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Abstract: In this paper, we discuss the problem of efficient fluid mixing which is tackled by
means of (approximate) dynamic programming from a switched systems perspective. In current
practice, typically pre-determined periodic mixing protocols are used. As we will show in this
paper, feedback control can be used to improve mixing significantly. To make this control
problem tractable, temporal and spatial discretization is used by means of the cell-mapping
method on the original infinite-dimensional fluid models. This translates the original control
problem into the design of a (sub)optimal switching law that determines discrete mixing actions
for a discrete-time switched linear system. Exploiting this switched systems perspective, a novel
feedback law for mixing fluids is proposed inspired by suboptimal rollout policies in dynamic
programming contexts. By design, this feedback law for mixing guarantees a performance
improvement over any given (open-loop) periodic mixing protocol. This new design methodology
is validated by means of simulations for the benchmark journal bearing flow showing improved
performance with respect to periodic mixing strategies.
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1. INTRODUCTION

Switched linear systems have received considerable atten-
tion over the last few decades, see, for instance, [Antunes
and Heemels 2017, Geromel et al. 2013, Deaecto et al.
2013, Heemels et al. 2010, Liberzon 2003, Zhang et al.
2009b, Daafouz et al. 2002]. A switched linear system is
typically characterized by a finite set of linear subsystems
in which the switching among these subsystems is governed
by a state- and/or time-dependent switching protocol.

In this paper, we highlight a relevant application in the
context of these switched systems, namely, mixing of fluids.
In general, the goal of mixing is to homogenize a physical
scalar entity which represents, for example, concentration
or thermal energy, over a domain. The latter is highly non-
trivial for thick fluids that are subject to a slow velocities
due to the simplicity of their velocity field structure. As
such, the design of an effective mixing mechanism dealing
with this flow type is challenging.

Rapid mixing in the aforementioned flow type is typically
achieved by switching among a (finite) set of boundary
motions, pressure gradients and/or external body forces
which lead to a time-varying velocity field. This idea is
based on the fact that chaotic behavior can be induced
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by switching among different velocities field, see also,
[Alligood et al. 1996, Speetjens et al. 2013]. In the context
of fluid mixing, this process is known as chaotic advection,
introduced in [Aref 1984], see also [Ottino 1989, Wiggins
and Ottino 2004]. The specific time-varying mechanism
that is used in order to enhance mixing is called the mixing
protocol. Conventionally such a protocol is designed in a
time-periodic fashion leading to a periodic flow. However,
periodic flows often yield unmixed regions, which are called
islands [Liu et al. 1994]. These islands should be avoided in
order to achieve good mixing. Traditional studies enhance
mixing by imposing certain conditions that guarantee the
absence of islands. However, these conditions are flow
specific in the sense that they have to be deduced on a case-
by-case basis. Furthermore, most of these studies focus on
asymptotic behavior of the system instead of the behavior
over a finite time-span, which is relevant for industrial
applications.

Aperiodic flows typically do not contain periodic points
and therefore islands do not occur in these flows [Liu et al.
1994]. This observation motivates the study of aperiodic
mixing protocols and short-time behavior in particular.
As shown for example in [Singh et al. 2008, Kang et al.
2008], a properly chosen aperiodic mixing protocol can
indeed outperform time-periodic protocols significantly.
The design of such effective aperiodic protocols, in contrast
to periodic protocols, is however far from trivial. In fact,
there is relatively limited knowledge on how to construct
an aperiodic flow that is guaranteed to lead to more
efficient mixing processes. First steps in this directions
include [Liu et al. 1994, Mathew et al. 2007, Cortelezzi
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et al. 2008, Couchman and Kerrigan 2010, Kang et al.
2008] in which short-time-horizon methods were proposed
that use the spatial distribution of the physical scalar
entity to construct aperiodic mixing protocols. However, as
indicated in these refereed works, there are no theoretical
guarantees that these methods lead to aperiodic protocols
that outperform periodic protocols. Hence, the design of
effective aperiodic mixing protocols is acknowledged to be
a challenging problem.

The purpose of the present paper is to propose a feedback
control solution that outperforms any proposed periodic
protocol over a finite horizon. Our proposed solution ex-
ploits the cell-mapping method (see also [Kruijt et al.
2001, Singh et al. 2008]), which is shown to be a versatile
tool to accurately study the behavior of mixing proces-
ses. Interestingly, this method allows us to represent the
system as a discrete-time linear switched system whose
dynamics are described by the so-called mapping matrix
and in which each individual subsystem corresponds to a
given mixing/control action. From this perspective, we can
regard the mixing protocol as the selection of a sequence
of control options to be optimized in terms of a quadratic
cost. Using the aforementioned modeling perspective, we
propose a novel feedback control law for mixing inspired by
suboptimal rollout policies in dynamic programming (DP)
context [Bertesekas 2005], see also Antunes and Heemels
[2017]. The methodology presented in this paper is not
only suitable for closed-loop applications but can also
straightforwardly be used for designing aperiodic protocols
a priori in a systematic fashion. To the best of the authors’
knowledge, this paper is the first that establishes the
connection between (fluid) mixing problems and switched
systems and the first to propose a switching feedback
approach for mixing optimization which includes perfor-
mance improvements over periodic protocols. The novel
design methodology is validated by means of simulations
for the benchmark journal bearing flow [Wannier 1950].

The remainder of this paper is organized as follows.
In Section 2 we present the problem formulation. In
Section 3 we take several steps to obtain a relevant but
tractable optimal control problem. The control algorithm
and controller design are elaborated in Section 4. The
simulation results of the benchmark system are presented
in Section 5. Finally, we provide some concluding remarks
in Section 6.

2. PROBLEM FORMULATION

In this paper we are concerned with achieving effective
mixing using feedback control for two-dimensional incom-
pressible creeping flows, so-called Stokes flows which are
flows characterized by a small Reynolds number, i.e. Re �
1. This dimensionless number represents the ratio between
inertial and viscous forces and is given by

Re =
VmeanL

ν
, (1)

where Vmean is the characteristic velocity scale, L the
characteristic length scale and ν the kinematic viscosity re-
presenting the “thickness” of the fluid. Let c(x, t) ∈ [0, 1] ⊂
R be a normalized positive scalar quantity in a spatial
domain Ω ⊂ R2 associated with a transported physical
entity which is preserved (for example the concentration
of a fluid) , i.e., the surface integral

∫
Ω
c(x, t)dA remains

constant for all time t ∈ R+, where x := (x, y)� ∈ Ω
denotes Cartesian coordinates and dA an appropriate area
measure. Complete mixing in the domain Ω is achieved at
time t when the scalar quantity is distributed homogene-

ously over the entire domain, i.e., when c(x, t) = c, for all
x ∈ Ω, where

c :=

∫

Ω

c(x, t)dA/AΩ (2)

with AΩ :=
∫
Ω
dA, is the average value of c over the entire

domain Ω. As already mentioned in the introduction,
the rate at which c(x, t) is homogenized in Stokes flows
can be enhanced by an actuator mechanism imposing
time-varying boundary motions, pressure gradients and/or
body forces, referred to as mixing actions. For example, the
actuator mechanism of the journal bearing setup described
in Section 5.1, imposes boundary motions, namely by
rotating an inner and/or outer cylinder.

From a high level point of view, the problem tackled
in the present paper is how to systematically design a
mixing protocol determining the mixing actions over time,
either a priori or in closed loop by means of an on-line
computed mixing policy. Hereby, the objective is to obtain
the best mixing performance within a certain time frame
in terms of a quadratic cost. In the next sections, we
provide a general modeling, analysis and design framework
for formalizing and addressing the aforementioned optimal
control problem.

3. MODELING AND PERFORMANCE ANALYSIS
FRAMEWORK

Obtaining an exact mathematical formulation of the high-
level control problem provided in the previous section
might be impractical due to the infinite-dimensional cha-
racter of the problem. Therefore, we present in this section
a mathematical problem formulation that forms an accu-
rate approximation of the high-level problem formulation
and that can be solved in a tractable manner. To do
so, three main steps are taken. First, the spatial dom-
ain is partitioned into a finite number of cells. Secondly,
the mixing process is sampled at discrete time instants
tk = k∆t, k ∈ N. At last, we restrict ourselves to a mixing
protocol which is built up as a sequence consisting of
control inputs, referred to as mixing actions, which are
selected from a finite set M = {1, 2, . . . ,M} with M
the number of available mixing actions. A mixing action
m ∈ M is a pre-defined actuator mechanism over the finite
time window ∆t. To achieve these three steps, we exploit
the so-called cell-mapping method.

3.1 Discretization using the cell-mapping method

The cell-mapping method, introduced in [Kruijt et al.
2001], is an efficient computational tool to investigate the
influence of different mixing protocols on overall mixing
quality at a feasible computational cost. To be more
specific, given a certain mixing action m ∈ M, it provides
a description of the transport of the scalar quantity c(x, t)
in a domain Ω subdivided in N cells after a discrete time
step ∆t. The cells {Ω1,Ω2, . . . ,ΩN} form a partition of

Ω in the sense that
⋃N

i=1 Ωi = Ω and that all cells are
disjoint, i.e. Ωi ∩ Ωj = ∅ when i �= j. The method leads
to a mapping matrix Am, m ∈ M, of which the elements
define the fraction of material being transported from one
cell to another in time span ∆t, as we discuss below.

A computationally efficient method to compute the ele-
ments of a mapping matrix Am, m ∈ M, is by tracking
a number of individual discrete particles. The path of a
single particle is determined by the solution of

ẋ(t) = v(x(t),m(t)) (3)

x(0) = x0 (4)
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et al. 2008, Couchman and Kerrigan 2010, Kang et al.
2008] in which short-time-horizon methods were proposed
that use the spatial distribution of the physical scalar
entity to construct aperiodic mixing protocols. However, as
indicated in these refereed works, there are no theoretical
guarantees that these methods lead to aperiodic protocols
that outperform periodic protocols. Hence, the design of
effective aperiodic mixing protocols is acknowledged to be
a challenging problem.

The purpose of the present paper is to propose a feedback
control solution that outperforms any proposed periodic
protocol over a finite horizon. Our proposed solution ex-
ploits the cell-mapping method (see also [Kruijt et al.
2001, Singh et al. 2008]), which is shown to be a versatile
tool to accurately study the behavior of mixing proces-
ses. Interestingly, this method allows us to represent the
system as a discrete-time linear switched system whose
dynamics are described by the so-called mapping matrix
and in which each individual subsystem corresponds to a
given mixing/control action. From this perspective, we can
regard the mixing protocol as the selection of a sequence
of control options to be optimized in terms of a quadratic
cost. Using the aforementioned modeling perspective, we
propose a novel feedback control law for mixing inspired by
suboptimal rollout policies in dynamic programming (DP)
context [Bertesekas 2005], see also Antunes and Heemels
[2017]. The methodology presented in this paper is not
only suitable for closed-loop applications but can also
straightforwardly be used for designing aperiodic protocols
a priori in a systematic fashion. To the best of the authors’
knowledge, this paper is the first that establishes the
connection between (fluid) mixing problems and switched
systems and the first to propose a switching feedback
approach for mixing optimization which includes perfor-
mance improvements over periodic protocols. The novel
design methodology is validated by means of simulations
for the benchmark journal bearing flow [Wannier 1950].

The remainder of this paper is organized as follows.
In Section 2 we present the problem formulation. In
Section 3 we take several steps to obtain a relevant but
tractable optimal control problem. The control algorithm
and controller design are elaborated in Section 4. The
simulation results of the benchmark system are presented
in Section 5. Finally, we provide some concluding remarks
in Section 6.

2. PROBLEM FORMULATION

In this paper we are concerned with achieving effective
mixing using feedback control for two-dimensional incom-
pressible creeping flows, so-called Stokes flows which are
flows characterized by a small Reynolds number, i.e. Re �
1. This dimensionless number represents the ratio between
inertial and viscous forces and is given by

Re =
VmeanL

ν
, (1)

where Vmean is the characteristic velocity scale, L the
characteristic length scale and ν the kinematic viscosity re-
presenting the “thickness” of the fluid. Let c(x, t) ∈ [0, 1] ⊂
R be a normalized positive scalar quantity in a spatial
domain Ω ⊂ R2 associated with a transported physical
entity which is preserved (for example the concentration
of a fluid) , i.e., the surface integral

∫
Ω
c(x, t)dA remains

constant for all time t ∈ R+, where x := (x, y)� ∈ Ω
denotes Cartesian coordinates and dA an appropriate area
measure. Complete mixing in the domain Ω is achieved at
time t when the scalar quantity is distributed homogene-

ously over the entire domain, i.e., when c(x, t) = c, for all
x ∈ Ω, where

c :=

∫

Ω

c(x, t)dA/AΩ (2)

with AΩ :=
∫
Ω
dA, is the average value of c over the entire

domain Ω. As already mentioned in the introduction,
the rate at which c(x, t) is homogenized in Stokes flows
can be enhanced by an actuator mechanism imposing
time-varying boundary motions, pressure gradients and/or
body forces, referred to as mixing actions. For example, the
actuator mechanism of the journal bearing setup described
in Section 5.1, imposes boundary motions, namely by
rotating an inner and/or outer cylinder.

From a high level point of view, the problem tackled
in the present paper is how to systematically design a
mixing protocol determining the mixing actions over time,
either a priori or in closed loop by means of an on-line
computed mixing policy. Hereby, the objective is to obtain
the best mixing performance within a certain time frame
in terms of a quadratic cost. In the next sections, we
provide a general modeling, analysis and design framework
for formalizing and addressing the aforementioned optimal
control problem.

3. MODELING AND PERFORMANCE ANALYSIS
FRAMEWORK

Obtaining an exact mathematical formulation of the high-
level control problem provided in the previous section
might be impractical due to the infinite-dimensional cha-
racter of the problem. Therefore, we present in this section
a mathematical problem formulation that forms an accu-
rate approximation of the high-level problem formulation
and that can be solved in a tractable manner. To do
so, three main steps are taken. First, the spatial dom-
ain is partitioned into a finite number of cells. Secondly,
the mixing process is sampled at discrete time instants
tk = k∆t, k ∈ N. At last, we restrict ourselves to a mixing
protocol which is built up as a sequence consisting of
control inputs, referred to as mixing actions, which are
selected from a finite set M = {1, 2, . . . ,M} with M
the number of available mixing actions. A mixing action
m ∈ M is a pre-defined actuator mechanism over the finite
time window ∆t. To achieve these three steps, we exploit
the so-called cell-mapping method.

3.1 Discretization using the cell-mapping method

The cell-mapping method, introduced in [Kruijt et al.
2001], is an efficient computational tool to investigate the
influence of different mixing protocols on overall mixing
quality at a feasible computational cost. To be more
specific, given a certain mixing action m ∈ M, it provides
a description of the transport of the scalar quantity c(x, t)
in a domain Ω subdivided in N cells after a discrete time
step ∆t. The cells {Ω1,Ω2, . . . ,ΩN} form a partition of

Ω in the sense that
⋃N

i=1 Ωi = Ω and that all cells are
disjoint, i.e. Ωi ∩ Ωj = ∅ when i �= j. The method leads
to a mapping matrix Am, m ∈ M, of which the elements
define the fraction of material being transported from one
cell to another in time span ∆t, as we discuss below.

A computationally efficient method to compute the ele-
ments of a mapping matrix Am, m ∈ M, is by tracking
a number of individual discrete particles. The path of a
single particle is determined by the solution of

ẋ(t) = v(x(t),m(t)) (3)

x(0) = x0 (4)
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where v : R2 × M → R2 is the system’s velocity field,
x0 the initial condition of the particle, m ∈ M the
mixing action and x := (x, y)� ∈ Ω are the Cartesian
coordinates as before. This velocity field can either be
found analytically or numerically by means of solving the
Stokes or Navier-Stokes equations [Batchelor 2000] and the
imposed boundary conditions. Let us remark that each
mixing action m ∈ M yields a different velocity field (3)
and thus a mapping matrix has to be computed for each
m ∈ M. Under the assumptions that transient dynamics
are negligible, the dynamics of the system given by (3) only
depends on the present state, i.e., no hysteresis phenomena
occur. The entries of the mapping matrix Am are then
determined by

Am,i,j =
pi,j
pj

, (5)

where pj is the amount of particles in a donor cell Ωj at
t = t0 = 0 and pi,j is the amount of particles traveled from
donor cell Ωj to recipient cell Ωi at t1 = t0+∆t under the
dynamics given by 3. The preservation property of c(x, t),
implies that

∑n
i=1 Am,i,j = 1 for each j ∈ {1, 2, . . . , N}

and that the values Am,i,j are restricted to the interval
[0, 1] for all i, j ∈ {1, 2, . . . , N}. Observe that the size of
the mapping matrix is equal to N ×N .

Let Ci(t) ∈ [0, 1], i ∈ {1, 2, . . . , N}, be the averaged
quantity in each cell Ωi at time t, i.e.,

Ci(t) =

∫
Ωi

c(x, t)dA

AΩi

, (6)

where AΩi =
∫
Ωi

dA the area of domain Ωi and let C(t)

be the column of averaged concentrations

C(t) =




C1(t)
...

CN (t)


 . (7)

The mapping matrix Am linearly maps C(tk) to C(tk+1)
according to

C(tk+1) = AmC(tk), (8)
for all k ∈ N, where tk = k∆t and m is the current mixing
action.

An important property of the mapping matrix is that
the matrix is sparse for relatively small time steps ∆t,
see also [Speetjens et al. 2013]. The latter is due to the
fact that over a short time span, for given mixing action,
the physical entity from an arbitrary donor domain Ωj ,
j ∈ {1, 2, . . . , N}, is only distributed over a small subset
of the entire domain Ω. Hence, Am,i,j = 0 for the majority
of pairs (i, j) ∈ {1, 2, . . . , N}2.
As already mentioned, the cell-mapping method leads to
different mapping matrices for each mixing action. Since
typically, at each discrete time step tk = k∆t a new mixing
action m ∈ M, is chosen, the system can be described as
a linear discrete-time switched system. To do so, we define
the state vector of the system as

ek :=C(tk)− c1 (9)

with c as in (2). Observe that ek represents the error
between the homogeneous reference and the achieved con-
centration. By means of (8) and the fact that Am1 = 1,
m ∈ M, we obtain that the evolution of this concentration
error is given by

ek+1 = Aσk
ek, (10)

where Aσk
is the system matrix which depends on the

mixing action or control input σk ∈ M, k ∈ N. Hence, by

choosing this setup, the system dynamics are reduced to
the switched system (10).

In [Gorodetskyi et al. 2012], it is shown that the numerical
errors induced by the spatial discretization inherent to the
cell-mapping method can in fact be exploited to accurately
describe diffusion present in practice. As such, the cell-
mapping method provides an versatile and accurate tool
to study advection-diffusion processes that typically cause
mixing.

3.2 Control objective

In this paper, we use the so-called intensity of segregation,
as introduced in [Danckwerts 1952], for quantifying the
mixing performance. The intensity of segregation repre-
sents the variance of the quantity C with respect to the
equilibrium value c. For a given concentration error ek at
time tk, it is described by

Id(ek) = e�k Qek, (11)

where Q is a diagonal matrix with Qii =
AΩi

AΩc(1−c) . This

intensity of segregation has the property that Id(ek) ∈
[0, 1] for all k ∈ {0, 1, . . . , kF } (see also [Danckwerts
1952]). The most ideal case, i.e., when Ci(tk) = c for
all i ∈ {1, 2, . . . , N}, corresponds to Id(ek) = 0 and the
worst case, i.e., when Ci(tk) is either one or zero for all
i ∈ {1, 2, . . . , N}, corresponds to Id(ek) = 1.

As mentioned before, the control objective considered in
this paper is to obtain the best mixing performance over
a certain time frame. To be more precise, given an initial
condition ē0, the control objective is to minimize the cost-
function given by

Jσ(ē0) = Id(e(kf , ē0, σ)). (12)

where e(kf , ē0, σ) denotes the solution to (10) at t =
tkF

with initial condition ē0 and input sequence σ =
(σ0, σ1, . . . , σkF−1). As such, the objective is to find an
optimal policy π∗(e0) satisfying,

π∗(ē0) = arg min
σ∈MkF

Jσ(ē0), (13)

where π∗ : [0, 1]N → MkF denotes a mixing policy which
maps a state ē0 to an optimal sequence of control inputs σ :
N → M. The optimal control problem (13) subject to (10)
can be solved a priori, where the optimal mixing sequence
π∗(ē0), for a given initial state ē0, is implemented in open
loop. However, an implementation that relies on feedback
yields a policy less sensitive to modeling and measurement
uncertainties. In this feedback case, the control input
sequence σ is determined on-line and the applied control
input at discrete time tk, k ∈ {0, 1, . . . , kF − 1}, is taken
in receding horizon fashion, namely, as the first entry of

π∗
k(ēk) = arg min

σk∈M(kF −k)
Jk
σk(ēk), (14)

where
Jk
σk(ek) := Id(e(kf − k, ek, σ

k)), (15)
is the cost-to-go at time step tk and where ēk the concen-
tration error measured at time step tk. Hence, in closed
loop, the optimization is repeated at each time step using
the current measured state in order to make the policy
less sensitive to modeling and measurement uncertainties
compared to an open-loop implementation.

Finding the optimal numerical solution to (13) and (14) is
often computationally not tractable due to combinational
nature of the decision set MkF which is growing exponen-
tially with the length of the horizon kF . Motivated by this
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fact, we propose a suboptimal strategy to approximate the
solution given by (13) while still guaranteeing that the re-
sulting protocol outperforms any given periodic protocol.

4. PROPOSED FEEDBACK MIXING METHOD

In general, optimal control problems for switched systems
are difficult to solve. In the literature, stabilizing subop-
timal feedback policies were derived from S-procedure
stability conditions [Savkin and Evans 2001, Ch.2] and
Lyapunov stability conditions [Liberzon 2003, Ch.3.4] see,
i.e., [Heemels et al. 2010], ε-relaxation policies [Zhang
et al. 2009b,a] and rollout policies [Antunes and Heemels
2017, Bertesekas 2005]. For more work about discrete swit-
ching control, see also [Deaecto et al. 2013, Geromel et al.
2013]. Most of these approaches are based on linear ma-
trix inequalities which are for this particular application,
due to the relatively large size of the mapping matrices,
computationally intractable in spite of recently developed
numerical techniques [Kressner 2003, Varga and Dooren
2001].

Several works in the field of mixing [Cortelezzi et al. 2008,
Kang et al. 2008, Liu et al. 1994], proposed the following
simple computational efficient policy which we shall call
minimum error first (MEF): Choose σk at time tk that
yields the best performance at the next time step tk+1 (in
our case in terms of the intensity of segregation), i.e.,

σk = min
m∈M

Id(Amek). (16)

Since this policy only requires one step ahead predictions,
the computational effort is low. For a finite horizon, this
policy does not always outperform periodic protocols as
we show in Section 5.2.

For this reason, we focus on a method to approximately
solve the optimal control problem (13) that is able to
deal with large matrices and in addition that can provide
guarantees of outperforming available periodic mixing so-
lutions. Due to the latter aspect, performance guarantees
are immediately obtained. To do so, we use so-called roll-
out policies (see [Bertesekas 2005, Ch. 6] and [Antunes and
Heemels 2017]).

The proposed closed-loop rollout policy relies on some
known base policy in order to obtain an approximate
solution to (14) by restricting the number of decisions
beyond a certain horizon (without sacrificing the overall
freedom in the input sequence). To be more concrete,
instead of optimizing the entire sequence σk ∈ MkF−k

for each time step tk, k ∈ {0, 1, . . . , kF − 1}, only the first
H, 0 ≤ H < kF − k control inputs

σk, σk+1, . . . , σk+H−1, (17)

known as the lookahead horizon, are chosen to be free and
optimized while

σk+H , σk+H+1, . . . , σkF−1 (18)

are fixed and chosen in accordance with a base policy cha-
racterized by a fixed sequence bk+H := (bk+H , bk+H+1, . . . ,
bkF−1) ∈ Bk+H , k ∈ {0, 1, . . . , kF −1−H}, where Bk+H ⊆
MkF−k−H denotes a set of sequences each characterizing
a base policy. By doing so, the set of sequences to be
examined has been reduced to

Ik
roll-out :=

{
MH × Bk+H , when k < kF −H

MkF−k, when k � kF −H.
(19)

Observe that Ik
roll-out ⊆ MkF−k. To be more specific,

suppose q ∈ N is the number of base sequences in Bk+H .
Then the number of sequences to be examined is equal to
qmmin(H,kF−k) instead of mkF−k, k ∈ {0, 1, . . . , kF − 1}.

Analogously to the optimal policy given in (14), the rollout
policy is given by

πk
roll-out(e) := arg min

σk∈Iroll-out,k

Jk
σk(e), (20)

for all k ∈ {0, 1, . . . , kF − 1} with Jk
σk as in (15). In

general, it is difficult the determine the gap between the
rollout policy and the optimal policy. However, the rollout
policy has the favorable property that it is guaranteed
to be no worse than the corresponding base policy, i.e.,
Jk
πk,rollout(e) � minσk∈Bk

Jk
σk(e), for all e ∈ RN where

Jπk,rollout(e) is the performance obtained with the rollout
policy.

By choosing Bk+H , k ∈ {0, 1, . . . , kF − 1−H}, as a set of
available periodic mixing sequences, it is guaranteed that
the rollout strategy will never perform worse than each of
these periodic solutions over an arbitrary finite horizon.
Each periodic base sequence is composed of a repeating
sequence of K control inputs denoted by

v = (v0, v1, . . . , vK−1),

where vi ∈ M, i ∈ {0, 1, . . . ,K − 1}. Hence, for base
sequence bk+H ∈ Bk+H , we have that

bk+H = v0, bk+H+1 = v1, . . . , bk+H+K−1 = vK−1

and

bk+H+K = bk+H for all k ∈ {0, 1, . . . , kF − 1−H −K}.
The underlying periodic protocols do not have to be
optimal in order to obtain an effective rollout policy.
However, choosing a well-performing base policy is in
general beneficial for the rollout algorithm. As already
mentioned, the performance obtained the rollout policy is
guaranteed to be no worse than the performance resulting
from the base policy. Let us remark, however, that since
the rollout policy is not limited to periodic sequences, it
often outperforms the base policy in this case.

Let us remark that the feedback strategy presented above
can be augmented with pruning techniques such as op-
timistic optimization, see also Xu et al. [2017]. The per-
formance guarantee of the rollout policy remains valid as
long as sequence resulting from the base policy is among
the sequences that are evaluated.

5. SIMULATIONS

In the following section, the proposed method is validated
via numerical simulations based on the well-known journal
bearing flow using the cell-mapping method as presented
in Section 3. First, we discuss the journal bearing setup,
after which we present the corresponding simulation re-
sults.

5.1 Description journal bearing setup

The journal bearing system consists of two long eccentric
cylinders, which is a benchmark system in the area of
mixing, since it is a well-known, realizable, prototype 2-
D flow in which chaotic mixing can appear [Swanson
and Ottino 1990]. Furthermore, an analytic expression for
the velocity field is available [Wannier 1950] which solely
depends on the geometry of the setup. This geometry is
set by two dimensionless parameters being the ratio of the
radii of the two cylinders, r = rin/rout and the eccentricity,
ε = e/rout where e is the distance between the centers of
the two cylinders (shown in Figure 1). In this study, the
parameter values are r = 1/3 and e = 3/10.

Mixing is achieved by alternating rotational movements
of both cylinders. For the sake of simplicity, we only
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fact, we propose a suboptimal strategy to approximate the
solution given by (13) while still guaranteeing that the re-
sulting protocol outperforms any given periodic protocol.

4. PROPOSED FEEDBACK MIXING METHOD

In general, optimal control problems for switched systems
are difficult to solve. In the literature, stabilizing subop-
timal feedback policies were derived from S-procedure
stability conditions [Savkin and Evans 2001, Ch.2] and
Lyapunov stability conditions [Liberzon 2003, Ch.3.4] see,
i.e., [Heemels et al. 2010], ε-relaxation policies [Zhang
et al. 2009b,a] and rollout policies [Antunes and Heemels
2017, Bertesekas 2005]. For more work about discrete swit-
ching control, see also [Deaecto et al. 2013, Geromel et al.
2013]. Most of these approaches are based on linear ma-
trix inequalities which are for this particular application,
due to the relatively large size of the mapping matrices,
computationally intractable in spite of recently developed
numerical techniques [Kressner 2003, Varga and Dooren
2001].

Several works in the field of mixing [Cortelezzi et al. 2008,
Kang et al. 2008, Liu et al. 1994], proposed the following
simple computational efficient policy which we shall call
minimum error first (MEF): Choose σk at time tk that
yields the best performance at the next time step tk+1 (in
our case in terms of the intensity of segregation), i.e.,

σk = min
m∈M

Id(Amek). (16)

Since this policy only requires one step ahead predictions,
the computational effort is low. For a finite horizon, this
policy does not always outperform periodic protocols as
we show in Section 5.2.

For this reason, we focus on a method to approximately
solve the optimal control problem (13) that is able to
deal with large matrices and in addition that can provide
guarantees of outperforming available periodic mixing so-
lutions. Due to the latter aspect, performance guarantees
are immediately obtained. To do so, we use so-called roll-
out policies (see [Bertesekas 2005, Ch. 6] and [Antunes and
Heemels 2017]).

The proposed closed-loop rollout policy relies on some
known base policy in order to obtain an approximate
solution to (14) by restricting the number of decisions
beyond a certain horizon (without sacrificing the overall
freedom in the input sequence). To be more concrete,
instead of optimizing the entire sequence σk ∈ MkF−k

for each time step tk, k ∈ {0, 1, . . . , kF − 1}, only the first
H, 0 ≤ H < kF − k control inputs

σk, σk+1, . . . , σk+H−1, (17)

known as the lookahead horizon, are chosen to be free and
optimized while

σk+H , σk+H+1, . . . , σkF−1 (18)

are fixed and chosen in accordance with a base policy cha-
racterized by a fixed sequence bk+H := (bk+H , bk+H+1, . . . ,
bkF−1) ∈ Bk+H , k ∈ {0, 1, . . . , kF −1−H}, where Bk+H ⊆
MkF−k−H denotes a set of sequences each characterizing
a base policy. By doing so, the set of sequences to be
examined has been reduced to

Ik
roll-out :=

{
MH × Bk+H , when k < kF −H

MkF−k, when k � kF −H.
(19)

Observe that Ik
roll-out ⊆ MkF−k. To be more specific,

suppose q ∈ N is the number of base sequences in Bk+H .
Then the number of sequences to be examined is equal to
qmmin(H,kF−k) instead of mkF−k, k ∈ {0, 1, . . . , kF − 1}.

Analogously to the optimal policy given in (14), the rollout
policy is given by

πk
roll-out(e) := arg min

σk∈Iroll-out,k

Jk
σk(e), (20)

for all k ∈ {0, 1, . . . , kF − 1} with Jk
σk as in (15). In

general, it is difficult the determine the gap between the
rollout policy and the optimal policy. However, the rollout
policy has the favorable property that it is guaranteed
to be no worse than the corresponding base policy, i.e.,
Jk
πk,rollout(e) � minσk∈Bk

Jk
σk(e), for all e ∈ RN where

Jπk,rollout(e) is the performance obtained with the rollout
policy.

By choosing Bk+H , k ∈ {0, 1, . . . , kF − 1−H}, as a set of
available periodic mixing sequences, it is guaranteed that
the rollout strategy will never perform worse than each of
these periodic solutions over an arbitrary finite horizon.
Each periodic base sequence is composed of a repeating
sequence of K control inputs denoted by

v = (v0, v1, . . . , vK−1),

where vi ∈ M, i ∈ {0, 1, . . . ,K − 1}. Hence, for base
sequence bk+H ∈ Bk+H , we have that

bk+H = v0, bk+H+1 = v1, . . . , bk+H+K−1 = vK−1

and

bk+H+K = bk+H for all k ∈ {0, 1, . . . , kF − 1−H −K}.
The underlying periodic protocols do not have to be
optimal in order to obtain an effective rollout policy.
However, choosing a well-performing base policy is in
general beneficial for the rollout algorithm. As already
mentioned, the performance obtained the rollout policy is
guaranteed to be no worse than the performance resulting
from the base policy. Let us remark, however, that since
the rollout policy is not limited to periodic sequences, it
often outperforms the base policy in this case.

Let us remark that the feedback strategy presented above
can be augmented with pruning techniques such as op-
timistic optimization, see also Xu et al. [2017]. The per-
formance guarantee of the rollout policy remains valid as
long as sequence resulting from the base policy is among
the sequences that are evaluated.

5. SIMULATIONS

In the following section, the proposed method is validated
via numerical simulations based on the well-known journal
bearing flow using the cell-mapping method as presented
in Section 3. First, we discuss the journal bearing setup,
after which we present the corresponding simulation re-
sults.

5.1 Description journal bearing setup

The journal bearing system consists of two long eccentric
cylinders, which is a benchmark system in the area of
mixing, since it is a well-known, realizable, prototype 2-
D flow in which chaotic mixing can appear [Swanson
and Ottino 1990]. Furthermore, an analytic expression for
the velocity field is available [Wannier 1950] which solely
depends on the geometry of the setup. This geometry is
set by two dimensionless parameters being the ratio of the
radii of the two cylinders, r = rin/rout and the eccentricity,
ε = e/rout where e is the distance between the centers of
the two cylinders (shown in Figure 1). In this study, the
parameter values are r = 1/3 and e = 3/10.

Mixing is achieved by alternating rotational movements
of both cylinders. For the sake of simplicity, we only
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Fig. 1. (left) Journal bearing geometry determined by two
dimensionless parameters r = rin

rout
and ε = e

rout
.

The gray lines represents the journal bearing grid
which discretizes the domain in radial and tangential
direction. In the simulations, a finer grid is used of
600x100. (right) The initial concentration field of the
substance to be mixed as used for the simulation
results (black represents a concentration of one an
white a concentration of zero).

consider mixing actions for which only one of the two
cylinders turns at any particular instant of time. To be
more concrete, we restrict ourselves to four mixing actions
(M = 4,m ∈ M = {1, 2, 3, 4}), namely, the rotation of
the inner and outer cylinder over fixed angles, both in
counter and clockwise direction. The rotational angles are
such that all mixing actions induce the same amount of
kinetic energy per time instant into the fluid such that a
fair comparison among mixing actions can be made. This
leads to the rotation angles θin = (1/r)θout. In this section,
we choose the angle of the inner rotation as θin = 3π.
For each mixing action, a mapping matrix is computed as
explained in Section 3.1 using the spatial partitioning as
shown in Figure 1.

5.2 Simulation results

In order to examine the performance of the rollout algo-
rithm, we compare the rollout policy (20) with a periodic
protocol, which is used as base policy for the rollout policy,
and the MEF (16). The set of periodic base sequences used
in the simulations are composed of the repeating sequence
(v0, v1, v2, v3) = (3, 3, 1, 1), i.e., a rotation of 2π[rad] of the
outer cylinder followed by a rotation of 6π[rad] of the inner
cylinder, and its shifted variants, i.e., (1, 3, 3, 1), (1, 1, 3, 3)
and (3, 1, 1, 3). As such, the resulting sets of base sequences
Bk+H , k ∈ {0, 1, . . . , kF −1−H} consist of four sequences.
Moreover, for rollout policy we choose a lookahead horizon
of H = 2 and a control horizon of kF = 30.

The initial concentration field represents a circular blob as
shown in Figure 1. The simulation results of the periodic
policy (based on the sequence (v0, v1, v2, v3) = (3, 3, 1, 1)),
MEF policy and the proposed rollout policy are shown in
Figure 2. As expected, the proposed rollout policy indeed
outperforms the periodic base policy (or at least does
not perform worse) in terms of intensity of segregation.
In fact, the rollout policy achieves the same quality of
mixing after 25 steps as the periodic policy after 30 steps
which clearly shows the potential of using rollout policies
to improve mixing processes. The MEF policy on the other
hand performs worse than the periodic protocol. Although
several papers [Cortelezzi et al. 2008, Liu et al. 1994, Kang
et al. 2008] showed satisfactory results using the MEF
policy, the results indicate that for this specific mixing
setup the MEF policy is not suitable due to its short
control horizon. In Figure 3, the resulting mixing actions of
all three policies are shown. Observe that the rollout policy
indeed results in an aperiodic mixing sequence. Moreover,
observe that the MEF policy chooses the same mixing
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Fig. 2. Comparison among the periodic policy, minimum
error policy and the rollout policy in terms of intensity
of segregation as defined in (11).
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Fig. 3. The resulting mixing actions of the periodic policy,
MEF policy and the rollout policy.

action at each time step which also underlines the need
for rollout policies.

6. CONCLUSIONS

In this paper we studied optimal fluid mixing from a swit-
ched system perspective using the so-called cell mapping
method. This cell mapping method enabled us to formulate
the original mixing problem as an optimal control problem
for a linear discrete-time switched system. To obtain a
computationally tractable solution to this problem, we
proposed to use rollout algorithms [Bertesekas 2005] which
guarantee that the resulting feedback policy outperforms
any available periodic mixing sequence. The benefits of
the proposed framework was demonstrated by means of
simulations of the well-known journal bearing flow. These
simulations confirmed that the proposed control design
based on a switched systems perspective is a promising
technique for developing efficient mixing devices. In future
work, we will include an experimental validation of the
proposed method relying on camera-based feedback, see
Figure 4 for a photo of the experimental setup.
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