence of the product of πji and
Pj . Although literature on solving BMIs is available, see, e.g., [26–28], solving
BMIs is considered to be of a high numerical complexity. If the number of nodes is
relatively small, one way to proceed is gridding the possible solutions in Π ∈M,
and subsequently solving the resulting LMIs. (ii) Stability analysis for a given
protocol. In the situation that the set of matrices {P1, . . . , PN} is completely
dictated by a particular quadratic protocol, the conditions (32) are LMIs. �

3.2 The TOD Protocol

In this section, we will show that the TOD protocol is a special case of the class
of quadratic protocols and thus that the Lyapunov-Metzler inequalities can be



employed to determine the allowable range of transmission intervals of the NCS
using the TOD protocol as well. Since the switching sequence is given by (28),
we can arrive at the TOD protocol by adopting the following structure in the Pi
matrices:

Pi = P̄ +
[
0 0
0 P̃i

]
. (38)

Each P̃i ∈ R(ny+nu)×(ny+nu) is partitioned according to the partitioning of the
nodes in the sense that

P̃i ∈ {diag (−I1, 02, . . . , 0N ) , . . . ,diag (01, . . . , 0N−1,−IN )} , (39)

where Ii, i = 1, . . . , N , are identity matrices and 0i, i = 1, . . . , N , are null
matrices, both having dimensions Rni×ni with ni corresponding to the number
of actuators or sensors in node i. Indeed, this structure implies that (28) becomes

σk = arg min
{
−‖e1k‖2, . . . ,−‖eNk ‖2

}
= arg max

{
‖e1k‖, . . . , ‖eNk ‖

}
(40)

which is exactly the TOD protocol as described by (9). This proves that the TOD
protocol can be regarded as a special case of the class of quadratic protocols.
Therefore, stability of the NCS with the TOD protocol can be analysed using
Theorem 2.

3.3 The RR Protocol

We will analyse an other well-known communication protocol, namely the RR
protocol. Therefore, we need to analyse stability of the system (14) with a switch-
ing sequence induced by (10). This system is essentially a periodic uncertain
system with period N . For this system, we introduce a set of positive defi-
nite matrices {P1, . . . , PN} and a mode-dependent Lyapunov function given by
Vσk(x̄k) = x̄>k Pσk x̄k. We can now present the main result of this section.

Theorem 3. Assume that there exist a set of positive definite matrices {P1,
. . . , PN} and a set of positive definite diagonal matrices {R1,1, . . . , RN,1, . . .
R1,M , . . . , RN,M}, with Ri,l ∈ R with R as in (27), satisfying[

Ā>i,lPi+1Āi,l − Pi + C̄>i Ri,lC̄i Ā>i,lPi+1B̄l
B̄>l Pi+1Āi,l B̄>l Pi+1B̄l −Ri,l

]
≺ 0, (41)

where PN+1 := P1, for all i ∈ {1, . . . , N} and l ∈ {1, . . . ,M}. Then, the system
(14) with (10) is UGES and consequently, the NCS (7) with (10) is UGES.

Proof. The proof follows the same lines as the proof of Theorem 2. �

4 Illustrative Example

In this section, we illustrate the usefulness of the presented theory using a well-
known benchmark example in the NCS literature [10, 14, 19], consisting of a



Table 1: Allowable Range of Transmission Intervals
Method Range

Simulation based, obtained in [10] hk ∈ (ε, 0.06]

Theoretical, obtained in [10] hk ∈ (ε, 10−5]

Theoretical, obtained in [14] hk ∈ (ε, 0.01]

Theoretical, obtained in [16] hk ∈ (ε, 0.0108]

Newly obtained theoretical bound hk ∈ [0.001, 0.032]

model of a batch reactor. First, we will analyse the continuous-time controller
as also used in [10, 14]. This will show that our results provide less conservative
bounds on the uncertain transmission intervals than earlier results in the liter-
ature. Secondly, we show that our framework can also deal with discrete-time
controllers. For both examples, we consider the TOD protocol.

The details of the linearised model of the batch reactor model used in this
example and the continuous-time controller can be found in [10, 14, 19]. As in
these references, we assume here that the controller is directly connected to the
actuator and that only the two outputs are transmitted via the network. Hence,
we have N = 2 nodes. Therefore, we have G = {diag(1, 0), diag(0, 1)}, as defined
in Section 2.1.

4.1 Continuous-Time Controller

In order to assess the bounds on the allowable transmission intervals, we first ob-
tain the uncertain polytopic system (14) that overapproximates the NCS model
(7). In this example we choose to grid at h̃l ∈ {0.001, 0.004, 0.015, 0.032} and
determine an upper bound on the approximation error as in Theorem 1. Now
we check the matrix inequalities (32) in Theorem 2, using the structure of the
Pi-matrices as in (38).

Using this procedure we obtain a feasible solution to (32) on the basis of which
we conclude that the TOD protocol stabilises the NCS for any transmission
interval between h ∈ [10−3, 0.032]. In Table 1, we compare our results with the
existing results in [10, 14, 16]. The results in [10, 14, 16] can guarantee UGES for
the given ranges of Table 1, where ε > 0 can be arbitrary small. We can conclude
that taking h = 10−3 as a lower bound on the transmission intervals leads to a
guaranteed MATI h = 0.032, which is much larger than the recently obtained
results. The real MATI was estimated to be 0.06 in [10], hence, we are getting
closer to this estimate.

4.2 Discrete-Time Controller

Next, we compute [h, h] for the NCS given a discrete-time controller. The discrete-
time controller is obtained by discretising the continuous-time controller (12)



with the matrices given in [10, 14, 19] by using a zero order hold, assuming a
fixed sample time of 0.003. Following the procedure presented in this paper,
we conclude that this controller stabilises the NCS using the TOD protocol if
hk ∈ [0.001, 0.032]. Hence, the bound h = 0.032 of the continuous-time controller
can also be guaranteed by a discrete-time equivalent of the controller. Of course,
a discrete-time controller has the advantage over the continuous-time controller
that it is much easier to implement.

5 Conclusions

In this paper, we studied the stability of Networked Control Systems (NCSs) that
are subject to communication constraints and time-varying transmission inter-
vals. These communications constraints impose that per transmission, only one
node can access the network and send its information. We analysed the stability
of the NCS when the communication sequence is determined by the Round Robin
(RR), the Try-Once-Discard (TOD) or a quadratic protocol. This analysis was
based on a discrete-time switched uncertain linear system to describe the NCS.
A new and efficient convex overapproximation was proposed that allowed us to
analyse stability using a finite number of matrix inequalities. On a benchmark
example, we illustrated the effectiveness of the theory. In particular, we showed
that if the minimum allowable transmission interval is not infinitesimally small,
stability can be guaranteed for a much larger maximum allowable transmission
interval, when compared to the existing results in the literature. Interestingly,
our results can be applied to both continuous-time and discrete-time controllers.

References

1. Hespanha, J., Naghshtabrizi, P., Xu, Y.: A survey of recent results in networked
control systems. Proc. of the IEEE (2007) 138–162

2. Zhang, W., Branicky, M., Phillips, S.: Stability of networked control systems. IEEE
Control Systems Magazine 21(1) (2001) 84–99

3. Tipsuwan, Y., Chow, M.Y.: Control methodologies in networked control systems.
Control Engineering Practice 11 (2003) 1099–1111

4. Yang, T.C.: Networked control system: a brief survey. IEE Proc. Control Theory
& Applications 153(4) (2006) 403–412
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17. Tabbara, M., Nešić, D., Teel, A.: Stability of wireless and wireline networked
control systems. IEEE Trans. on Autom. Control 52(9) (2007) 1615–1630

18. Goebel, R., Teel, A.: Solution to hybrid inclusions via set and graphical convergence
with stability theory applications. Automatica 42 (2006) 573–587
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