
Automatica 48 (2012) 917–925
Contents lists available at SciVerse ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Stability analysis of stochastic networked control systems✩

M.C.F. Donkers a,1, W.P.M.H. Heemels a, D. Bernardini b,2, A. Bemporad c, V. Shneer d
a Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
b Department of Mechanical and Structural Engineering, University of Trento, Via Mesiano 77, 38100 Trento, Italy
c IMT Institute for Advanced Studies Lucca, Piazza San Ponziano 6, 55100 Lucca, Italy
d School of Mathematical and Computer Sciences, Heriot–Watt University, Edinburgh EH14 4AS, UK

a r t i c l e i n f o

Article history:
Received 4 August 2010
Received in revised form
26 August 2011
Accepted 6 October 2011
Available online 22 March 2012

Keywords:
Communication protocols
Networked control systems
Parameter-varying systems
Stochastic control
Switched systems

a b s t r a c t

In this paper, we study the stability of Networked Control Systems (NCSs) that are subject to time-
varying transmission intervals, time-varying transmission delays, packet dropouts and communication
constraints. The transmission intervals and transmission delays are described by a sequence of continuous
random variables. The complexity that the continuous character of these random variables introduces is
overcome using a novel convex overapproximation technique that preserves the available probabilistic
information. By focusing on linear plants and controllers, we present a modelling framework for NCSs
based on discrete-time linear switched and parameter-varying systems. Stability (in the mean-square)
of these systems is analysed using a new stochastic computational technique, resulting in a finite
number of linear matrix inequalities. We illustrate the developed theory on the benchmark example of a
batch reactor.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Modelling, analysis and controller design of networked control
systems (NCSs) have recently received considerable attention in
the literature. The main reason for this attention is the many
advantages that NCSs offer, such as reduced system wiring and
increased flexibility. A drawback of networking the control system
is, however, that it becomes subject to time-varying delays,
time-varying transmission intervals and packet dropouts, and
that communication becomes constrained, (i.e., it is no longer
possible to transmit all sensor and actuator signals at every
transmission instant). Most of the literature studies the effects
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of only some of the phenomena, while ignoring the others.
Clearly, it is important to consider the combined presence of
time-varying delays and time-varying transmission intervals and
communication constraints, as in any practical NCS they will be
present simultaneously.

Despite the importance of studying the combined presence
of the mentioned network-induced phenomena, only a few
results exist that provide a framework that allows studying
these phenomena simultaneously. For instance, the joint presence
of time-varying transmission intervals, time varying delays and
communication constraints has been considered in Heemels, Teel,
van de Wouw, and Nešić (2010), Chaillet and Bicchi (2008) and
Donkers, Heemels, van deWouw, andHetel (2011). Thementioned
papers provide methods for computing the so-called Maximum
Allowable Transmission Interval (MATI) and Maximum Allowable
Delays (MAD), given a certain network protocol that determines
which sensor and/or actuator information is sent at a transmission
instant. Stability is guaranteed as long as the actual transmission
intervals and delays are always smaller than the MATI and MAD,
respectively. Three other network induced phenomena, namely
time-varying transmission intervals, time-varying delays and
packet dropouts, are considered in Naghshtabrizi and Hespanha
(2006) and Cloosterman et al. (2011), in which stability is analysed
for the case that the number of consecutive dropouts are upper
bounded, and hard bounds on the transmission intervals and
delays are available.

A common feature of the aforecited references is that conditions
for stability are derived, given hard bounds on the various
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network phenomena. In many situations, however, transmission
intervals, delays and packet dropouts can be described as random
phenomena. Unfortunately, fewer stability results are available in
this context. A common approach found in literature, see, e.g.,
Montestruque and Antsaklis (2004), Shi and Yu (2009) and Yang,
Wang, Hung, and Gani (2006), is to take a finite or countable
set of possible transmission intervals and delays and attribute
probabilities to each element of the set. It is, however, not
possible tomake any statements about stability when a continuous
probability distribution is given and, consequently, the number of
elements in the set is not finite or countable.

In this paper, we focus on linear plants and linear controllers
and study the stability (in the mean-square) of NCSs in the pres-
ence of communication constraints, time-varying transmission in-
tervals and time-varying delays, where the latter two phenomena
are described by an independent and identically distributed (iid)
sequence of random variables and the delays are assumed to be
smaller than the transmission intervals. Contrary to Montestruque
and Antsaklis (2004), Shi and Yu (2009) and Yang et al. (2006),
we allow for continuous probability distributions with possibly un-
bounded supports, as in Tabbara and Nešić (2008) and Antunes,
Hespanha, and Silvestre (2011). In particular, the techniques we
provide are applicable to any distribution whose tail is exponen-
tially bounded and, thereby, includes the exponential distribution
that was studied in Tabbara and Nešić (2008) as a special case. Fur-
thermore, we consider three classes of network protocols, namely:
the class of quadratic protocols, ofwhich thewell-known try-once-
discard (TOD) protocol is a special case, the class of periodic pro-
tocols, which includes the round-robin (RR) protocol and was also
studied in Antunes et al. (2011), and the stochastic protocol, which
was introduced in Tabbara and Nešić (2008). Next to treating a
more general setup than in Tabbara and Nešić (2008) and Antunes
et al. (2011), the essential difference between (Antunes et al., 2011;
Tabbara &Nešić, 2008) and thework presented in this paper is that
(Antunes et al., 2011; Tabbara & Nešić, 2008) use a continuous-
timemodelling paradigm,whilewe apply a discrete-timemodelling
framework that leads to a switched linear system model that is
stochastically parameter varying. We propose novel convex over-
approximation techniques, which are used to handle continuous
probability distributions, and newly developed Linear Matrix In-
equalities (LMIs) to guarantee stability (in the mean-square) of
NCSs with the transmission intervals and delays satisfying a con-
tinuous probability distribution. Note that in this paper, we con-
sider the simultaneous presence of all the aforementionednetwork
effects, whereas in Montestruque and Antsaklis (2004), Shi and Yu
(2009), Yang et al. (2006), Tabbara and Nešić (2008) and Antunes
et al. (2011) only some of them are considered. We will show the
effectiveness of the presented approach on the benchmark exam-
ple of a batch reactor as also used in Antunes et al. (2011), Donkers
et al. (2011), Heemels et al. (2010) and Tabbara and Nešić (2008).

1.1. Nomenclature

The following notational conventions will be used. diag(A1,
. . . , AN) denotes a block-diagonal matrix with the entries A1, . . . ,
AN on the diagonal, A⊤

∈ Rm×n denotes the transposed of the
matrix A ∈ Rn×m and λmax(A) denotes the maximum eigenvalue
of a symmetric matrix A ∈ Rn×n. For a vector x ∈ Rn, we denote by
xi the i-th component and by ∥x∥ :=

√
x⊤x its Euclidean norm. For

a matrix A ∈ Rn×m, we denote by ∥A∥ :=


λmax(A⊤A) its spectral
norm. For brevity, we sometimes write symmetric matrices of
the form


A B
B⊤ C


, as


A B
⋆ C


. By lims↓t , we denote the limit as s

approaches t from above. The convex hull and interior of a set
A are denoted by coA and intA, respectively, and the indicator
function of a set A ⊆ Rn is the function 1 A : Rn

→ {0, 1}
that satisfies 1 A(x) = 1 if x ∈ A and 1 A(x) = 0 if x ∉ A. A
polytope is the convex hull of finitely many points. The probability
distribution of a random variable x, taking values in Rn, is given in
terms of the probabilitymeasureµ, which satisfiesµ(Rn) = 1.We
assume that the measure µ can be decomposed into a continuous
component µc and a discrete component µd, i.e., µ = µc + µd,
where µc(A) =


A
pc(ω)dω for some probability density function

(pdf) pc : Rn
→ R+ and where µd(A) =


i∈{j |aj∈A}

pd,i, for
some finite or countable set of isolated atom points {ai | i ∈ I}

and a corresponding set of weights {pd,i | i ∈ I}, where I ⊆ N.
This probability measure µ defines the probability that the event
x ∈ A occurs, denoted by Pr(x ∈ A) := µ(A), and defines
the expected value of f (x), for a mapping f : Rn

→ Rm, as
E(f (x)) :=


Rn f (ω)pc(ω)dω +


∞

i=1 f (ai)pd,i.

2. NCS model and problem statement

In this section, we present the model describing Networked
Control Systems (NCSs) subject to communication constraints,
time-varying transmission intervals and delays. Let us consider the
linear time-invariant (LTI) continuous-time plant given by

d
dt

xp(t) = Apxp(t) + Bpû(t),

y(t) = Cpxp(t),
(1)

where xp ∈ Rnp denotes the state of the plant, û ∈ Rnu the most
recently received control variable, y ∈ Rny the (measured) output
of the plant and t ∈ R+ the time. The controller, also an LTI system,
is assumed to be given in discrete time by

xck+1 = Acxck + Bc ŷk,
u(tk) = C cxck + Dc ŷ(tk),

(2)

where xc ∈ Rnc denotes the state of the controller, ŷ ∈ Rny the
most recently received output of the plant and u ∈ Rnu denotes
the controller output. At transmission instant tk, k ∈ N, (parts of)
the outputs of plant y(tk) and outputs of the controller u(tk) are
sampled and are transmitted over the network. We assume that
they arrive after a delay τk at instant rk := tk + τk, called the
arrival instant. The states of the controller xck+1 are updated using
ŷk := limt↓rk ŷ(t), i.e., directly after ŷ is updated.

Let us nowexplain inmore detail the functioning of the network
and define these ‘most recently received’ ŷ and û exactly. The plant
is equipped with sensors and actuators that are grouped into N
nodes. At each transmission instant tk, k ∈ N, one node, denoted
by σk ∈ {1, . . . ,N}, gets access to the network and transmits its
corresponding values. These transmitted values are received and
implemented on the controller and/or the plant at arrival instant rk.
As inDonkers et al. (2011) andHeemels et al. (2010), a transmission
only occurs after the previous transmission has arrived, i.e., tk+1 >
rk > tk, for all k ∈ N, where t0 = 0. After each transmission
and reception, the values in ŷ and û are updated with the newly
received information, while the other values in ŷ and û remain the
same, as no additional information is received. This leads to

ŷ(t) = Γ y
σk
y(tk) + (I − Γ y

σk
)ŷ(tk),

û(t) = Γ u
σk
u(tk) + (I − Γ u

σk
)û(tk),

(3)

for all t ∈ (rk, rk+1]. The matrix Γσk := diag(Γ y
σk

, Γ u
σk

) is a diagonal
matrix, given by

Γi = diag(γi,1, . . . , γi,ny+nu), (4)

when σk = i. In (4), the elements γi,j, with i ∈ {1, . . . ,N} and
j ∈ {1, . . . , ny}, are equal to one if plant output yj is in node i, the
elements γi,j+ny , with i ∈ {1, . . . ,N} and j ∈ {1, . . . , nu}, are equal
to one if controller output uj is in node i and are zero elsewhere.



M.C.F. Donkers et al. / Automatica 48 (2012) 917–925 919
The value ofσk ∈ {1, . . . ,N} in (3) indicateswhichnode is given
access to the network at transmission instant tk, k ∈ N. Indeed, (3)
reflects that the values in û and ŷ corresponding to node σk are
updated just after rk, with the corresponding transmitted values at
time tk, while the others remain the same. A scheduling protocol
determines the sequence (σ0, σ1, . . .) and particular protocols will
be made explicit below.

In this paper, we consider the case that both the transmission
intervals hk := tk+1 − tk > 0, k ∈ N, and the transmission delays
τk := rk− tk > 0, k ∈ N, are varying in time. Sincewe assumed that
tk+1 > rk, for all k ∈ N, we have that τk < hk. Furthermore, we as-
sume that the transmission intervals and transmission delays are
described by an independent and identically distributed (iid) se-
quence of (possibly) continuous random variables. These assump-
tions are made explicit below.

Assumption 1. For each k ∈ N, the transmission interval hk and
the transmission delay τk are continuous randomvariables, charac-
terised by a probability distribution that satisfies Pr


(h, τ ) ∈ Θ


=

1, where Θ ⊆

(h, τ ) ∈ R2

| h > 0, 0 6 τ < h

. Furthermore, the

sequence {(hk, τk)}k∈N is iid.

Remark 2. In the above reasoning, we can accommodate for
packet dropouts by modelling them as prolongations of the
transmission interval as done in Heemels et al. (2010) and Donkers
et al. (2011).

2.1. The NCS as a time-varying switched system

To analyse the stability of the NCS described above, we
transform it into a discrete-timemodel. In this framework,weneed
a discrete-time equivalent of (1). To arrive at this description, let us
first define the network-induced error as
ey(t) := ŷ(t) − y(t)
eu(t) := û(t) − u(t). (5)

The stochastically time-varying discrete-time switched system can
now be obtained by describing the evolution of the states between
tk and tk+1 = tk+hk. In order to do so, we define xpk := xp(tk), uk :=

u(tk), ûk := limt↓rk û(t) and euk := eu(tk). Since û, as in (3), is a
left-continuous piecewise constant signal, we can write ûk−1 =

limt↓rk−1 û(t) = û(rk) = û(tk). As (3) and (5) yield ûk−1 = uk + euk
and ûk−1 − ûk = Γ u

σk
euk , we can write the exact discretisation of (1)

as follows:

xpk+1 = eA
phkxpk +

 hk

0
eA

psdsBp(uk + euk) −

 hk−τk

0
eA

psdsBpΓ u
σk
euk .

(6)

The complete NCS model is obtained by combining (2), (3), (5)
and (6), and defining x̄ := [xp⊤ xc⊤ ey⊤ eu⊤]

⊤. This results in the
discrete-time model (7), with x̄k = x̄(tk), as shown in Box I, in
which Ãσk,hk,τk ∈ Rn×n, with n = np + nc + ny + nu, and

Aρ :=


eA

pρ 0
0 Ac


, B :=


0 Bp

Bc 0


, C :=


Cp 0
0 C c


, (8a)

D :=


I 0
Dc I


, Eρ := diag

 ρ

0
eA

psds, I


, ρ ∈ R. (8b)

Remark 3. In this paper,we consider the casewhere the controller
is given in discrete time (2). However, the same NCSmodel (7) also
allows the controller to be given in continuous time, as was shown
(Donkers et al., 2011). The stability analysis presented below
applies in a similar manner to this case, see Chapter 3 of Donkers
(2011) for the details. Although the ability to study continuous-
time controllers is less important from a practical point of view, it
allows us to compare our modelling framework with the existing
results in the literature (Antunes et al., 2011; Heemels et al., 2010;
Tabbara & Nešić, 2008; Walsh, Ye, & Bushnell, 2002), which all
focus on continuous-time controllers. See also the example in
Section 5.

2.2. Protocols as a switching function

Based on the previousmodelling steps, the NCS is formulated as
a stochastically parameter-varying discrete-time switched linear
system (7). In this framework, protocols are considered as the
switching function determining σk, k ∈ N. We consider three
classes of protocols, namely quadratic and periodic protocols, as
introduced in Donkers et al. (2011), and stochastic protocols, as
introduced in Tabbara and Nešić (2008).

2.2.1. Quadratic protocols
A quadratic protocol is a protocol, for which the switching

function can be written as

σk = arg min
i∈{1,...,N}

x̄⊤

k Pix̄k, (9)

where Pi, i ∈ {1, . . . ,N}, are certain given matrices. In case two
or more nodes have the same minimal values, one of them can
be chosen arbitrarily. As was shown in (Donkers et al., 2011), the
well-known try-once-discard (TOD) protocol, see, e.g., Walsh et al.
(2002) and Heemels et al. (2010), belongs to this class of protocols.
In the TOD protocol, the node that has the largest network-induced
error, i.e., the largest difference between the latest transmitted
values and the current values of the signals corresponding to the
node, is granted access to the network. The TOD protocol can be
modelled as in (9) by adopting the following structure in the Pi
matrices:

Pi = P̄ − diag(0, Γi), (10)
in which Γi, i ∈ {1, . . . ,N}, is given by (4) and P̄ is some
arbitrary matrix. Indeed, if we define ẽik := Γiek, being the error
corresponding to node i (extended with zeros on the entries that
do not correspond to node i), where ek := [ey⊤k , eu⊤k ]

⊤, (9) becomes

σk = argmin

−e⊤

k Γ1ek, . . . ,−e⊤

k ΓNek


= argmax

∥ẽ1k∥, . . . , ∥ẽ

N
k ∥

, (11)

which is the TOD protocol.

2.2.2. Periodic protocols
Another class of protocols that is considered in this paper is

the class of so-called periodic protocols. A periodic protocol is a
protocol that satisfies for some Ñ ∈ N
σk+Ñ = σk, for all k ∈ N. (12)

Ñ is then called the period of the protocol. The well-known round-
robin (RR) protocol belongs to this class of protocols.

2.2.3. Stochastic protocols
The stochastic protocol determines σk ∈ {1, . . . ,N} through a

Markov chain. The conditional probability that node i ∈ {1, . . . ,N}

gets access to the network at time tk, given the value of σk−1 ∈

{1, . . . ,N}, is given by
Pr(σk = i|σk−1 = j) = πij for all k ∈ N \ {0}, (13)

where
N

i=1 πij = 1 for all j ∈ {1, . . . ,N} and σ0 ∈ {1, . . . ,N} is
assumed to be given.

For each of the three classes of protocols, the above modelling
approach now provides a description of the NCS in the form
of a stochastically parameter-varying discrete-time switched linear
system given by (7) and one of the protocols, characterised by (9),
(12) or (13).
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7)
x̄k+1 =


Ahk + EhkBDC EhkBD − Ehk−τkBΓσk

C(I − Ahk − EhkBDC) I − D−1Γσk + C(Ehk−τkBΓσk − EhkBD)


  

=:Ãσk,hk,τk

x̄k (

Box I.
2.3. Stability of the NCS

The problem studied in this paper is to analyse stability of the
stochastically parameter-varying discrete-time switched linear
system (7) with protocols (9), (12) or (13).

Definition 4. The continuous-time NCS given by (1)–(3) and (5),
with protocols satisfying (9) and (12) or (13), is said to beUniformly
Globally Mean-Square Exponentially Stable (UGMSES) if there exist
cc, βc > 0, such that for any initial condition x̄(0), for a sequence
of random variables {(hk, τk)}k∈N and for all t ∈ R+ it holds that
E

∥x̄(t)∥2


6 cc∥x̄(0)∥2e−βc t .

Stability of the continuous-time NCS can be analysed by
assessing stability of the discrete-time uncertain switched linear
system (7) with switching functions satisfying (9), (12) or (13), as
wewill showbelow. Before doing so, let us formally define stability
of this discrete-time system and introduce an assumption on the
probability distribution.

Definition 5. System (7) with switching sequences satisfying
(9), (12) or (13) is said to be Uniformly Globally Mean-Square
Exponentially Stable (UGMSES) if there exist cd, βd > 0, such
that for any initial condition x̄0 ∈ Rn, for a sequence of random
variables {(hk, τk)}k∈N and for all k ∈ N, it holds that

E

∥x̄k∥2 6 cd∥x̄0∥2e−βdk. (14)

Assumption 6. There exists a constant λ̄, such that λ̄ >
max{0, λmax(Ap⊤

+ Ap)}, such that the probability distribution for
(h, τ ) satisfies E(eλ̄h) < ch, for some ch > 0.

Assumption 6 excludes all probability distributions whose
tails are not exponentially bounded, sometimes called heavy-
tailed probability distributions. However, when the probability
distribution has an exponentially bounded tail, such as the
Uniform, the Normal and the Gamma distribution, stability can be
analysed using the results presented in this paper. Indeed, under
Assumption 6 we can guarantee that UGMSES of the discrete-time
model implies UGMSES of the continuous-time NCS in the sense of
Definition 4. We formalise this result in the next theorem, whose
proof can be found in Chapter 3 of (Donkers, 2011).

Theorem 7. Assume that the discrete-time system (7) with switch-
ing sequences satisfying (9), (12) or (13) is UGMSES and that As-
sumptions 1 and 6 are satisfied. Then, the corresponding continuous-
time NCS given by (1)–(3) and (5), with protocols satisfying (9) and
(12) or (13) is also UGMSES.

This theorem states that it suffices to consider the discrete-time
model (7) with switching sequences satisfying (9), (12) or (13) to
assess UGMSES of the continuous-time NCS system.

3. Obtaining a convex overapproximation

In the previous section, we obtained an NCS model in the
form of a stochastically parameter-varying discrete-time switched
linear system. The matrix Ãσk,hk,τk depends nonlinearly on the
uncertain parameters hk and τk, which is not convenient for
stability analysis. To make the system amenable for analysis, in
Heemels et al. (2010) and references therein, procedures were
given to overapproximate Ãσk,hk,τk by a polytopic system with
norm-bounded additive uncertainty, i.e.,

x̄k+1 =


L

l=1

αl
kĀσk,l + B̄∆kC̄σk


x̄k, (15)

where Āσ ,l ∈ Rn×n, B̄ ∈ Rn×q, C̄σ ∈ Rq×n, for σ ∈ {1, . . . ,N}

and l ∈ {1, . . . , L}, and where L is the number of vertices of the
polytopic system, which is determined by the particular procedure
used to obtain (15). The vector αk = [α1

k · · · αL
k]

⊤
∈ A, k ∈ N, is

time varying with A =

α ∈ RL

|
L

l=1 αl
= 1, αl > 0∀l ∈

{1, . . . , L}

and ∆k ∈ ∆, k ∈ N, where

∆ =


diag(∆1, . . . , ∆Q ) ∈ Rq×q

| ∆i
∈ Rqi×qi ,

∥∆i
∥ 6 1∀i ∈ {1, . . . ,Q }


. (16)

The system (15) is constructed to be an overapproximation of (7),
in the sense that for all σ ∈ {1, . . . ,N}, it holds that
Ãσ ,h,τ | (h, τ ) ∈ Θ


⊆


L

l=1

αlĀσ ,l + B̄∆C̄σ | α ∈ A, ∆ ∈ ∆


.

(17)
Hence, as argued in Heemels et al. (2010), satisfaction of (17) and
stability of (15) implies the stability of (7).

The approaches surveyed in Heemels et al. (2010), based on
(17), are not suitable in the context here, as this would remove
all information present in the probability distribution of (hk, τk).
We therefore propose a new procedure that also preserves the
probabilistic information. In this procedure, we use the notion of
diameter of a set S ⊆ R2 as
diamS := sup

v,w∈S
∥v − w∥. (18)

Procedure 8.
(1) Given some h⋆ > 0 and ε > 0, choose M polytopes Sm ⊆

Θ,m ∈ {1, . . . ,M}, such that
(a) Pr


(h, τ ) ∈ (Sp ∩ Sm)


= 0, for all m, p ∈ {1, . . . ,M} and

p ≠ m
(b) diamSm 6 ε, for allm ∈ {1, . . . ,M}

(c)
M

m=1 Sm := {(h, τ ) ∈ Θ | h 6 h⋆
}.

(2) Compute p̄m = Pr

(h, τ ) ∈ Sm


.

(3) Overapproximate the matrix set {Ãσ ,h,τ | (h, τ ) ∈ Sm} for each
Sm and all σ ∈ {1, . . . ,N}, in the sense that
Ãσ ,h,τ

 (h, τ ) ∈ Sm


⊆


L

l=1

αlĀσ ,m,l + B̄m∆C̄σ

α ∈ A, ∆ ∈ ∆


, (19)

where Āσ ,m,l ∈ Rn×n, B̄m ∈ Rn×q. Any of the overapproximation
techniques surveyed in Heemels et al. (2010) can be used to
obtain Āσ ,m,l, B̄m, C̄σ and ∆, such that (19) is satisfied for all
σ ∈ {1, . . . ,N}.
In Procedure 8, we define polytopes Sm, m ∈ {1, . . . ,M} and

make overapproximations of Ãσk,hk,τk for each individual polytope
Sm in the sense of (19). This allows us to assign a probability p̄m to
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each polytope and utilise this information in the stability analysis
that is given below. Roughly speaking, the continuous probability
distribution is approximated by a discrete probability distribution
that assigns probabilities p̄m to polytopes Sm (see, e.g., Fig. 1
below for an example). By choosing h⋆ in Procedure 8 sufficiently
large and ε sufficiently small, the discrete approximation of the
probability distribution can be made as accurate as desired. The
parameter h⋆ is present, since it is in general not possible to achieve
a partitioning satisfying

M
m=1 Sm = Θ , as we use a finite number

of polytopes Sm,m ∈ {1, . . . ,M}, while Θ can be an unbounded
set. Loosely speaking, the parameter h⋆ is chosen sufficiently large
to bound the ‘tail’ of the probability distribution in a suitable
manner. We will formally propose a stability analysis method that
incorporates this ‘tail’ Q := Θ \ (∪M

m=1 Sm).

4. Stability of NCSs with stochastic uncertainty

In this section, we will use the overapproximation derived in
the previous section to develop conditions to verify UGMSES of the
NCS model (7). For this, we need two intermediate results, whose
proofs can be found in the Appendix.

Lemma 9. Let Assumption 1 hold. The system (7) with switching
functions satisfying (9) and (12) or (13) is UGMSES if there exist a
Lyapunov function V : Rn

× N → R+ and scalars b1, b2, b3 > 0
satisfying3

b1∥x̄∥2 6 V (x̄, k) 6 b2∥x̄∥2 (20a)

E[V (Ãσk,hk,τk x̄, k + 1)] − V (x̄, k) 6 −b3∥x̄∥2 (20b)

for all x̄ ∈ Rn and all k ∈ N.

Lemma 10. Let Assumptions 1 and 6 hold, and let a symmetricmatrix
P̃ and a set Q ⊆ Θ be given. It holds for each i ∈ {1, . . . ,N} that

E

Ã⊤

i,h,τ P̃ Ãi,h,τ1 Q(h, τ )


≼ λmax(P̃)υiE

ρ(h)1 Q(h, τ )


I, (21)

in which υi := (∥Ãi,0,0∥ + ∥B̃∥ ∥C̃i∥)
2, with Ãi,h,τ , as defined in (7),

and

B̃ :=


I I I

−C −C −C


, C̃i :=

 I 0
BDC BD
0 BΓi


, (22)

and

ρ(h) = max

1,

e

1
2 λmax((Ap)⊤+Ap)h

+ 1
2

,

 h

0
eλmax((Ap)⊤+Ap)sds


.

(23)

4.1. Quadratic protocols

To analyse the stability of (7) with protocol (9), we use ideas
from (Geromel & Colaneri, 2006), in which the non-quadratic
Lyapunov function

V (x̄k) = min
i∈{1,...,N}

x̄⊤

k Pix̄k = min
ν∈N

x̄⊤

k

N
i=1

νiPix̄k (24)

is used, where N := {ν ∈ RN
|
N

i=1 νi = 1, νi > 0∀i ∈ {1, . . . ,
N}}. Furthermore, we introduce the class M of so-called Metzler

3 Note that for quadratic and periodic protocols, the expected value is taken with
respect to hk and τk . For stochastic protocols, however, the expected value is taken
with respect to hk, τk and σk+1 , as the Lyapunov function V on time k + 1, depends
on σk+1 , which is a random variable, see (13).
Fig. 1. Illustration of the considered mpdfs, and the approximation of the Gamma
distribution.

matrices Π = {πji}, i, j ∈ {1, . . . ,N}, given by

M :=


Π ∈ RN×N

 N
j=1

πji = 1∀i ∈ {1, . . . ,N},

πji > 0∀i, j ∈ {1, . . . ,N}


(25)

and the set of matrices given by

R =

diag(r1I1, . . . , rQ IQ ) ∈ Rq×q

 ri > 0∀i ∈ {1, . . . ,Q }

, (26)

where Ii is an identity matrix of size qi, as in (16).

Theorem 11. Let Assumptions 1 and 6 hold and let the sys-
tem (7) with a switching function satisfying (9), a probability distri-
bution for (h, τ ) and positive definite matrices Pi as in (9) be given.
Suppose there exist a convex overapproximation obtained by Proce-
dure 8, a matrix Π = {πji} ∈ M, positive scalars µi satisfyingN

j=1 πjiPj ≼ µiI , matrices Ui,m, and matrices Ri,m,l ∈ R, for i ∈

{1, . . . ,N},m ∈ {1, . . . ,M}, and l ∈ {1, . . . , L}, satisfying the LMIs

Ui,m 0

p̄mĀ⊤

i,m,l

N
j=1

πjiPj C⊤

i Ri,m,l

⋆ Ri,m,l


p̄mB̄⊤

m

N
j=1

πjiPj 0

⋆ ⋆

N
j=1

πjiPj 0

⋆ ⋆ ⋆ Ri,m,l


≻ 0, (27)

for all i ∈ {1, . . . ,N},m ∈ {1, . . . ,M}, l ∈ {1, . . . , L}, in which
p̄m = Pr


(h, τ ) ∈ Sm


, and satisfying

Pi −
M

m=1

Ui,m − µiυiE

ρ(h)1 Q(h, τ )


I ≽ 0, (28)

for all i ∈ {1, . . . ,N}, in which Q := Θ \ (∪M
m=1 Sm), and υi and

ρ(h) are defined as in Lemma 10. Then, the switching law (9) renders
the system (7)UGMSES. Consequently, the continuous-time NCS given
by (1)–(3) and (5) is also UGMSES if the switching law (9) is employed
as the protocol.

Proof. The proof is given in the Appendix. �

Wewill briefly comment on Theorem11. Firstly, note that Theo-
rem11 guarantees the stability of (7) for hk and τk, k ∈ N, satisfying
the original probability distribution. Secondly, in case the h⋆ can be
chosen such that Pr


(h, τ ) ∈ Q


= 0, where Q := Θ \ (∪M

m=1 Sm),
the conditions in (28) simplify since E


ρ(h)1 Q(h, τ )


= 0. This is
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possible, if there exists an upper-bound on the transmission inter-
vals. Finally, for the TOD protocol thematrices Pi still contain a free
variable P̄ . This freedom P̄ in modelling the TOD protocol can be
exploited as the conditions in (27) are still LMIs in P̄ as well. This
can be shown by applying the ideas of Corollary IV.4 of Donkers
et al. (2011).

4.2. Periodic protocols

We will now analyse stability of the system (15) in the case
where the protocol is periodic, as in (12). For this system, we
introduce positive definite matrices Pi, i ∈ {1, . . . , Ñ}, and a time-
dependent periodic Lyapunov function given, for k ∈ N, by

V (x̄k, k) = x̄⊤

k Pkmod Ñ x̄k, (29)

where kmod Ñ denotes kmodulo Ñ , which is the remainder of the
division of k by Ñ .

Theorem 12. Let Assumptions 1 and 6 hold and let the sys-
tem (7) with a switching function satisfying (12) and a probability
distribution for (h, τ ) be given. Suppose there exist a convex overap-
proximation obtained by Procedure 8, positive definite matrices Pi,
positive scalars µi satisfying Pi ≼ µiI , matrices Ui,m, and matrices
Ri,m,l ∈ R, i ∈ {1, . . . , Ñ}, m ∈ {1, . . . ,M}, and l ∈ {1, . . . , L},
satisfying the LMIs

Ui,m 0

p̄mĀ⊤

σi,m,lPi+1 C⊤

σi
Ri,m,l

⋆ Ri,m,l


p̄mB̄⊤

mPi+1 0
⋆ ⋆ Pi+1 0
⋆ ⋆ ⋆ Ri,m,l

 ≻ 0, (30)

for all i ∈ {1, . . . , Ñ},m ∈ {1, . . . ,M}, l ∈ {1, . . . , L}, where
PÑ+1 := P1 and p̄m = Pr


(h, τ ) ∈ Sm


, and satisfying

Pi −
M

m=1

Ui,m − µi+1υiE

ρ(h)1 Q(h, τ )


I ≽ 0, (31)

for all i ∈ {1, . . . , Ñ}, in which Q := Θ \ (∪M
m=1 Sm), µN+1 :=

µ1, and υi and ρ(h) are defined as in Lemma 10. Then, the
switching law (12) renders the system (7) UGMSES. Consequently, the
continuous-time NCS given by (1)–(3) and (5) is also UGMSES if the
switching law satisfying (12) is employed as the protocol.

Proof. The proof follows the same lines of reasoning as the proof
of Theorem 11 and is therefore omitted. �

4.3. Stochastic protocols

Finally, we will analyse stability for the stochastic protocol.
Hence, we need to analyse stability of the system (15) with
a switching sequence satisfying (13), which can be done by
introducing positive definite matrices Pi, i ∈ {1, . . . ,N}, and a
node-dependent Lyapunov function of the form

V (x̄k, k) = x̄⊤

k Pσk x̄k. (32)

Theorem 13. Let Assumptions 1 and 6 hold and let the system (7)
with a switching function satisfying (13) and a probability distribu-
tion for (h, τ ) be given. Suppose there exist a convex overapproxima-
tion obtained by Procedure 8, positive definite matrices Pi, positive
scalars µi satisfying

N
j=1 πjiPj ≼ µiI , matrices Ui,m, and matrices

Ri,m,l ∈ R, i ∈ {1, . . . ,N},m ∈ {1, . . . ,M}, and l ∈ {1, . . . , L}, sat-
isfying (27), for all i ∈ {1, . . . ,N},m ∈ {1, . . . ,M}, l ∈ {1, . . . , L},
in which p̄m = Pr


(h, τ ) ∈ Sm


, and satisfying (28), for all i ∈
{1, . . . ,N}, in which Q := Θ \ (∪M
m=1 Sm), and υi and ρ(h) are de-

fined as in Lemma 10. Then, the switching law (13) renders the sys-
tem (7) UGMSES. Consequently, the NCS given by (1)–(3) and (5) is
also UGMSES if the switching law (13) is employed as the protocol.

Proof. The proof follows the same lines of reasoning as the proof
of Theorem 11 and is therefore omitted. �

As was also observed in Geromel and Colaneri (2006) for
switched linear systems, the conditions of Theorems 11 and 13 are
similar, with the only difference that in Theorem 13 the scalars
πij, i, j ∈ {1, . . . ,N} are given by the protocol, see (13), whereas
in Theorem 11 the matrices Pi, i ∈ {1, . . . ,N}, are given by the
protocol.

Remark 14. Similar to Donkers et al. (2011), in which NCSs were
studied without incorporating probabilistic information on the
transmission interval and delays, we can show that if the original
discrete-time system (7) (without any overapproximation), and a
protocol satisfying (9), (12) or (13) is mean-square stable in the
sense that a Lyapunov function exists of type (24), (29), or (32),
respectively, the presented LMI conditions will establish mean-
square stability and will find a respective Lyapunov function,
provided that in Procedure 8 the parameter h⋆ > 0 is chosen
sufficiently large, the parameter ε > 0 is chosen sufficiently
small, and the method proposed in Donkers et al. (2011) is used
to calculate the overapproximation that achieves (19). Therefore,
making a convex overapproximation as in (19), introduces no
conservatism in the stability analysis as presented in the previous
subsections (provided that the convex overapproximation of the
system (7) and the approximation of the probability distribution is
sufficiently accurate). See Chapter 3 of Donkers (2011) for a formal
result and a complete proof of this fact.

Remark 15. The approach presented in this paper requires
verifying feasibility of N × M × L LMIs of the form (27) (plus
a few smaller LMIs) for quadratic and stochastic protocols, and
Ñ × M × L LMIs of the form (30) (plus a few smaller LMIs)
for periodic protocols. This means that for large-scale systems
with a large number of nodes N or a large period Ñ , and
with an accurate approximation according to Procedure 8, which
results in a large M , the numerical complexity of the presented
approach can become large. Which sizes of problems can be
analysed using the method presented in this paper depend on
the adopted LMI solver and the computation platform. In any
case, the numerical complexity can be reduced by making a less
accurate approximation (by taking fewer polytopesSm, resulting in
a smallerM) at the cost of introducing conservatism in the stability
analysis. To give an indication of the computation times, we will
provide them for the numerical example in Section 5 below.

5. Illustrative example

In this section, we illustrate the presented theory using a well-
known benchmark example in the NCS literature (Antunes et al.,
2011; Donkers et al., 2011; Heemels et al., 2010; Tabbara & Nešić,
2008;Walsh et al., 2002), consisting of a linearisedmodel of a batch
reactor. The details of the linearised model of the batch reactor
model and the controller can be found in the aforementioned
references.

In Antunes et al. (2011), Heemels et al. (2010), Walsh et al.
(2002), Donkers et al. (2011) and Tabbara and Nešić (2008), it
was assumed that the controller is given in continuous time and
it is directly connected to the actuator, i.e., only the two outputs
are transmitted via the network. Hence, as indicated in Remark 3,
a continuous-time controller requires slight modifications of the
matrices in (8) as in Donkers et al. (2011). The reader is referred
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to Chapter 3 of Donkers (2011) for more details. We will consider
here the TOD protocol and assume, for simplicity, that delays are
absent, i.e., Pr


(h, τ ) ∈ Θ


= 1, where Θ = {(h, τ ) ∈ R2

| h >

0, τ = 0}. Furthermore, we let Pr

(h, τ ) ∈ S


=


Ŝ
p(h)dh, for

some S ⊆ Θ , where Ŝ = {h ∈ R | (h, 0) ∈ S} and p(h) denotes
the correspondingmarginal probability density function (mpdf). In
this example,we consider twodifferentmpdfs for the transmission
intervals, namely the uniformmpdf given by p(h) =

1
c2−c1

for c1 6

h 6 c2, with c1 = 10−5 and c2 = 0.11, and p(h) = 0 elsewhere,

and the Gamma mpdf given by p(h) =
1

(c3−1)! (c4)c3
hc3−1e−

h
c4 for

h > 0, with c3 = 10 and c4 = 0.006, and p(h) = 0 elsewhere, see
Fig. 1.

In order to assess stability, we first define our NCS model as in
(7).We then derive the uncertain polytopic system (15) and p̄m, us-
ing Procedure 8. For the uniform distribution, we choose h⋆

= 0.11
and ε =

0.11
80 , yielding Sm = [( 0.11

80 (m − 1), 0), ( 0.11
80 m, 0)],m ∈

{1, . . . , 80}, and for the Gamma distribution, we choose h⋆
= 0.25

and ε =
0.25
30 , yielding Sm = [( 0.25

30 (m − 1), 0), ( 0.25
30 m, 0)], m ∈

{1, . . . , 30}. The values for the parameters h⋆ and ε are chosen such
that increasing h⋆ and decreasing ε does not significantly change
the results in this example. We can now derive the uncertain poly-
topic system (15), satisfying (19). To obtain Āi,l,m, B̄m, and C̄i, we
use the overapproximation technique presented in Donkers et al.
(2011), in which we use two grid points for each Sm. In Fig. 1,
we also illustrate for the Gamma distribution the partitioning of
h in polytopes Sm and the resulting (scaled) p̄m. We now check the
matrix inequalities of Theorem 11, using the structure of the Pi-
matrices as in (10). Using this procedure we obtain a feasible so-
lution of LMIs of Theorem 11, on the basis of which we conclude
that the TOD protocol stabilises the NCSwhen the transmission in-
tervals are given by an iid sequence of random variables with the
aforementioned mpdfs. The computation time required to com-
pute the overapproximation and to find feasible solutions to the
LMIs on a standard desktop computer4 is 36 s for theGammadistri-
bution and 180 s for the uniform distribution. For full details about
this example, the reader is referred to Donkers (2011).

In Donkers et al. (2011), we obtained a ‘robust’ range of
allowable transmission intervals, i.e., hk ∈ [10−3, 0.066], k ∈ N,
which includes all probability distributions for which it holds that
Pr

(h, τ ) ∈ Θ


= 1 where Θ := {(h, τ ) ∈ R2

| 10−3 6
h 6 0.066, τ = 0}. Therefore, we can conclude that incorporating
probabilistic information on the distribution of the transmission
intervals is very useful as it can be used to prove stability for
situations not contained in the case that was studied in Donkers
et al. (2011), Heemels et al. (2010) and Walsh et al. (2002).

6. Conclusions

In this paper, we studied Networked Control Systems (NCSs)
that are subject to communication constraints, time-varying
transmission intervals and time-varying delays. In particular,
we analysed the stability of the NCS when the transmission
intervals and transmission delays are described by a sequence
of continuous random variables and the communication sequence
is determined by a quadratic, periodic, or stochastic protocol.
This analysis was based on a stochastically parameter-varying
discrete-time switched linear system model of the NCS. We
derived conditions for stability (in the mean-square) by adopting
techniques for convex overapproximation, which are now used
as a way to handle continuous probability distributions. This

4 The authors have used a Windows PC running at 3 GHz with 4 GB RAM, and
Matlab 2007b and SeDuMi 1.3 for this numerical example.
convex overapproximation technique was extended such that the
probabilistic information as present in the probability distribution
is preserved, and yields LMI based conditions for stability.
On a benchmark example, we showed that by incorporating
probabilistic information on the transmission intervals and delays
and packet dropouts, stability can nowbe guaranteed for situations
not covered by earlier results in the literature.

Appendix. Proofs of theorems and lemmas

Proof of Lemma 9. The proof is based on showing that for system
(7), the inequalities (20a) and (20b) imply (14). First observe that
because of (20a) and (20b), it holds that

b1E(∥Ãσk,h,τ x̄∥
2) 6 E[V (Ãσk,h,τ x̄, k + 1)] 6 (b2 − b3)∥x̄∥2, (33)

and because the left-hand side of the expression is nonnegative,
we have that b2 > b3. Now using that b2 > b3 and (20a), we can
rewrite (20b) as E[V (Ãσ ,h,τ x̄, k + 1)] 6 (1 −

b3
b2

)V (x̄, k), which

implies that E[V (xk, k)] 6 (1 −
b3
b2

)kV (x0, 0), for all k ∈ N. Finally,

using the bounds (20a), we obtain (14) with cd =
b2
b1

> 0 and

βd > ln(
b2

b2−b3
) > 0. �

Proof of Lemma 10. First, observe that for each i ∈ {1, . . . ,N},
the left-hand side of (21) satisfies

E

Ã⊤

i,h,τ P̃ Ãi,h,τ1 Q(h, τ )


≼ λmax(P̃)E

∥Ãi,h,τ∥

21 Q(h, τ )

I. (34)

We can now upper bound the right-hand side of (34) using

∥Ãi,h,τ∥
2 6


∥Ãi,0,0∥ + ∥B̃∥ ∥∆̃h,τ∥ ∥C̃i∥

2
6 υi max{∥∆̃h,τ∥

2, 1}, (35)

where Ãi,h,τ is given in (7), B̃ and C̃ in (22) and

∆̃h,τ = diag(Ah − A0, Eh − E0, Eh−τ − E0). (36)

Now using the fact that

∥Ah − A0∥
2 6 (e

1
2 λmax(Ap⊤+Ap)h

+ 1)2 (37a)

∥Eh − E0∥2 6

 h

0
eλmax(Ap⊤+Ap)sds (37b)

∥Eh−τ − E0∥2 6

 h−τ

0
eλmax(Ap⊤+Ap)sds 6

 h

0
eλmax(Ap⊤+Ap)sds, (37c)

which holds due to Wazewski’s inequality, that is, ∥eA
ps
∥ 6

e
1
2 λmax(Ap⊤+Ap)s, we have that

max{∥∆̃h,τ∥
2, 1} = max{∥Ah − A0∥

2, ∥Eh − E0∥2,

∥Eh−τ − E0∥2, 1} 6 ρ(h). (38)

Now substituting (35), with (38) into (34), we obtain (21), which
completes the proof. �

Proof of Theorem 11. The proof is based on showing that (24) is
a Lyapunov function for system (7) with switching law (9), see
Lemma 9. Note that V (x̄k) = x̄⊤

k Pix̄k, with i = σk, due to (9). Now
using (7) and (24), we have that

E

V (Ãi,hk,τk x̄)


= E


min
ν∈N

N
j=1

x̄⊤Ã⊤

i,hk,τkνjPjÃi,hk,τk x̄



6 E


x̄⊤Ã⊤

i,hk,τk

N
j=1

πjiPjÃi,hk,τk x̄


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M
m=1

E


x̄⊤Ã⊤

i,hk,τk

N
j=1

πjiPjÃi,hk,τk x̄ 1 Sm(hk, τk)



+ E


x̄⊤Ã⊤

i,hk,τk

N
j=1

πjiPjÃi,hk,τk x̄ 1 Q(hk, τk)


, (39)

for all i ∈ {1, . . . ,N} and x̄ ∈ Rn. Since we have the following
inequality

E


x̄⊤Ã⊤

i,hk,τk

N
j=1

πjiPjÃi,hk,τk x̄ 1 Sm(hk, τk)



6

M
m=1

p̄m max
(hk,τk)∈Sm

x̄⊤Ã⊤

i,hk,τk

N
j=1

πjiPjÃi,hk,τk x̄ (40)

for all i ∈ {1, . . . ,N},m ∈ {1, . . . ,M}, and x̄ ∈ Rn, UGMSES can
now be shown using Lemma 9. Because of (24), condition (20a) is
satisfied and, using (39), condition (20b) is implied by

M
m=1

p̄mÃ⊤

i,h̄m,τ̄m

N
j=1

πjiPjÃi,h̄m,τ̄m

+ E


Ã⊤

i,h,τ

N
j=1

πjiPjÃi,h,τ1 Q(h, τ )


− Pi ≺ 0, (41)

for all (h̄m, τ̄m) ∈ Sm,m ∈ {1, . . . ,M}, and all i ∈ {1, . . . ,N}.
This condition is satisfied if there exist matrices Ui,m, i ∈

{1, . . . ,N},m ∈ {1, . . . ,M}, such that

p̄mÃ⊤

i,h̄m,τ̄m

N
j=1

πjiPjÃi,h̄m,τ̄m − Ui,m ≺ 0 (42)

for all i ∈ {1, . . . ,N} and all (h̄m, τ̄m) ∈ Sm, m ∈ {1, . . . ,M}, and

E


Ã⊤

i,h,τ

N
j=1

πjiPjÃi,h,τ1 Q(h, τ )


− Pi +

M
m=1

Ui,m ≼ 0, (43)

for all i ∈ {1, . . . ,N}. Hence, if we can now show that (27) and (28)
imply (42) and (43), the proof is complete.

Eq. (42) still yields an infinite number of LMIs (due to the fact
that (h̄m, τ̄m) can take an infinite number of values in Sm). This can
be resolved by employing the hypothesis of the theorem, implying
that (19) holds. Indeed, (42) is satisfied, if

p̄m


L

l1=1

αl1 Āi,m,l1 + B̄m∆C̄i

⊤ N
j=1

πjiPj


L

l2=1

αl2 Āi,m,l2 + B̄m∆C̄i


−Ui,m ≺ 0, (44)

for all α ∈ A, ∆ ∈ ∆, i ∈ {1, . . . ,N}, and m ∈ {1, . . . ,M}.
By taking a Schur complement, realising that

N
j=1 πjiPj ≻ 0, and

using that αk ∈ A, we obtain that (44) is equivalent to stating thatL
l=1 αlGi,m,l ≻ 0, where

Gi,m,l =


Ui,m


p̄m

Āi,m,l + B̄l∆C̄i

⊤ N
j=1

πjiPj

⋆

N
j=1

πjiPj

 , (45)

for all α ∈ A, ∆ ∈ ∆̄, i ∈ {1, . . . ,N},m ∈ {1, . . . ,M}, and
l ∈ {1, . . . , L}. A necessary and sufficient condition for positive
definiteness of

L
l=1 αlGi,m,l, for all α ∈ A, is that Gi,m,l ≻ 0 for

all i ∈ {1, . . . ,N}, m ∈ {1, . . . ,M} and l ∈ {1, . . . , L}. Using again
a Schur complement, we can rewrite the condition Gi,m,l ≻ 0 as
follows:

Ui,m − p̄m

Āi,m,l + B̄m∆C̄i

⊤ N
j=1

πjiPj

Āi,m,l + B̄m∆C̄i


≻ 0. (46)

Now observe that for all ∆ ∈ ∆, it holds that C̄⊤

i (Ri,m,l −

∆⊤Ri,m,l∆)Ci ≽ 0, for all Ri,m,l ∈ R, i ∈ {1, . . . ,N},m ∈

{1, . . . ,M} and l ∈ {1, . . . , L}. Hence, (46) is satisfied if

Ui,m − p̄m

Āi,m,l + B̄m∆C̄i

⊤ N
j=1

πjiPj

Āi,m,l + B̄m∆C̄i


≻ C̄⊤

i (Ri,m,l − ∆⊤Ri,m,l∆)Ci, (47)

or equivalently that [I (∆C̄i)
⊤
]Ḡi,m,l[I (∆C̄i)

⊤
]
⊤

≻ 0, for all ∆ ∈

∆, i ∈ {1, . . . ,N}, m ∈ {1, . . . ,M} and l ∈ {1, . . . , L}, in which

Ḡi,m,l :=


Ḡ11
i,m,l p̄mĀ⊤

i,m,l

N
j=1

πjiPjB̄m

⋆ Ri,m,l − B̄⊤

m

N
j=1

πjiPjB̄m

 , (48)

with Ḡ11
i,m,l := Ui,m − p̄mĀ⊤

i,m,l
N

j=1 πjiPjĀi,m,l − C̄⊤

i Ri,m,lC̄i, which
is implied by the requirement that Ḡi,m,l ≻ 0, for all i ∈ {1, . . . ,
N},m ∈ {1, . . . ,M} and all l ∈ {1, . . . , L}, which is equivalent to
(27) after a Schur complement.

It remains to show that (28) implies (43). To do so, we use the
result of Lemma 10 with P̄ =

N
j=1 πjiPj, thus λmax(P̄) 6 µi, and

Q := Θ \(∪M
m=1 Sm). Therefore, using inequality (21), we have that

(43) is satisfied if (28) satisfied. �
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