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Abstract: It is well-known that the performance of linear time-invariant (LTI) feedback control
is hampered by fundamental limitations. In this paper, it is shown that by using a so-called
hybrid integrator-gain system (HIGS) in the controller, important fundamental LTI performance
limitations can be overcome. In particular, in this paper, we show this for two well-known
limitations, where overshoot in the step-response of the system has to be present for any
stabilizing LTI controller. For each case, it is shown that by using HIGS-based control, one can
avoid overshoot in the step-response of the system. Key design considerations for HIGS-based
controllers as well as the stability of the resulting closed-loop interconnections are discussed.
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1. INTRODUCTION

Linear control theory is a well-developed area of research
equipped with numerous tools and methods to fit the needs
of industry, including tools for the design and synthesis of
linear controllers, as well as analysis of the stability and
performance thereof. However, all linear time-invariant
(LTI) control systems suffer from fundamental limitations
such as Bode’s gain-phase relationship and the waterbed
effect due to Bode’s sensitivity integral. These limita-
tions result in well-known design trade-offs in both the
frequency- and time-domain (Middleton, 1991). In terms
of time-domain performance of LTI systems, restrictions
on overshoot, rise time, and settling time of the closed-
loop system exist. More specifically, given certain classes
of linear systems to be controlled, it is impossible to realize
performance beyond particular limits with LTI control,
regardless of the choice of the LTI controller. As such,
these constraints are called fundamental LTI performance
limitations (Seron et al., 1997).

A potential solution to circumvent these limitations is to
utilize hybrid or nonlinear control strategies, which by def-
inition are not necessarily bound to the same limitations
as LTI systems. Some examples include Variable Gain
Control (VGC) (Hunnekens et al., 2016), reset control
(Horowitz and Rosenbaum, 1975), switched controllers
(Feuer et al., 1997), and more recently the works on hybrid
integrator-gain systems (HIGS) (Deenen et al., 2021). In
this paper, we will focus on the latter, HIGS, which feature
a nonlinear integrator that switches between an integrator-
and a gain-mode. This controller was introduced to deal
with the classical trade-off in linear control theory between
low-frequency disturbance suppression and a desired tran-
sient response as typically observed in integral control. The
element features an output signal, which has the same sign
as its input signal at all times, thereby constantly forcing
the output of the system towards the desired setpoint

� This work is carried out as part of the project “From PID
to complex order controller (CLOC)” and is supported by the
Netherlands Organization for Scientific Research (NWO) Domain
for Applied and Engineering Sciences (TTW).

value. In frequency domain, a describing function analysis
shows that a HIGS element exhibits similar magnitude
characteristics as a linear integrator while inducing only
38.15 degrees of phase lag (see for example van den Eijnden
et al. (2020)), as opposed to 90 degrees in the linear case.
Similar desirable characteristics are found in the case of
reset control elements (Horowitz and Rosenbaum, 1975).
However, while reset integrators achieve these properties
by producing discontinuous control signals, which can
potentially excite high-frequency plant dynamics, HIGS
makes use of continuous output signals, making HIGS
a powerful control element, especially in high-precision
mechatronics, where structural dynamics with numerous
weakly damped resonances are encountered.

Multiple studies have shown the possibility of overcoming
fundamental time-domain LTI performance limitations by
using hybrid control. In particular, in Hunnekens et al.
(2016) VGC has been used to overcome one of these
limitations. In Beker et al. (2001); Zhao et al. (2019),
reset control has been used to overcome three fundamental
limitations of LTI control. Recently, in van den Eijnden
et al. (2020), it has been shown that a specific time-
domain LTI performance limitation can be overcome, by
employing a HIGS element. In this paper, the objective
is to show that HIGS-based control can, in fact, overcome
all the fundamental LTI performance limitations that have
been overcome by any other type of nonlinear element,
thereby underlining the strength of the HIGS. In the
process, we reveal key design considerations for HIGS-
based control and discuss the closed-loop stability analysis.

The remainder of this paper is organized as follows. In
Section 2, preliminary material related to fundamental
limitations of LTI control are given. In Section 3, HIGS
and the closed-loop system considered in the paper are
described, and the problem statement is provided. Section
4 and Section 5, are concerned with overcoming limita-
tions of LTI control using HIGS-based designs, of which
the closed-loop stability will be established in Section 6.
Conclusions are stated in Section 7.
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is to show that HIGS-based control can, in fact, overcome
all the fundamental LTI performance limitations that have
been overcome by any other type of nonlinear element,
thereby underlining the strength of the HIGS. In the
process, we reveal key design considerations for HIGS-
based control and discuss the closed-loop stability analysis.

The remainder of this paper is organized as follows. In
Section 2, preliminary material related to fundamental
limitations of LTI control are given. In Section 3, HIGS
and the closed-loop system considered in the paper are
described, and the problem statement is provided. Section
4 and Section 5, are concerned with overcoming limita-
tions of LTI control using HIGS-based designs, of which
the closed-loop stability will be established in Section 6.
Conclusions are stated in Section 7.
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loop system exist. More specifically, given certain classes
of linear systems to be controlled, it is impossible to realize
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regardless of the choice of the LTI controller. As such,
these constraints are called fundamental LTI performance
limitations (Seron et al., 1997).

A potential solution to circumvent these limitations is to
utilize hybrid or nonlinear control strategies, which by def-
inition are not necessarily bound to the same limitations
as LTI systems. Some examples include Variable Gain
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2. PRELIMINARIES

The sets of reals, integers, and complex values are denoted
by R, Z, and C, respectively. Given a vector v, ‖v‖ denotes
its Euclidean norm.

Consider the single-input single-output (SISO) closed-
loop interconnection in Fig. 1. Here, the LTI plant and
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u

Fig. 1. Linear closed-loop system configuration.

controller are represented by the transfer functions P (s)
and C(s), respectively. The plant output y(t) ∈ R is
subtracted from the reference signal r(t) ∈ R, generating
the error signal e(t) = r(t) − y(t), at time t ∈ R≥0. This
error signal is fed to the controller, which in turn generates
the control output u(t) ∈ R, at time t ∈ R≥0.
Assumption 1. In this work, unless stated otherwise,
the reference signal r(t) is assumed to be a unit-step, i.e.,
r(t) = 1 for all t ∈ R≥0. Moreover, it is assumed that the
plant P and the controller C have zero initial conditions.

In Seron et al. (1997) the notion of internal stability (see
Definition 2.2.1 in Seron et al. (1997)) is used for stating
the limitations of LTI control. However, this definition
is only applicable to LTI systems and can not be used
to analyze the stability of hybrid closed-loop systems
containing HIGS elements. As such, in this work we adopt
the notion of Input-to-state stability (ISS) (see Khalil
(2002)), which can be used for both LTI and nonlinear
systems.
Definition 1. (Seron et al., 1997) The rise time of the
step response of the closed-loop system in Fig. 1 with zero
initial conditions (for P and C) is defined as

tr := sup
δ∈R>0

{
δ : y(t) ≤ t

δ
for all t ∈ [0, δ]

}
. (1)

Definition 2. (Seron et al., 1997) The overshoot of the
step response of the closed-loop system in Fig. 1 with zero
initial conditions (for P and C), is the maximum value by
which the output y(t) exceeds its final setpoint r(t), i.e.,

yos := sup
t∈R≥0

{−e(t)} . (2)

With the notions of rise time, overshoot, and ISS defined,
the fundamental limitations of LTI control considered in
this paper can be explicitly stated.
Proposition 1. (Seron et al., 1997) Consider the closed-
loop configuration in Fig. 1. Suppose that the LTI system
P (s), is stabilized by the LTI controller C(s). Then

(i) if lim
s→0

sP (s)C(s) = c1, 0 < |c1| < ∞, then

lim
t→∞

e(t) = 0, and
∫ ∞

0

e(t) dt =
1

c1
;

(ii) if lim
s→0

s2P (s)C(s) = c2, 0 < |c2| < ∞, then

lim
t→∞

e(t) = 0, and (3)
∫ ∞

0

e(t) dt = 0. (4)

Proof. See Seron et al. (1997), Section 1.3.

Remark 1. In the closed-loop interconnection of Fig. 1,
when the transfer function P (s)C(s) has a single open-loop
integrator, item (i) of Proposition 1 holds. This does not
necessarily imply that the step response y(t) = 1 − e(t),
overshoots. However, as shown in Proposition 1 of Beker
et al. (2001), if the rise time tr is sufficiently slow such
that tr > 2

c1
, the unit-step response y(t) overshoots, for

any stabilizing LTI controller C(s).
Remark 2. In the closed-loop interconnection of Fig. 1,
the error signal e(t) will be initially positive. Indeed for
y(t0) = 0, one has e(t0) = 1 − y(t0) = 1. If P (s)C(s)
has two open-loop integrators, due to (4) in Proposition
1, the error e(t) will have a change of sign. This implies
that there has to be overshoot in the step-response y(t)
for any stabilizing LTI controller C(s). Moreover, it is
easy to show that (4) also holds when P (s)C(s) contains
more than two integrators. Thus, for an open-loop plant
containing two or more open-loop integrators, a non-zero
overshoot is unavoidable in the step-response y(t) for any
stabilizing LTI controller C(s).
Remark 3. As shown in Seron et al. (1997), if the plant
has an open-loop pole p in the right-half complex plane
such that Im(p) = 0, the unit-step response y(t) necessarily
overshoots for any internally stabilizing LTI controller
C(s). Moreover the overshoot satisfies

yos ≥
(ptr − 1)eptr + 1

ptr
≥ ptr

2
, (5)

where tr is the rise time as defined in (1).

The limitations described in Remark 1, 2, and 3 have been
shown to be overcome by hybrid and nonlinear control
strategies such as VGC and reset control. In van den
Eijnden et al. (2020) a HIGS-based design is presented
that overcomes the limitation in Remark 3. The aim of
this paper is to show that by using HIGS-based control,
the limitations of LTI control in Remarks 1, and 2 can also
be overcome, thereby showing that HIGS-based control
can overcome all the limitations that have been previously
overcome by other control strategies.

3. SYSTEM DESCRIPTION AND PROBLEM
STATEMENT

3.1 Hybrid integrator-gain systems

The hybrid integrator-gain system (HIGS), denoted by H ,
is a discontinuous piecewise linear (PWL) system

H :



ẋh(t) = ωhz(t) if (z(t), u(t), ż(t)) ∈ F1,

xh(t) = khz(t) if (z(t), u(t), ż(t)) ∈ F2,

u(t) = xh(t),

(6a)

(6b)

(6c)

with state xh(t) ∈ R, input z(t) ∈ R, time-derivative of
input ż(t) ∈ R, and output u(t) ∈ R, at time t ∈ R≥0. The
parameters ωh ∈ [0,∞) and kh ∈ (0,∞) denote the in-
tegrator frequency and gain value, respectively. Moreover,
F1 and F2 denote the regions in R3 where the different
subsystems are active. The HIGS is designed to primarily
operate in the so-called integrator mode given by (6a). The
integrator-mode dynamics can be followed as long as the
input-output pair (z, u) of H remain inside the sector

F :=

{
(z, u, ż) ∈ R3 | zu ≥ 1

kh
u2

}
. (7)

When the input-output pair (z, u) tends to leave F , a
switch is made to the so-called gain mode as given by (6b),
so that the trajectories move along the sector boundary
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u(t) = xh(t),

(6a)
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(6c)

with state xh(t) ∈ R, input z(t) ∈ R, time-derivative of
input ż(t) ∈ R, and output u(t) ∈ R, at time t ∈ R≥0. The
parameters ωh ∈ [0,∞) and kh ∈ (0,∞) denote the in-
tegrator frequency and gain value, respectively. Moreover,
F1 and F2 denote the regions in R3 where the different
subsystems are active. The HIGS is designed to primarily
operate in the so-called integrator mode given by (6a). The
integrator-mode dynamics can be followed as long as the
input-output pair (z, u) of H remain inside the sector

F :=

{
(z, u, ż) ∈ R3 | zu ≥ 1

kh
u2

}
. (7)

When the input-output pair (z, u) tends to leave F , a
switch is made to the so-called gain mode as given by (6b),
so that the trajectories move along the sector boundary

where z = khu and thus remain in F . As such, the sets
F1 and F2 are given by

F1 := F \ F2, (8)

F2 :=
{
(z, u, ż) ∈ R3 | u = khz ∧ ωhz

2 > khżz
}
. (9)

As a result of this construction, the input and output of
a HIGS element have the same sign at all times. It is
assumed that the initial condition of the HIGS is chosen
as xh(0) = 0. The interested reader is referred to Deenen
et al. (2021); Sharif et al. (2019), for a proof of existence
and forward completeness of Carathéodory solutions as
well as stability analysis of HIGS-controlled systems.

3.2 Closed-loop system description
We consider the closed-loop interconnection in Fig. 2,
where, as before, the LTI plant to be controlled has
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Fig. 2. Closed-loop system configuration with HIGS-
element.

transfer function P (s). In contrast with the closed-loop
interconnection in Fig. 1, the LTI controller has been
replaced with a HIGS-based controller consisting of a
HIGS element H as in (6) and an LTI controller with
transfer function C�(s). The state-space realization of
P (s) is given by

Σp :

{
ẋp(t) = Apxp(t) +Bpu(t),
y(t) = Cpxp(t),

(10)

where xp(t) ∈ Rnp is its state-vector, u(t) ∈ R is the input
to the plant, y(t) ∈ R is the plant output at time t ∈ R≥0,
and Ap, Bp, Cp are matrices of appropriate dimensions.
Furthermore, the initial condition xp(0), is assumed to be
zero. Similarly, let (AC� , BC� , CC� , DC�), be a state-space
realization of C�(s). Due to the piecewise linear (PWL)
nature of the HIGS, the closed-loop interconnection can
be represented as

Σ :

{
ẋ = Aix+Biw, if (z, u, ż) ∈ Fi, i ∈ {1, 2},
y = Cx,

(11)

with state vector x(t) = [xp(t)
�, xC�(t)�, xh(t)]

� ∈ Rn,
where xp, xC� , and xh, denote the state of P (s), C�(s),
and H , respectively. Moreover, the performance output
is denoted by y(t), and w(t) = [r(t)�, ṙ(t)�]� represents
the vector of exogenous inputs. In addition, Fi, i ∈ {1, 2},
denote the regions where integrator-mode and gain-mode
dynamics are active, respectively. The representation (11),
will prove useful for stability analysis of the closed-loop
systems considered in the following sections.

3.3 Problem formulation

The objective of this work is to design HIGS-based con-
trollers overcoming the LTI performance limitations pre-
sented in Remark 1 and Remark 2. For each case, a HIGS-
based design as in Fig. 2 is presented, that (i) achieves zero
steady-state tracking error (as a linear integrator would)
while (ii) eliminating overshoot and (iii) stabilizing the
closed-loop system, thereby realizing objectives that are
impossible to achieve with any LTI controller.

4. SINGLE OPEN-LOOP INTEGRATOR WITHOUT
OVERSHOOT

Consider the interconnection in Fig. 2 with P (s) = 1/s,
C�(s) = 1. As explained in Remark 1, for this choice

of P (s), the unit-step response of the system necessarily
overshoots for any stabilizing LTI controller satisfying
item (i) of Proposition 1, if the rise time tr is sufficiently
slow. More specifically, the step response overshoots if
tr > 2/c1 with c1 as defined in item (i) of Proposition 1.
For determining the constant c1 we use the fact that the
steady-state error of the closed-loop system to a unit-ramp
input, i.e., r(t) = t, is given by limt→∞ eramp(t) := 1

c1
,

where eramp denotes the error signal to a unit-ramp input.
Indeed, by application of the final value theorem to the
closed-loop system in Fig. 1, the steady-state error to a
unit-ramp input is found to be

lim
t→∞

eramp(t) = lim
s→0

1

s+ sP (s)C(s)
. (12)

Due to item (i) of Proposition 1, lims→0 sP (s)C(s) = c1
and thus, for (12) we obtain lims→0

1
s+sP (s)C(s) = 1

c1
.

For a HIGS-based design to overcome the limitation in
Remark 1, it should achieve the same steady-state error
to a unit-ramp input and a step response with a rise time
satisfying tr > 2/c1, without any overshoot. Thus, we start
by computing the tracking error to a unit-ramp input for
the closed-loop interconnection of P (s) and a single HIGS
element, in order to compute the amount of rise time
necessary for having overshoot with any LTI controller.
The error signal can be computed to be

eramp(t) =


1
√
ωh

sin(
√
ωht), t ∈ [0, ts),

1

kh
+

(
1

√
ωh

sin(
√
ωhts)−

1

kh

)
e−kh(t−ts), t ≥ ts,

(13)

where ωh and kh denote the integrator frequency and
the gain parameter of the HIGS element, respectively.

Moreover, ts =
2√
ωh

arctan
(

kh√
ωh

)
is the time instant when

the HIGS switches from the integrator mode to gain mode.
To see how (13) is derived, let us first note that for zero
initial conditions the HIGS element H starts to operate in
the integrator mode wherein the dynamics are given by the
transfer function Hi(s) = ωh/s, leading to the expression

Eramp(s) =
R(s)

1 + Hi(s)P (s)
=

1/s2

1 + ωh/s2
=

1

s2 + ωh
,

(14)
for the error, in the complex domain. Here, Eramp(s)
and R(s) denote the Laplace transforms of the error
eramp(t) and the reference r(t), respectively. By applying
the inverse Laplace transform to (14) we obtain

eramp(t) =
1

√
ωh

sin(
√
ωht), ∀t ∈ [0, ts). (15)

To determine ts, note that at t = ts, kheramp(ts) = u(ts),
and ωheramp(ts) > khėramp(ts), such that at this time
instant operation in the integrator mode leads to violation
of the sector constraint of the HIGS. Thus one has

u(ts) =

∫ ts

0

ωheramp(t)dt = 1− cos(
√
ωhts)

= kheramp(ts) =
kh√
ωh

sin(
√
ωhts),

(16)

where the last equality follows from (15). By solving (16)

we obtain ts = 2√
ωh

(
arctan ( kh√

ωh
)
)
. Note that by using

this expression for ts together with (15), one can confirm
that the condition ωheramp(ts) > khėramp(ts) is satisfied
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and thus, a switch to the gain mode dynamics is indeed
required at t = ts. Upon switching to the gain mode, the
dynamics of the HIGS element are given by the transfer
function Hg(s) = kh. To derive the expression for eramp(t)
after the switching instance t = ts, we define a shifted
time parameter t′ = t− ts, and a shifted input r(t′) = t′+
e(ts) = t′ + 1√

ωh
sin(

√
ωhts), for all t′ ∈ R≥0. When the

HIGS operates in the gain mode, we obtain the following
expression for the error signal in the complex domain by
application of the Laplace transform to r(t′) and using the
same reasoning as in (14),

Eramp(s) =
R(s)

1 + Hg(s)P (s)
(17)

=
1

kh

1

s
+

(
1

√
ωh

sin(
√
ωhts)−

1

kh

)
1

s+ kh
.

Application of the inverse Laplace transform to (17) gives

e(t′) = L −1{E}(t′) (18)

=
1

kh
+

(
1

√
ωh

sin(
√
ωhts)−

1

kh

)
e−kht

′
.

Using (18), one verifies ωhe(t
′) ≥ khė(t

′), for all t′ ∈ R≥0,
wh > 0, and kh > 0. Hence, after t = ts, no switch is made
back to the integrator mode. By substituting t′ = t − ts
in (18), one obtains the second expression in (13) for
t ≥ ts. Building on the discussion above, the constant
c1 is given by c1 = 1

limt→∞ eramp(t)
= kh. As such, due to

Remark 1, if we find a combination of kh and ωh such that
the closed-loop system’s step response does not overshoot
and its rise time satisfies tr > 2/kh, we have overcome
the limitation under consideration. To determine whether
the step response of the closed-loop interconnection of
P (s) and a single HIGS element overshoots, we proceed
by computing the error signal to a unit-step input, i.e.,
r(t) = 1, given by

estep(t) =

{
cos(

√
ωht), t ∈ [0, ts),

cos(
√
ωhts)e

−kh(t−ts), t ≥ ts,
(19)

where the switching time is given by ts =
1√
ωh

arctan
(

kh√
ωh

)
.

The derivation of (19) follows the same methodology used
in the derivation of (13) and is not included here due to
space limitations. Clearly the unit-step response of the
system never overshoots, if estep(t) is non-negative for
all t ∈ R≥0. Note that for estep to be non-negative at
all times, it is necessary that cos(

√
ωht) is non-negative

for all t ∈ [0, ts]. Using the expression for ts, this con-

dition is equivalent to arctan
(

kh√
ωh

)
≤ π

2 , which is al-

ways satisfied since −π
2 < arctan(·) < π

2 . Moreover, for
t ≥ ts, since cos(

√
ωhts) ≥ 0 and kh > 0, it holds

that 0 ≤ cos(
√
ωhts)e

−kh(t−ts) ≤ cos(
√
ωhts). Thus we

conclude that estep(t) ≥ 0, for all t ≥ 0 and therefore the
unit-step response ystep(t) = 1− estep(t) never overshoots,
regardless of the choice of ωh > 0 and kh > 0. Additionally,
note that limt→∞ estep(t) = 0, such that a steady-state
tracking error of zero is achieved.

It remains to show that it is possible to find a combination
of the parameters ωh and kh, such that the constraint on
the rise time, i.e., tr > 2/c1 = 2/kh, is satisfied. Based on
Definition 1, the rise time tr is determined from tangency
of the step response y(t) = 1 − estep(t), with the line
ŷ(t) := t/tr. Thus, we seek the pair (t�, tr), t

� > 0, such
that

y(t�) = ŷ(t�), ẏ(t�) = ˙̂y(t�). (20)

With kh = 1.5, ωh = 0.25, using (20) gives tr ≈ 2.8 >
2
kh

. Hence, we have found a combination of kh and ωh

which lead to no overshoot in the step response y(t) while
respecting the constraint tr > 2/kh.
Remark 4. ISS of the closed-loop system considered in
this section will be established in Section 6.

The analysis presented thus far is verified with the simu-
lation results in Fig. 3. As it can be seen in Fig. 3, a zero
steady-state tracking error is achieved. Moreover, there is
no overshoot in the step response y(t), and the constraint
on the rise time of the step response is satisfied.

Fig. 3. Step response y(t) and control output u(t) for the
closed-loop system configuration with HIGS-based
control and one open-loop integrator. The dashed line
indicates the rise-time line ŷ(t) = t/tr.

5. MULTIPLE OPEN-LOOP INTEGRATORS
WITHOUT OVERSHOOT

Consider the interconnection in Fig. 2 with P (s) =
(0.05s + 1)/s2. As explained in Remark 2, when the ref-
erence signal r(t) is a unit-step, for this choice of P (s)
the step response of the system necessarily overshoots. In
order to overcome this limitation, a stabilizing HIGS-based
design that achieves a zero steady-state tracking error to
a unit-step reference, while leading to a error signal e(t),
which is non-negative for all time t ∈ R≥0, is desired.
Achieving the latter objective results in a step response
with no overshoot.

The plant P (s) is assumed to have zero initial conditions.
As such, a positive initial control signal u(t) is required
to steer the output of the system towards the setpoint.
Moreover, note that P (s) = 1/s2 + 0.05/s, with the
double integrator 1/s2, the more dominant term. As such,
the system dominantly behaves as a double integrator
(described by ÿ(t) = u(t)). As a result, when the output
y(t) approaches the setpoint value, a sign change in the
control input u(t) is needed in order to decrease ẏ(t), so
that overshoot is avoided and a zero steady-state tracking
error is achieved. However, u(t) is the output of the HIGS
element and as explained in Section 3.1, the input and
output of a HIGS element always have the same sign.
Thus, if the error signal e(t) is fed into the HIGS element,
a sign change in u(t) results in a change of sign in e(t)
which in turn, would lead to overshoot in the step response
y(t). To address this problem, we propose to place an LTI
controller, denoted by C�(s) in Fig 2, in front of the HIGS-
element. In particular, C�(s) is the PD filter

C�(s) = kp

(
s

ωc
+ 1

)
, (21)

where ωc = |1 + 4j/π|ωh/kh is the cross-over frequency of
the describing function of a HIGS-element (see van den



	 D. van Dinther  et al. / IFAC PapersOnLine 54-5 (2021) 289–294	 293

and thus, a switch to the gain mode dynamics is indeed
required at t = ts. Upon switching to the gain mode, the
dynamics of the HIGS element are given by the transfer
function Hg(s) = kh. To derive the expression for eramp(t)
after the switching instance t = ts, we define a shifted
time parameter t′ = t− ts, and a shifted input r(t′) = t′+
e(ts) = t′ + 1√

ωh
sin(

√
ωhts), for all t′ ∈ R≥0. When the

HIGS operates in the gain mode, we obtain the following
expression for the error signal in the complex domain by
application of the Laplace transform to r(t′) and using the
same reasoning as in (14),

Eramp(s) =
R(s)

1 + Hg(s)P (s)
(17)

=
1

kh

1

s
+

(
1

√
ωh

sin(
√
ωhts)−

1

kh

)
1

s+ kh
.

Application of the inverse Laplace transform to (17) gives

e(t′) = L −1{E}(t′) (18)

=
1

kh
+

(
1

√
ωh

sin(
√
ωhts)−

1

kh

)
e−kht

′
.

Using (18), one verifies ωhe(t
′) ≥ khė(t

′), for all t′ ∈ R≥0,
wh > 0, and kh > 0. Hence, after t = ts, no switch is made
back to the integrator mode. By substituting t′ = t − ts
in (18), one obtains the second expression in (13) for
t ≥ ts. Building on the discussion above, the constant
c1 is given by c1 = 1

limt→∞ eramp(t)
= kh. As such, due to

Remark 1, if we find a combination of kh and ωh such that
the closed-loop system’s step response does not overshoot
and its rise time satisfies tr > 2/kh, we have overcome
the limitation under consideration. To determine whether
the step response of the closed-loop interconnection of
P (s) and a single HIGS element overshoots, we proceed
by computing the error signal to a unit-step input, i.e.,
r(t) = 1, given by

estep(t) =

{
cos(

√
ωht), t ∈ [0, ts),

cos(
√
ωhts)e

−kh(t−ts), t ≥ ts,
(19)

where the switching time is given by ts =
1√
ωh

arctan
(

kh√
ωh

)
.

The derivation of (19) follows the same methodology used
in the derivation of (13) and is not included here due to
space limitations. Clearly the unit-step response of the
system never overshoots, if estep(t) is non-negative for
all t ∈ R≥0. Note that for estep to be non-negative at
all times, it is necessary that cos(

√
ωht) is non-negative

for all t ∈ [0, ts]. Using the expression for ts, this con-

dition is equivalent to arctan
(

kh√
ωh

)
≤ π

2 , which is al-

ways satisfied since −π
2 < arctan(·) < π

2 . Moreover, for
t ≥ ts, since cos(

√
ωhts) ≥ 0 and kh > 0, it holds

that 0 ≤ cos(
√
ωhts)e

−kh(t−ts) ≤ cos(
√
ωhts). Thus we

conclude that estep(t) ≥ 0, for all t ≥ 0 and therefore the
unit-step response ystep(t) = 1− estep(t) never overshoots,
regardless of the choice of ωh > 0 and kh > 0. Additionally,
note that limt→∞ estep(t) = 0, such that a steady-state
tracking error of zero is achieved.

It remains to show that it is possible to find a combination
of the parameters ωh and kh, such that the constraint on
the rise time, i.e., tr > 2/c1 = 2/kh, is satisfied. Based on
Definition 1, the rise time tr is determined from tangency
of the step response y(t) = 1 − estep(t), with the line
ŷ(t) := t/tr. Thus, we seek the pair (t�, tr), t

� > 0, such
that

y(t�) = ŷ(t�), ẏ(t�) = ˙̂y(t�). (20)

With kh = 1.5, ωh = 0.25, using (20) gives tr ≈ 2.8 >
2
kh

. Hence, we have found a combination of kh and ωh

which lead to no overshoot in the step response y(t) while
respecting the constraint tr > 2/kh.
Remark 4. ISS of the closed-loop system considered in
this section will be established in Section 6.

The analysis presented thus far is verified with the simu-
lation results in Fig. 3. As it can be seen in Fig. 3, a zero
steady-state tracking error is achieved. Moreover, there is
no overshoot in the step response y(t), and the constraint
on the rise time of the step response is satisfied.

Fig. 3. Step response y(t) and control output u(t) for the
closed-loop system configuration with HIGS-based
control and one open-loop integrator. The dashed line
indicates the rise-time line ŷ(t) = t/tr.

5. MULTIPLE OPEN-LOOP INTEGRATORS
WITHOUT OVERSHOOT

Consider the interconnection in Fig. 2 with P (s) =
(0.05s + 1)/s2. As explained in Remark 2, when the ref-
erence signal r(t) is a unit-step, for this choice of P (s)
the step response of the system necessarily overshoots. In
order to overcome this limitation, a stabilizing HIGS-based
design that achieves a zero steady-state tracking error to
a unit-step reference, while leading to a error signal e(t),
which is non-negative for all time t ∈ R≥0, is desired.
Achieving the latter objective results in a step response
with no overshoot.

The plant P (s) is assumed to have zero initial conditions.
As such, a positive initial control signal u(t) is required
to steer the output of the system towards the setpoint.
Moreover, note that P (s) = 1/s2 + 0.05/s, with the
double integrator 1/s2, the more dominant term. As such,
the system dominantly behaves as a double integrator
(described by ÿ(t) = u(t)). As a result, when the output
y(t) approaches the setpoint value, a sign change in the
control input u(t) is needed in order to decrease ẏ(t), so
that overshoot is avoided and a zero steady-state tracking
error is achieved. However, u(t) is the output of the HIGS
element and as explained in Section 3.1, the input and
output of a HIGS element always have the same sign.
Thus, if the error signal e(t) is fed into the HIGS element,
a sign change in u(t) results in a change of sign in e(t)
which in turn, would lead to overshoot in the step response
y(t). To address this problem, we propose to place an LTI
controller, denoted by C�(s) in Fig 2, in front of the HIGS-
element. In particular, C�(s) is the PD filter

C�(s) = kp

(
s

ωc
+ 1

)
, (21)

where ωc = |1 + 4j/π|ωh/kh is the cross-over frequency of
the describing function of a HIGS-element (see van den

Eijnden et al. (2020), for an explicit expression of the
describing function of the HIGS). By filtering the error
signal with C�(s) prior to feeding it to the HIGS element,
the input to the HIGS becomes

z(t) = kp

(
e(t) +

ė(t)

ωc

)
. (22)

With this choice of C�(s), it is possible to have a sign
change in the input z(t) to the HIGS, while avoiding
change of sign in e(t). From (22) one has z(t) < 0, if

ė(t) < −ωce(t). (23)

Hence, including the linear filter C�(s) provides the pos-
sibility of changing the sign of the control signal u(t),
while avoiding a change of sign in e(t). Therefore, by
using (23) as a tuning guideline, a suitable value of ωc

(which can be tuned by changing the value of ωh) can be
obtained, which in turn leads to a control signal generated
by the HIGS element that is initially positive and drives
the system’s output towards the setpoint value. At points
when (23) holds true, the HIGS element changes the sign
of its output, thereby slowing down the system’s response
and thus potentially avoiding overshoot. As such, it is clear
that the choice of ωc (and thus ωh) is crucial in the design
of the HIGS-based controller. In particular, a suitable
value of ωh would lead to a change of sign in u(t), fast
enough to avoid overshoot. On the other hand, a too high
ωh value would result in a step response with overshoot.
Indeed for ωh → ∞, one has z(t) → kpe(t). Therefore, as
ωh → ∞ a sign change in z(t) implies a change of sign in
e(t) leading to overshoot. The unit-step response of the
closed-loop system where the controller parameters are
chosen as, kh = 1, ωh = 0.5, and kp = 10, is portrayed
in Fig. 4. As it can be seen in Fig. 4, the step response y
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Fig. 4. Step response y(t) and control output u(t) for the
closed-loop system configuration with HIGS-based
control and two open-loop integrators.

does not overshoot and a zero steady-state tracking error
is achieved. Further insights into the mechanism leading to
the absence of overshoot can be obtained by investigating
the trajectories in Fig. 5. As shown in Fig. 5, the HIGS
input z(t) and output u(t) show a change in sign, while
e(t) ≥ 0 for all t ≥ 0. In particular, as shown in Fig.
5a, the HIGS initially operates in integrator-mode. After
some time, a switch is made to the gain-mode dynamics,
resulting in trajectories that move towards the origin of
the (z, u) plane. The operation of the HIGS in the gain-
mode leads to trajectories in the (e, ė) plane that cross
the line ė = −ωce (see Fig. 5b), such that (23) holds and
thus results in a sign change in z(t). After this point, the

-2 0 2 4 6 8 10

-1

-0.5

0

0.5

1

1.5

2

(a) HIGS input z(t) versus HIGS output u(t)

(b) Error e(t) versus its derivative ė(t)

Fig. 5. Trajectories of the HIGS-controlled system with
two open-loop integrators.

trajectories in the (e, ė) plane eventually move towards
the line ė = −ωce, intersect it at the point e = ė = 0, and
remain there. This leads to a steady-state error of zero
without any overshoot in the step response.

The results presented in this section suggest that by using
HIGS-based control, the limitation stated in Remark 2 can
be overcome. In order to complete this claim, it remains
to show that the closed-loop system is ISS. This will be
done in Section 6.

6. CLOSED-LOOP STABILITY

In order to complete the claim that the fundamental
limitations considered in Remark 1 and Remark 2 are
overcome, ISS of the closed-loop systems considered in
Section 4 and Section 5 has to be established. Recall
the general HIGS-controlled system in Fig. 2, described
by piecewise linear representation (11) with state vec-
tor x(t) = [xp(t)

�xC�(t)�xh(t)]
� ∈ Rn. The matrices

Ai, Bi, i ∈ {1, 2} are given in (24), (25), (on the last page)
where (Aq, Bq, Cq, Dq), q ∈ {P,C�}, denote the state-
space matrices defined in Section 3. Moreover, the output
matrix in (11), is given by C = [Cp 0 0]. In order to verify
ISS of the closed-loop system (11), we employ the results
in Theorem 1 of van den Eijnden et al. (2019). To this
end, let us define a matrix E such that Ex = [z u, ż]� and
consider the LMIs

P − S�WS � 0, (26)

A�
1 P + PA1 + S�US ≺ 0, (27)

A�
2 P + PA2 + ΓG+G�Γ� + Z�V Z ≺ 0, (28)
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A1 =

[
Ap 0 Bp

−BC�Cp AC� 0
−ωhDC�Cp ωhCC� 0

]
, B1 =

[
0 0

BC� 0
ωhDC� 0

]
, (24)

A2 =

[
Ap 0 Bp

−BC�Cp AC� 0
(−khCC�BC�Cp − khDC�CpAp) khCC�AC� −khDC�CpBp

]
, B2 =

[
0 0

BC� 0
khCC�BC� khDC�

]
. (25)

where P = P�. Moreover, W,V, and U are symmetric
matrices with non-negative entries, and Γ is a real vector.
The matrices S and Z are given by

S =
[
1 0
kh 1

]−1 [1 0 0
0 1 0

]
E, z =

[−kh ωh
0 1

] [
0 0 1
1 0 0

]
E.

Additionally, G = LE, with L = [kh − 1 0]. For details
on the rationale behind the choice of the above matrices
see van den Eijnden et al. (2019). As shown in van den
Eijnden et al. (2019), the feasibility of the above LMIs,
guarantee the existence of a common Lyapunov function
V (x) = x�Px and thus prove exponential stability of the
closed-loop system, with the exogenous input w = 0. In
particular, (26) ensures the positive definiteness of V (x),
within the input-output space of the HIGS. Moreover,
feasibility of (27) implies that V (x) is decreasing along
the trajectories of the system in the integrator mode.
Lastly (28), implies that V (x) decreases along the system
trajectories in the gain mode. Here, use has been made
of S-procedure relaxations as well as Finsler’s lemma (see
for example van den Eijnden et al. (2019)) to reduce the
conservatism associate with the LMI conditions. Next,
using the fact that w is an affine input to (11), one can
utilize the same arguments as in Khalil (2002), Section
4.9, to show that V (x) is an ISS-Lyapunov function for
(11) and thus, the system is ISS with respect to all
bounded exogenous inputs w. The above stability analysis
procedure has been applied to the closed-loop systems
considered in Section 4 and Section 5, i.e., (11), where
the matrices in (24) and (25) are computed based on
the parameters specified in these sections. For solving the
LMIs, use has been made of the MATLAB toolbox Yalmip
and the solver MOSEK. For the example in Section 4, a
feasible solution with

P =
[
0.2521 0.3592
0.3592 0.8331

]
, W =

[
3.264 1.04
1.04 0.7449

]
,

U =
[
0.6017 3.647
3.647 0.72

]
, V =

[
0.5641 0.5501
0.5501 1.038

]
,

Γ = [ 0.0472 −0.2521 ] .

is found for the LMIs. Moreover for the system considered
in Section 5, the LMIs are rendered feasible with

P =



6863.0 1092.0 7617.0 4259.0
1092.0 644.3 −881.7 1048.0
7617.0 −881.7 20999.0 3833.0
4259.0 1048.0 3833.0 3569.0


 ,W =

[
53.15 97.99
97.99 84.31

]

U =
[

13.0 12433.0
12433.0 195.4

]
, V =

[
3.064 5593.0
5593.0 4.902 106

]
,

Γ =
[
−5.428 106 −2.457 106 −5.058 106 1.019 107

]
.

As a result of the feasibility of the LMIs, we conclude ISS
of the closed-loop systems in Section 4 and Section 5. As
such, we claim that the HIGS-based designs proposed in
the previous sections overcome the fundamental limita-
tions of LTI control, described in Remarks 1 and 2.

7. CONCLUSION

In this paper, we have employed HIGS-based control for
overcoming two well-known fundamental time-domain per-
formance limitations of LTI control. In particular, we

have shown that by using HIGS-based control, fundamen-
tal overshoot limitations inherent to LTI systems with
one or multiple open-loop integrators can be overcome.
This shows that all limitations of LTI control that have
been previously overcome by nonlinear and hybrid control
strategies, can also be overcome by HIGS-based control.
Future research directions include the extension of the
results presented in this paper to more complex and indus-
trially relevant examples. Additionally, systematic proce-
dures for design of HIGS-based controllers that overcome
fundamental performance limitations are of interest.
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