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Abstract— We study consensus seeking single-integrator
multi-agent systems equipped with packet-based communi-
cation channels. As the communication bandwidth of such
channels is typically limited, it is essential to consider con-
trol schemes that lead to the desired performance while not
overusing the communication resources. For this purpose, we
propose a distributed dynamic event-triggered control scheme
that results in aperiodic information exchange between agents,
asymptotic consensus, strictly positive lower bounds on the
inter-event times (strong Zeno-freeness) and robustness to
unknown, non-uniform, and time-varying transmission delays.
The proposed framework is such that the local control laws and
event-triggering mechanisms can be directly obtained from the
number of connected agents and local tuning parameters. The
proposed design framework is therefore applicable to large-
scale multi-agent systems.

I. INTRODUCTION

Consensus problems for multi-agent systems (MASs) have
attracted a lot of attention in recent years, see e.g., [22]
for an overview of some early approaches. One particular
topic of interest has been consensus of MASs in which the
exchange of information is realized by digital packet-based
communication networks. Event-triggered control, see also
[16] and the references therein, is relevant in this context as
it uses smart state- or output-based event generators, which
only trigger transmission “when this is needed”, thereby
having the potential to reduce the number of transmissions
compared to periodic time-triggered control significantly.
This implementation paradigm is therefore likely to reduce
the utilization of the communication network in order to
adhere to bandwidth limitations and avoid packet losses.

A considerable amount of works has considered the event-
triggered consensus problem, see, for instance, [6], [10], [15],
[17]–[19], [24], [26] and [21] for a recent overview. However,
both interestingly and surprisingly, to date there are only
a few works on distributed event-triggered communication
schemes available that cover all the following desirable (or,
in fact, indispensable) properties:
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(i) asymptotic consensus, i.e., all the agents converge
asymptotically to the same values,

(ii) each agent determines independently and asyn-
chronously (without any form of clock synchroniza-
tion) when to transmit their information based on
locally available information only,

(iii) communication resources are saved in the sense that
an agent communicates only when needed,

(iv) robust non-Zenoness is guaranteed for the MASs
in the sense that each agent has a positive lower
bound on the inter-communication times, also in
the presence of (arbitrarily) small disturbances and
communication artefacts such as varying commu-
nication delays.

Clearly, all of these properties are of high relevance to realize
real-life implementations. In particular, property (iv) is a
necessity in the context of event-triggered control due to the
following two reasons. Firstly, Zeno behavior prohibits the
actual implementation of the scheme as an infinite number of
transmissions would be needed in a finite time span whereas
hardware limitations always impose a positive lower bound
between consecutive transmissions. Secondly, the principal
idea of event-triggered schemes is saving valuable commu-
nication resource, which would not be satisfied at all if
arbitrarily small inter-transmission times are possible.

The two most common approaches to avoid Zeno behavior
in event-triggered control systems while ensuring asymptotic
stability properties, are via time-regularization in which the
triggering condition is only verified after a specific time
duration, see also [1], [9] for time-regularized ETC strategies
for MASs, or via periodic event-triggered control (PETC)
in which the triggering condition is only verified at fixed
equidistant time instants, see for instance [11], [19], [20] for
PETC strategies for MASs.

In this paper, inspired by the ideas in [7], we present
an approach based on time-regularized ETC that leads to
systematic designs of distributed dynamic event-triggered co-
operation schemes for MASs with single-integrator dynamics
connected over an indirected fixed graph satisfying properties
(i)-(iv). Compared to the work in [9], in which the approach
is based on LMI conditions (for general linear agent dynam-
ics), the proposed design framework leads to local control
laws and event-triggering mechanisms (ETMs) that can be
designed independently per agent. To be more specific, the
design of the control laws and ETMs only rely on the
number of connected neighbors and local tuning parameters,
without the need for numerical optimization methods, which,
in general, become intractable in case of large-scale MASs.
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Existing works that are closest in nature to our results, are
presented in [1], [4], [26]. In [4], [26] distributed event-
triggered consensus schemes (for linear agent dynamics) are
presented that have properties (i)-(iii). and partially have
property (iv) in the sense that indeed non-Zenoness is shown.
However, a positive lower bound on the inter-communication
times is not established, which is crucial for implementability
as already discussed. Recently, in [1], an approach based on
clock-like event generators, as proposed in [23], is presented
that has properties (i)-(iv). Compared to [1], we present a
new solution using different event generators in line with
dynamic event-generators as in [13] and [7]. Secondly, we
show the existence of a positive lower bound on the inter-
communication times, even in the presence of the inevitable
presence of (non)-uniform1 communication delays, which are
omnipresent in practice and which may have a major impact
on the systems performance, if not handled carefully.

For the sake of presentation, we focus in this paper on the
case of integrator agent dynamics and lay down the main
ideas on how to apply the framework of distributed dynamic
event-triggered control in [7] in an analytical manner. How-
ever, the underlying ideas are applicable to more general
problems in resource-aware communication for MAS, in
terms of agents dynamics, communication protocols, graph
topology, dropouts and even the presence of denial-of-service
attacks, see also Chapter 7 of [8], which will be the topic of
future work.

II. DEFINITIONS AND PRELIMINARIES

A. Definitions

The set N denotes the set of non-negative integers, N>0

is the set of all positive integers, R is the field of all real
numbers and R>0 is the set of all non-negative reals. For
N vectors xi ∈ Rni , i ∈ {1, 2, . . . , N}, we denote the
vector obtained by stacking all vectors in one (column)
vector x ∈ Rn with n =

∑N
i=1 ni by (x1, x2, . . . , xN ) , i.e.,

(x1, x2, . . . , xN ) =
[
x>1 x>2 · · · x>N

]>
. The vector in

RN whose elements are all ones is denoted by 1N . By ‖ · ‖
and 〈·, ·〉 we denote the Euclidean norm and the usual inner
product of real vectors, respectively. Moreover, for x ∈ Rn
and a given non-empty set A ⊂ Rn, the distance of x
to A is defined as ‖x‖A = infy∈A ‖x − y‖. The notation
F : X ⇒ Y , indicates that F is a set-valued mapping from
X to Y with F (x) ⊂ Y for all x ∈ X .

B. Graph Theory Notions

Here we recall some basic definitions and properties from
graph theory [2], [5]. A graph is a pair G = (V, E) composed
of a vertex set V and a set of edges E ⊂ V × V . The
cardinality of V , denoted by N ∈ N>0, is the number of
vertices in V . An ordered pair (i, j) ∈ E with i, j ∈ V is
said to be an edge directed from i to j. A graph is called
undirected if it holds that (i, j) ∈ E if and only if (j, i) ∈ E .

1By non-uniform delays, we mean that when an agent broadcasts its
state to its neighbors, the message is in general received by the neighbors
at different time instants and thus not synchronously.

A vertex j is said to be a neighbor of i if (j, i) ∈ E . The
set of neighbors of a vertex i is denoted by V in

i and defined
as V in

i := {j ∈ V | (j, i) ∈ E} and the set of vertices for
which vertex i is a neighbor is denoted by Vout

i and defined
as Vout

i := {j ∈ V | (i, j) ∈ E}. The cardinality of V in
i , i ∈ V

is denoted by Ni. An edge (i, i) ∈ E is called a self-loop. A
path from i to j is a (finite) sequence of edges starting in
i and ending at j. A graph G is connected if there exists a
path, regardless of its direction, between all vertices i, j ∈ V .
The Laplacian matrix L is defined as L := D−A with A the
adjacency matrix of graph G, which is defined as A := (ai,j)
with

ai,j =

{
1, if j ∈ V in

i ,

0, otherwise,
(1)

and D := (di,j) the degree matrix of graph G, which is
defined as a diagonal matrix with diagonal elements di,i =
Ni, i ∈ V .

III. PROBLEM FORMULATION

Consider a collection of agents with single integrator dy-
namics, which are interconnected according to an undirected
and connected graph (without self-loops) G = (V, E) with
V := {1, 2, . . . , N}. Hence, the graph G consists of N nodes,
where the i-th node is related to agent i with integrator
dynamics

ẋi = ui, for all i ∈ V, (2)

where xi ∈ R is the state of agent Ai, and ui ∈ R its
control input. The consensus problem for the multi-agent
system (MAS) described in (2) is to find appropriate control
laws determining the local inputs ui, i ∈ V , such that all
agents asymptotically reach a common consensus state, i.e.,
limt→∞ |xi(t) − xj(t)| = 0 for all i, j ∈ V and any initial
conditions xi(0) ∈ R, for all i ∈ V . A well-known control
law that results in consensus is given by

ui = −
∑
j∈V in

i

(xi − xj), (3)

see also [22]. In vector notation, we can write (3) as

u = −Lx, (4)

where x := (x1, x2, . . . , xN ).
The controller in (3) requires that agents have continuous

access to the state information of neighboring agents. In
case of a packet-based digital communication network, this
cannot be achieved as information can only be communicated
at discrete time instants. To be precise, we denote the
transmission times of agent Ai by tik, k ∈ N. For now,
we ignore the transmission delays (and get back to this in
Section VI below) and we indicate the latest broadcast state
information of agent Ai, which is received by all connected
agents Aj , j ∈ Vout

i , by x̂i. The information x̂i evolves
in a zero-order hold (ZOH) fashion, x̂i(t) = xi(t

i
k), when

t ∈ [tik, t
i
k+1), k ∈ N. Let us emphasize that agents j ∈ Vout

i

only have access to x̂i(t) at time t ∈ R≥0, and do not know
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xi(t). For this reason, instead of (4), we consider the control
law as in, e.g., [1], [6], [24],

u = −Lx̂, (5)

where x̂ := (x̂1, x̂2, . . . , x̂N ).
In this paper, we are interested in the design of distributed

event-triggered communication schemes, which determine
when transmissions of the individual agents to their neigh-
bors take place. We adapt for this purpose the approach
originally developed in [7] for point stabilization of nonlinear
single systems. We thus propose to let the transmission times
tik, k ∈ N of agent Ai be determined by

tik+1 = inf{t > tik + τ imiet | ηi(t) 6 0}, (6)

where ηi is a local variable available at agent Ai satisfying

η̇i = Ψi(oi), when t 6= tik, (7a)
η+
i = η0

i (oi), when t = tik for some k ∈ N. (7b)

Here, Ψi and η0
i are mappings that only have local informa-

tion oi as their arguments, which can consist of x̂i, xi, x̂j , j ∈
V in
i , ηi or other variables that are locally available at agent
Ai. Moreover, τ imiet > 0, i ∈ V , is a lower bound on
the inter-transmission times for agent Ai and it is a design
parameter. In that way, two successive broadcasts by agent
Ai, i ∈ V are separated by at least τ imiet units of time, and
thereby the Zeno phenomenon is excluded.

The objective is to synthesize Ψi, η0
i and τ imiet for the

event-triggering mechanism (ETM) in (6), such that the
mentioned properties (i)-(iv) in Section I are satisfied. We
first ignore the possible occurrence of transmission delays in
Sections IV and V. We then extend the results to be robust
to such delays in Section VI.

IV. HYBRID MODEL

To facilitate the analysis, we describe the event-triggered
multi-agent scheme presented above in terms of a hybrid
dynamical system H(C, F,D, G) in the formalism of [14],
of the form

ξ̇ ∈ F (ξ) ξ ∈ C, ξ+ ∈ G(ξ) ξ ∈ D, (8)

where C denotes the flow set, F the flow map, D the jump
set and G the jump map, see [14] for more details on this for-
malism. To do so, we define the state vector ξ := (x, e, η, τ)
where e := (e1, e2, . . . , eN ) = x̂ − x denotes the network-
induced error. Observe that ei((tik)+) = 0, for all i ∈ V and
k ∈ N. Moreover, we introduce τ := (τ1, τ2, . . . , τN ) with τi,
i ∈ V , a timer-variable that keeps track on the time elapsed
since the most recent transmission of agent Ai. Hence, in
between the transmissions of agent Ai, τ̇i = 1 and at a
transmission τi is set to zero, i.e., τi((tik)+) = 0, for all
i ∈ V and k ∈ N.

By means of (2), (5), (7a) and the aforementioned defini-
tions, we find that the flow dynamics are given by

ẋ = −Lx− Le, ė = Lx+ Le (9a)
η̇ ∈ Ψ(o), τ̇ = 1N , (9b)

where Ψ(o) := (Ψ1,Ψ2, . . . ,ΨN ) with o = (o1, o2, . . . , oN )
and oi, i ∈ V , to be specified. Observe that ė = −ẋ since
˙̂xi = 0 for all i ∈ V when t 6= tik, k ∈ N. Given (9), we
define the flow map, for all ξ ∈ X := RN×RN×RN≥0×RN≥0,

F (ξ) := (−Lx− Le, Lx+ Le,Ψ(o), 1N ), (10)

The corresponding flow set is given by

C := X. (11)

The jump events in the system correspond to transmission
instants by one of the agents. In case agent Ai, i ∈ V ,
transmits its information due to a trigger governed by (6),
the network-induced error ei and the timer τi jump to zero.
Given the latter and by recalling (7b), we find that the
jump dynamics, corresponding to agent Ai communicating,
is given by

x+ = x, e+ = Γ̄ie (12a)

η+ = Γ̄iη + Γiη
0(o), τ+ = Γ̄i1N (12b)

where Γi is the N×N matrix consisting of only zeros except
the i-th diagonal element is 1, Γ̄i = IN − Γi and η0(o) =
(η0

1(o1), η0
2(o2), . . . , η0

N (oN )). Observe that, indeed, (12) is
such that e+

i = 0, τ+
i = 0 and η+

i = η0
i (oi). By means of

(12), we can define the jump map of the entire MAS as

G(ξ) :=
⋃
i∈N̄

Gi(ξ), (13)

where

Gi(ξ) =

{
{(x, Γ̄ie, η̄ + Γiη

0(o), Γ̄i1N )}, when ξ ∈ Di
∅, when ξ 6∈ Di

(14)
with Di := {ξ ∈ X | τi ≥ τ imiet}. The set Di captures
the ETM presented in (6) (in fact it also allows jumps for
ηi > 0). Map G in (13) means that, when ξ ∈ D, at least
one of the agents can broadcast its state to its neighbors. In
case multiple agents are in this situation, the hybrid model
generates several instantaneous jumps. This construction is
important to ensure that the jump map in (13) is outer-
semicontinuous, which is one of the hybrid basic conditions
of the formalism, see also [14]. The corresponding jump set
is given by

D =
⋃
i∈N̄
Di. (15)

By means of (10), (11), (13) and (15), we can compose
the overall hybrid model H := H(C, F,D, G). We can now
proceed with the design of Ψi, η0

i and τ imiet, for all i ∈ V ,
and the analysis of the induced hybrid system.

V. DESIGN OF THE DYNAMIC EVENT GENERATORS

In this section, we present the design of the functions
Ψi, η0

i and the time-constant τ imiet for all i ∈ V . Before
establishing the main results, we recall some properties
available in literature, which are exploited in the design and
analysis.

2606

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on November 22,2021 at 07:57:16 UTC from IEEE Xplore.  Restrictions apply. 



A. Preliminaries

Let us recall the following lemma.

Lemma 1. [6], [12] Consider V (x) := 1
2x
>Lx for any

x ∈ RN . There exist positive constants β, β ∈ R>0 such
that for all x ∈ RN ,
• β‖x‖2Ax ≤ x>Lx ≤ β‖x‖2Ax ,

where Ax denotes the consensus set, i.e.,

Ax := {x ∈ Rn | x1 = x2 = . . . = xN}.

Moreover, given the dynamics in (10), it holds, for all x ∈
RN , that
• 〈∇V (x),−Lx− Le〉 = −‖Lx‖2 − x>LLe,
• 〈∇V (x),−Lx− Le〉 = −‖Lx̂‖2 + x̂>LLe.

By defining z := (z1, z2, . . . , zN ) := Lx, and by using
Lemma 1 and Young’s inequality, we obtain that, for any
x, e ∈ RN ,
(a) 〈∇V (x),−Lx− Le〉 ≤∑i−(1− aNi)z2

i + 1
aNie

2
i ,

(b) 〈∇V (x),−Lx− Le〉 ≤∑i−(1− aNi)u2
i + 1

aNie
2
i ,

where, as before, Ni denotes the cardinality of V in
i , i ∈ V

and where for both cases, a has to satisfy 0 < a < 1
Ni

for
all i ∈ V . Let us remark that, under the assumption that the
maximum number of neighbors per agent is bounded by a
fixed constant Nmax, the parameter a can be chosen such
that 0 < a < 1

Nmax
and thus can be specified without prior

knowledge of the graph G. The aforementioned assumption
is reasonable to make as a larger number of neighbors in
general leads to smaller inter-event times. Given the fact
that communication resources are limited, it will always be
necessary to employ such a bound in practice.

The developments above can directly be used to establish
an ETM. In fact, in [6], item (a) is exploited to obtain the
triggering condition

tik+1 = inf{t > tik | σe2
i (t) >

a(1− aNi)
Ni

z2
i (t)}. (16)

Due to the presence of zi, this triggering condition requires
continuously access to the state of neighboring agents. This
is an issue when each agents has access to the state of its
neighbors via packet-based communication, and not via its
own sensors. In [12], this requirement was avoided by using
item (b) to obtain the triggering condition

tik+1 = inf{t > tik | σie2
i (t) >

a(1− aNi)
Ni

u2
i (t)}. (17)

The event-triggering mechanisms in (16) and (17) can
be classified as relative triggering conditions, as originally
proposed in [25]. As shown in [3], these type of triggering
conditions lead to Zeno-behavior in presence of arbitrarily
small disturbances.

B. Design and analysis

In this subsection, we present design conditions for the
distributed event-generators as given in (7), that do not
exhibit Zeno behavior.

In view of (b) in Section V.A, we design the triggering
mechanism in (6) and (7) with

Ψi(ui, ei, ηi, τi) := (1− αi)ciu2
i

− ωi(τi)γ2
i [1 +

1

αici
λ2
i ]e

2
i − εη,iηi, (18)

where

ci := (1− δ)(1− aNi), γi :=

√
1

a
Ni + µi, (19)

and

ωi(τi) :=


{1}, when τi ∈ [0, τ imiet)

[0, 1] when τi = τ imiet
{0}, when τi > τ imiet.

(20)

Note that Ψi is set-valued because of ωi. Constant τ imiet is
given by

τ imiet = −
√
αici
γi

arctan

(
(λ2
i − 1)

√
αici

λi (αici + 1)

)
, (21)

and, finally,
η0
i (ui, ei, ηi, τi) = γiλie

2
i . (22)

The constants a ∈ (0, 1
Ni

), αi, δ ∈ (0, 1), εη,i ∈ R>0, µi ∈
(0, γi) and 0 < λi < 1, for all i ∈ V , are tuning parameters.

Let us remark that the function ωi : R>0 ⇒ [0, 1], i ∈ V ,
is defined such that the flow-map F is outer semicontinuous
and thus that the hybrid system H complies with the hybrid
basic conditions as presented in Assumption 6.5 of [14]. Let
us also emphasize that the local control law as given in (5)
and ETM as described in (6)-(7b), (18) and (22) indeed do
not rely on numerical optimization methods and are therefore
applicable to large-scale MASs.

Theorem 1. The set A := {ξ ∈ X | xi = xj for all i, j ∈
N̄ , e = 0, η = 0} = Ax × {0} × {0} × RN≥0 is
uniformly globally asymptotically stable for the system H,
which implies asymptotic consensus. Moreover, it holds that
tik+1− tik ≥ τ imiet > 0 for all i ∈ N̄ and all k ∈ N implying
non-Zenoness.

The proof is omitted due to space limitations.

VI. TRANSMISSION DELAYS

In this section, we present an important generalization
of the ETM presented in the previous section so that it is
applicable in presence of unknown, non-uniform, and time-
varying transmission delays.

A. Unknown, non-uniform, and time-varying transmission
delays

In case of non-uniform delays, a broadcast state mea-
surement is not necessarily received at the same time
by each connected agent. Hence, the delay can vary per
edge/connection. For this purpose, we introduce the notation
x̂ij , which denotes the most recent state measurement of
agent Aj received by agent Ai, i ∈ V , and j ∈ V in

i ∪ {i}.
Hence, typically, we have that x̂ij 6= x̂lj , for j ∈ V and
i, l ∈ Vout

j with i 6= l. After a transmission is sent by agent

2607

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on November 22,2021 at 07:57:16 UTC from IEEE Xplore.  Restrictions apply. 



Ai, i ∈ V , at time tik, the data is received by the agent(s)
Aj , j ∈ Vout

i , after a communication delay of ∆i,j
k time units,

k ∈ N. In other words, at time tik+∆i,j
k , i ∈ V, j ∈ Vout

i , k ∈
N, the value of x̂ji is updated according to

x̂ji ((t
i
k + ∆i,j

k )+) = xi(t
i
k), (23)

for all i ∈ V and j ∈ Vout
i ∪ {i}. Since an agent Ai, i ∈ V ,

has direct access to its own state, we define ∆i,i
k = 0 for

all k ∈ N (and thus x̂ii(t) = xi(t
i
k), when t ∈ (tik, t

i
k+1],

k ∈ N).
Observe that the variables x̂ji for which i /∈ V in

j with j ∈
V , i.e., (i, j) /∈ E , are non-existent in practice and thus in
principle redundant. However, for the ease of notation, we
still use these variables and assume that x̂ji (t) = 0 for all
i /∈ V in

j with j ∈ V and all t ∈ R>0.
The delays ∆i,j

k , i ∈ V, j ∈ Vout
i , k ∈ N, are assumed to

be bounded from above by a (known) time-constant called
the maximally allowable delay (MAD), which can be agent-
dependent.

Assumption 1. The transmission delays are bounded ac-
cording to 0 6 ∆i,j

k 6 τ imad, i ∈ V , j ∈ Vout
i for all k ∈ N,

where τ imad denotes the maximum allowable delay for agent
Ai, i ∈ V .

Instead of (5), consider the control law

ui = −
∑
j∈V in

i

(x̂ii − x̂ij). (24)

Moreover, we now define the network-induced errors as

eji := x̂ji − xi, (25)

i ∈ V and j ∈ Vout
i . Hence, eji , i ∈ V , j ∈ Vout

i , denotes
the error present in the information x̂ji available at agent Aj
regarding the state xi of agent Ai. A detailed description
of the corresponding hybrid system as formalized in (8) is
omitted here due to space limitations but is presented in [8].

B. Design and analysis

In the presence of transmission delays as described above,
we need to modify the expression of the triggering mecha-
nism parameters in (18)-(22) as follows

τ imiet = −
√
αici
γi

arctan

(
(φ1,i(0)(λ2

i − 1)
√
αici

λi (αici + φ1,i(0))

)
(26)

with ci and γi as in (19), and the time-constant τ imad, i ∈ V ,
such that

φ1,i(τi)

λi
> φ0,i(τi), for all τi ∈ [0, τ imad], (27)

where φ`,i, ` ∈ {0, 1}, evolves according to

d

dτi
φ`,i = − γi

λ`i

(
1

αici
φ2
`,i + 1

)
, (28)

for some fixed initial conditions φ`,i(0), ` ∈ {0, 1}, that
satisfy φ1,i(0)

λi
> φ0,i(0) > λiφ1,i(0) > 0, for all i ∈ V

and ` ∈ {0, 1}. Moreover, we take the functions Ψi, and η0
i ,

i ∈ V , as

Ψi(ui, ei, ηi, τi) := (1− αi)ciu2
i

− ωi(τi)γ2
i [1 +

1

αici
φ2

1,i(0)λ2
i ]e

2
i − εη,iηi, (29)

and
η0
i (ui, ei, ηi, τi) = γiφ1,i(0)λie

2
i , (30)

respectively, where ei := eii = x̂ii − xi, i ∈ V with eii as in
(25).

As we will show in Section VII, (26)-(28) lead to intuitive
(τ imiet, τ

i
mad) curves that can be used to select appropriate

values for λi, φ0,i(0) and φ1,i(0).

Theorem 2. The set A := {χ ∈ Xext | xi = xj for all i, j ∈
N̄ , e = 0, η = 0} is UGAS for the system H, which implies
asymptotic consensus. Moreover, it holds that tik+1 − tik ≥
τ imiet > 0 for all i ∈ N̄ and all k ∈ N implying non-
Zenoness.

Due to space limitations, the proof is omitted. Let us
remark, however, that the result presented in this section is
derived from ideas in Chapter 7 of [8], which relies on the
construction of a genuinely new hybrid Lyapunov function.

VII. NUMERICAL EXAMPLE

In this section, we consider a MAS consisting of eight
agents (N = 8) with single integrator dynamics that are
connected according to the undirected communication graph
G containing the undirected edges (1, 2), (1, 8), (2, 3), (2, 7),
(3, 4), (3, 6), (4, 5), (5, 6) (5, 8) and (7, 8). The communi-
cation channels are subject to non-uniform varying delays.
Hence, the local control law of each agent is as given in
(24).

The ETMs are designed according to (6)-(7b) and (26)-
(30) with tuning parameters δ = µi = εη,i = 0.05 and
αi = 0.5, for all i ∈ V . Moreover, we select a = 0.1 such
that a < 1

Ni
for all i ∈ V . Given these tuning parameters,

we obtain that γi = 4.478 and ci = 0.76 for i ∈ V for which
Ni = 2 (agent A1, A4, A6 and A7), and γi = 5.482 and
ci = 0.665 for which Ni = 3, i ∈ V (agent A2, A3, A5 and
A8).

The variable λi allows to make trade-offs between τ imiet
and τ imad, i ∈ V . To be more specific, τ imiet is computed
according to (26) and τ imad by solving (28) for various
initial conditions, namely, φ0,i(0) = 1

λi
, with λi ∈ (0, 1),

and φ1,i(0) ∈
(
φ0,iλi,

φ0,i

λi

)
, i ∈ V , and consequently by

determining the intersection of φ0,i and φ1,i

λi
. Figure 1 shows

the tradeoff curves resulting from various values of λi for
γi = 4.478 at the left side (corresponding to agent A1,
A4, A6 and A7) and γi = 5.482 at the right side (agent
A2, A3, A4 and A8). The blue circles in Figure 1 indicate
the (τ imiet, τ

i
mad)-combination corresponding to φ0,i(0) =

5 and φ1,i(0) = 2, which are used in the simulations
presented next. To be more specific, we take (τ imiet, τ

i
mad) =

(0.12, 0.016) for i ∈ V for which Ni = 2 (agent A1, A4, A6

and A7) and (τ imiet, τ
i
mad) = (0.12, 0.016) = (0.09, 0.012)
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Fig. 1: Tradeoff curves that are obtained from (26) and (28) for φ0,i(0) = 1
λi

and

for various values of λi ∈ (0, 1) and φ1,i(0) ∈
(φ0,iγ0,i

γ1,i
,
φ0,iγ0,i

γ1,iλ
2
i

]
, i ∈ V ,

corresponding to γi = 4.478 at the left side and γi = 5.482 at the right side
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Fig. 2: Evolution of the states of the MAS described by (2), (23) and
(24), the ETM described by (6) and (7) with initial condition x(0) =
(8, 6, 4, 2,−2,−4,−6,−98.

for which Ni = 3, i ∈ V (agent A2, A3, A5 and A8). In
Figure 2, the evolution of the states xi, i ∈ V , is shown
for the initial condition x(0) = [8, 6, 4, 2,−2,−4,−6,−8]>

and in Figure Figure 3 the corresponding inter-event times.
Observe that the inter-event times are significantly larger than
the enforced minimum inter-event times. 2

VIII. CONCLUSIONS

In this work, we presented a design framework for dy-
namic event-triggered control strategies for consensus seek-
ing in multi-agents systems that result in asymptotic consen-
sus and positive minimum inter-event times, and that can be
design independently without the need for global information
about the MAS. In addition, it is shown that the proposed
event-triggering mechanisms can be modified such that the
resulting MAS is robust to unknown, non-uniform, and time-
varying transmission delays.

2The MATLAB code for this numerical example is available at
https://github.com/victordolk/eventtriggered-consensus
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Fig. 3: Inter-event times generated by the ETM as given in (6) and (7). The solid
lines represent the minimum inter-event times τ imiet.
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