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a b s t r a c t

In this paper we formally describe the hybrid integrator-gain system (HIGS), which is a nonlinear
integrator designed to avoid the limitations typically associated with linear integrators. The HIGS
keeps the sign of its input and output equal, thereby inducing less phase lag than a linear integrator,
much like the famous Clegg integrator. The HIGS achieves the reduced phase lag by projection of the
controller dynamics instead of using resets of the integrator state, which forms a potential benefit
of this control element. To formally analyze HIGS-controlled systems, we present an appropriate
mathematical framework for describing these novel systems. Based on this framework, HIGS-controlled
systems are proven to be well-posed in the sense of existence and forward completeness of solutions.
Moreover, we propose two approaches for analyzing (input-to-state) stability of the resulting nonlinear
closed-loop systems: (i) circle-criterion-like conditions based on (measured) frequency response data,
and (ii) LMI-based conditions exploiting a new construction of piecewise quadratic Lyapunov functions.
A motion control example is used to illustrate the results.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

For the control of linear motion systems, linear time invariant
LTI) control theory is appealing due to its well-understood and
traightforward controller design with guaranteed stability and
erformance properties. However, LTI control designs suffer from
undamental performance limitations such as Bode’s gain-phase
elationship and the waterbed effect due to Bode’s sensitivity
ntegral (Freudenberg, Middleton, & Stefanpoulou, 2000; Seron,
raslavsky, & Goodwin, 1997). In the context of closed-loop per-
ormance, this typically results in design trade-offs.

✩ This work is partly carried out under the project ‘‘From PID to complex
order controller (CLOC)’’ supported by the Netherlands Organization for Scientific
Research (NWO) Domain for Applied and Engineering Sciences (TTW), The
Netherlands. The material in this paper was partially presented at: [1.] the 2017
American Control Conference, May 24–26, 2017, Seattle, WA, USA. [2.] The 58th
IEEE Conference on Decision and Control, December 11–13, 2019, Nice, France.
This paper was recommended for publication in revised form by Associate Editor
Luca Zaccarian under the direction of Editor Daniel Liberzon.

∗ Corresponding author.
E-mail addresses: d.a.deenen@tue.nl (D.A. Deenen), b.sharif@tue.nl

B. Sharif), s.j.a.m.v.d.eijnden@tue.nl (S. van den Eijnden), h.nijmeijer@tue.nl
H. Nijmeijer), m.heemels@tue.nl (M. Heemels), M.F.Heertjes@tue.nl
M. Heertjes).
ttps://doi.org/10.1016/j.automatica.2021.109830
005-1098/© 2021 The Authors. Published by Elsevier Ltd. This is an open access art
To overcome these fundamental limitations of LTI control,
various hybrid and nonlinear control strategies for linear motion
systems have been proposed, see, for example, Feuer, Good-
win, and Salgado (1997), Zheng, Chait, Hollot, Steinbuch, and
Norg (2000) and the references therein. One particularly inter-
esting solution is reset control (Aangenent, Witvoet, Heemels,
van de Molengraft, & Steinbuch, 2009; Baños & Barreiro, 2012;
Beker, Hollot, Chait, & Han, 2004; Chait & Hollot, 2002; Clegg,
1958; Hazeleger, Heertjes, & Nijmeijer, 2016; van Loon, Grunt-
jens, Heertjes, van de Wouw, & Heemels, 2017; Nešić, Zaccarian,
& Teel, 2008; Prieur, Queinnec, Tarbouriech, & Zaccarian, 2018;
Saikumar & Hosseinnia, 2017), which started with the introduc-
tion of the Clegg integrator (Clegg, 1958), being an integrator that
resets its state to zero upon zero input crossings. The develop-
ment of reset control continued with generalizations such as the
first-order reset element (Beker et al., 2004; Chait & Hollot, 2002;
Horowitz & Rosenbaum, 1975; Zhao, Nešić, Tan, & Hua, 2019),
the second-order reset element (Hazeleger et al., 2016) and gen-
eralized fractional order reset elements (Saikumar & Hosseinnia,
2017). Extensive research on reset control systems has led to var-
ious fruitful results regarding stability analysis (Barreiro & Baños,
2010; Beker et al., 2004; Carrasco & Navarro-López, 2013; Guo,
Wang, Xie, & Zheng, 2009; Nešić, Teel, & Zaccarian, 2011; Nešić
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.automatica.2021.109830
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2021.109830&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:d.a.deenen@tue.nl
mailto:b.sharif@tue.nl
mailto:s.j.a.m.v.d.eijnden@tue.nl
mailto:h.nijmeijer@tue.nl
mailto:m.heemels@tue.nl
mailto:M.F.Heertjes@tue.nl
https://doi.org/10.1016/j.automatica.2021.109830
http://creativecommons.org/licenses/by/4.0/


D.A. Deenen, B. Sharif, S. van den Eijnden et al. Automatica 133 (2021) 109830

e
t
H
c
a
c
&
2
c
f
t
o
T
a
o
l
w
c
d
f
p

a
n
i
v
s

b
g
o
s
s
a
l
i
‘
t
p
b
t
o
f
a
o
p
i

s
&
c
1
s
s
i
i
t
d
t
t
(
i
c
i
p
n

f
f
(
c
m
i
n
e
w
t
u
s

c
H
i
c
t
m
h
s
L
t
s
b
u
w
n
c
t
(
Z
L
L
o
a
e
a
t
p
(
B
t
h
p
L
g

c
i
S
d
f
t
t

2

R
p
=

t al., 2008; Zaccarian, Nešić, & Teel, 2011), beating fundamen-
al time-domain performance limitations of LTI control (Beker,
ollot, & Chait, 2001; Zhao et al., 2019), hybrid formulations (Za-
carian, Nešić, & Teel, 2005) using temporal regularization to
void Zeno phenomena, and experimental demonstration of reset
ontrol systems achieving improved performance (Baños, Perez,
Cervera, 2013; Hazeleger et al., 2016; Saikumar & Hosseinnia,
017; Vidal & Banos, 2008). A desirable feature typical of reset
ontrollers is characterized by the Clegg integrator’s describing
unction, which exhibits a 20 dB/decade amplitude decay similar
o that of a linear integrator, however induces only 38.15 degrees
f phase lag (as opposed to 90 degrees for the linear integrator).
he latter is a result of the reset forcing the integrator’s input
nd output to always be of equal sign. This is a general feature
f many reset controllers, in which the resetting mechanism
eads to an improvement in phase lag over its linear counterpart,
hich in turn suggests the possibility of designing a compensator
apable of supplying the required bandwidth with a much re-
uced gain at high frequencies (Chait & Hollot, 2002). Clearly, this
avorable phase behavior can significantly improve closed-loop
erformance.
Inspired by the advantages of reset control, in this paper we

re interested in formalizing, as an alternative to reset control, a
ew nonlinear integrator referred to as the hybrid
ntegrator-gain system (HIGS), which offers the same phase ad-
antages, but without the need for hard resets of the (integrator)
tate.
The HIGS is designed to keep its input–output relation

ounded in the sector [0, kh], where kh ∈ R>0 denotes the
ain parameter, thereby inheriting the hinted phase advantage
f reset control (as the input and output of the HIGS have the
ame sign). However, the HIGS avoids resetting the integrator
tate, and exploits projection of the (controller) dynamics in
manner resulting in continuous control signals. In particu-

ar, a HIGS element acts as a linear integrator as long as its
nput–output pair lies inside the mentioned sector (called the
integrator mode’). At moments when the sector condition tends
o be violated, the vector field of the HIGS element is altered via
rojection in such a way that the resulting trajectories stay on the
oundary of the sector. This second mode of operation is referred
o as the ‘gain mode’ of the HIGS, explaining the terminology
f hybrid integrator-gain systems. Interestingly, upon switching
rom integrator to gain mode, the integrator buffer is preserved
s much as possible while respecting the sector condition, instead
f being completely depleted by resets. This leads to increased
otential for improving closed-loop performance for this hybrid
ntegrator in comparison to, for instance, the Clegg integrator.

In this paper, we formalize the above idea based on exten-
ions of so-called projected dynamical systems (PDS) (Dupuis
Nagurney, 1993; Henry, 1973; Nagurney & Zhang, 2012), a

lass of discontinuous dynamical systems introduced in the early
990s. PDS are described by differential equations of which the
olutions are restricted to a constraint set. At moments when the
olutions tend to leave this set, the vector field of the system
s changed by means of projection so that the solutions remain
nside the constraint set. Although the PDS philosophy resembles
hat of the HIGS, there are essential differences that prevent direct
escription of the HIGS as a PDS. First of all, the constraint set of
he HIGS (the sector), does not satisfy the regularity requirements
hat the PDS framework commonly requires, see, e.g., Henry
1973). Secondly, in the case of PDSs, the complete vector field
s projected on (the tangent cone of) the constraint set. In the
ontext of control, however, when considering a HIGS element
n feedback interconnection with a physical plant, it is only
ossible to project the dynamics of the controller (HIGS) and

ot the full dynamics (including the plant dynamics). This calls

2

or important generalizations of PDS, as provided in this paper,
or which we coin the term extended projected dynamical systems
ePDS). Based on this new ePDS framework, which naturally
aptures the design philosophy of HIGS, we provide a formal
athematical description of HIGS-controlled systems. Interest-

ngly, the representation used in our preliminary work (Dee-
en, Heertjes, Heemels, & Nijmeijer, 2017) follows from the
PDS-based formulation of HIGS-controlled systems. Furthermore,
e establish the well-posedness of HIGS-controlled systems in
he sense of existence and forward completeness of solutions,
nder mild assumptions as generally satisfied for linear motion
ystems.
In our preliminary work (Deenen et al., 2017), a circle-

riterion-like argument is presented for stability analysis of
IGS-controlled systems (however, without a proof of the stabil-
ty and without a well-posedness proof). Clearly, this
ircle-criterion approach offers great advantages in terms of easy-
o-check graphical conditions based on accurate and quickly
easurable frequency response functions. A potential drawback,
owever, is that it may yield conservative bounds on closed-loop
tability due to (i) the underlying use of a common quadratic
yapunov function for a piecewise linear closed-loop system (Son-
ag, 1981), and (ii) solely using the hybrid integrator’s
ector-boundedness instead of its complete nonlinear dynamic
ehavior. Furthermore, its application is limited to control config-
rations where a stable LTI system is used in feedback connection
ith a HIGS element. One of the key contributions of this paper,
ext to providing a full proof of the circle-criterion-like stability
ondition for the first time, is to also provide less conserva-
ive stability conditions in terms of linear matrix inequalities
LMIs). This approach is inspired by Aangenent et al. (2009) and
accarian et al. (2005, 2011) for reset control systems, where
MIs guarantee stability based on a piecewise quadratic (PWQ)
yapunov function by partitioning the two-dimensional input–
utput plane of the reset element into double cones with the
pices at the origin. The HIGS differs from the previously consid-
red reset integrators in the sense that its switching dynamics
re determined in a three-dimensional space. Therefore, an ex-
ension of the planar approach is proposed that uses volumetric
artitions in a spherical coordinate system leading to LMI-based
input-to-state) stability conditions for HIGS-controlled systems.
oth methods will be used to verify stability of an LTI mo-
ion system in feedback with a HIGS to illustrate, on the one
and, the practical convenience of the circle-criterion-like ap-
roach, and, on the other hand, the increased potential of the
MI-based conditions in terms of reduced conservativeness re-
arding parameter bounds.
The remainder of this paper is organized as follows. Section 2

ontains preliminaries and notation. The HIGS is described
n Section 3 and proven to be well-posed in Section 4. In
ection 5, the LMI-based closed-loop stability conditions and their
erivation are discussed, followed by the circle-criterion-like
requency-domain stability conditions in Section 6. In Section 7,
hese stability conditions are compared using an illustrative mo-
ion control example. Section 8 states the conclusions.

. Definitions and preliminaries

A sequence of real scalars (u1, u2, . . . , uk) with k ∈ N and ul
∈

, l = 1, 2, . . . , k, is called lexicographically non-negative (non-
ositive), written as (u1, u2, . . . , uk) ≥l 0 (≤l 0), if (u1, u2, . . . , uk)
(0, 0, . . . , 0) or uj > 0 (< 0) where j = min{l ∈ {1, . . . , k} |

ul
̸= 0}. For the column space (image) and the null-space (kernel)

of a matrix H ∈ Rn×m we write imH = {Hx | x ∈ Rm
} and

kerH := {x ∈ Rm
| Hx = 0}.
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Fig. 1. Closed-loop system in Lur’e form.

Definition 2.1. A function w : I → Rnw , with I ⊆ R is
alled a Bohl function, denoted by w ∈ BI , if there exist matrices

∈ Rnw×nF , F ∈ RnF×nF , and a vector v ∈ RnF such that
(t) = HeFtv for all t ∈ I.

efinition 2.2. A function w : R≥0 → Rnw is called a piecewise
ohl function, denoted by w ∈ PB, if there exists a sequence {ti}i∈N
ith 0 = t0 < ti < ti+1 for all i ∈ N and ti → ∞ when i → ∞

uch that w : [ti, ti+1) → Rnw is a Bohl function for each i ∈ N.

Note that piecewise Bohl functions can be discontinuous, but
hey are continuous from the right in the sense that for each
∈ R≥0 it holds that w(T ) = limt↓T w(t).

efinition 2.3. An absolutely continuous (AC) function f :

a, b] → Rn is a function that can be written as f (t) − f (a) =
t
a ḟ (τ )dτ for any t ∈ [a, b] for a Lebesgue integrable function

˙ ∈ L1([a, b],Rn), which is considered as its derivative. A function
: I → Rn is locally AC, if it is AC for any bounded interval

a, b] ⊂ I.

efinition 2.4 (Rockafellar & Wets, 1998). The tangent cone to a
et S ⊂ Rn at a point ξ ∈ S, denoted by TS(ξ ), is the set of all
vectors v ∈ Rn for which there exist sequences {ξi}i∈N ∈ S and
τi}i∈N, τi > 0, i ∈ N, with ξi → ξ , τi ↓ 0 and i → ∞, such that
= limi→∞

ξi−ξ

τi
.

. System description

In this section we consider the closed-loop system setup in
ig. 1, consisting of a linear time-invariant (LTI), single-input
ingle-output (SISO) plant G interconnected with a (SISO) HIGS
lement H . The plant G contains the linear part of the closed-
oop system including the plant to be controlled and possibly an
TI controller, given by the state–space representation

:

{
ẋg = Agxg + Bgvv + Bgww, (a)
e = Cgxg , (b) (1)

ith states xg taking values in Rng , performance output e in R,
ontrol input v in R and exogenous disturbances and references
enoted by w taking values in Rnw . Moreover, the realization
Ag , Bgv, Cg ) is assumed to be minimal. As our key area of appli-
ation involves motion systems containing floating masses, the
ollowing assumption is typically satisfied.

ssumption 3.1. The LTI system G as in Fig. 1 is such that
gBgw = 0 and CgBgv = 0.

The HIGS element H has as its preferred mode of operation
he linear integrator dynamics

ẋh = ωhe,
u = xh,

(2)

here the state xh takes values in R, the (HIGS) input e and the
HIGS) output u both take values in R and ω ∈ [0, ∞) denotes
h

3

Fig. 2. An example of a HIGS in operation.

the integrator frequency. This mode of operation of the HIGS is
referred to as the integrator mode. The integrator mode (2) can
only be used as long as the input–output pair (e, u) of H remains
inside

F :=

{
(e, u) ∈ R2

| eu ≥
1
kh

u2
}

, (3)

where kh ∈ (0, ∞) denotes the gain parameter of H . Note that
(e, u) ∈ F implies equal sign of the input e and the output u of the
HIGS as eu ≥ 0, see Fig. 2. At moments when the input–output
pair (e, u) of H tends to leave the sector F we will ‘‘project’’ the
integrator dynamics in (2) such that (e, u) ∈ F remains true along
the trajectories of the system. We will formalize this operation of
the HIGS in the upcoming subsections.

3.1. Projection-based representation

To mathematically introduce the operation of the HIGS, we
directly use the interconnection of the HIGS element H and
the linear system G described by (1), resulting in a closed-loop
ystem as in Fig. 1, with state x =

[
x⊤
g x⊤

h

]⊤ taking values in Rn,
here xg and xh are the states of G and H , respectively and thus
= ng +1. Note that the constraint (e, u) ∈ F translates to x ∈ S

with

S = K ∪ −K, (4)

where K is a polyhedral cone given by

K := {x ∈ Rn
| Fx ≥ 0}, (5)

where F =
[
F⊤

1 F⊤

2

]⊤ with F1 =
[
khCg − 1

]
, and F2 =[

0ng×1 1
]
. In fact, F1x = khe−u and F2x = u such that (e, u) ∈ F

if and only if x ∈ S. When H operates in the integrator mode, by
combining (1) and (2) we obtain the state space representation
for the HIGS-controlled system in Fig. 1, given by

ẋ = A1x + Bw,

y = Cx,
(6)

where y = [e u]⊤, and

[
A1 B
C

]
=

⎡⎢⎣ Ag −Bgv Bgw

ωhCg 0 01×nw

Cg 0
01×ng 1

⎤⎥⎦ . (7)

As indicated above, when the state trajectory tends to leave the
set S , which in terms of Definition 2.4 happens when

A1x(t) + Bw(t) /∈ TS(x(t)), (8)

for x(t) ∈ S , the vector field of (6), is altered by partial projection
such that the resulting trajectory remains inside S. Using this per-
spective, we can formally introduce the HIGS-controlled system
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:=

{
ẋ = ΠS,E(x, A1x + Bw),
y = Cx,

(9)

where for x ∈ S and f ∈ Rn

ΠS,E(x, f ) := argmin
a∈TS(x)
a−f∈imE

∥a − f ∥
(10)

ith ΠS,E : S × Rn
→ Rn an operator, which projects the

ynamics f onto the tangent cone of the set S at point x, in the
irection imE. In the case of (9), E = [0⊤

np×1 1]⊤ such that the
orrection of the dynamics (6) is only possible for the dynamics of
he HIGS and not for the (physical) plant dynamics (1), which can
learly not be modified (we cannot directly modify ẋg ). Note that
he projection operator ΠS,E , is well-defined in the sense that it
provides a unique outcome for every x ∈ S and each f ∈ Rn,
in the setting considered here (see Sharif, Heertjes, & Heemels,
2019).

The model (10) resembles so-called projected dynamical sys-
tems (PDS) (Henry, 1973; Nagurney & Zhang, 2012) given by

ẋ(t) = ΠS(x(t), f (x(t))) = argmin
v∈TS(x(t))

∥v − f (x(t))∥, (11)

where f : Rn
→ Rn is a general vector field and S ⊆ Rn is a

constraint set. Our representation (10) differs from (11) in two
essential ways. First of all, we have partial projection of dynamics
as a result of using the matrix E, the image of which specifies the
direction of projection. It should be noted that the matrix E is not
limited to the choice made in (9) and should be chosen depending
on the specific case under consideration. Secondly, in the PDS
literature, the PDS (11) is shown to be well-defined for constraint
sets that satisfy certain regularity conditions. In particular, Henry
(1973) and Nagurney and Zhang (2012) restrict the constraint
sets to be convex, while in Hauswirth, Bolognani, and Dorfler
(2021) (and some references therein) convexity is relaxed to
Clarke regularity and prox-regularity of the constraint set for
existence and uniqueness of Carathéodory solutions, respectively.
However, the constraint set S considered here does not satisfy
any of the above mentioned regularity requirements, cf. (4). In
addition, note that (10) is a generalization of (11) since by taking
imE = Rn and restricting S to satisfy the required conditions, one
recovers the classical PDS as in (11). In fact, for these reasons we
refer to the class of systems (10) as extended projected dynamical
systems (ePDS).

Remark 3.1. Note that we could extend the dynamics (9) that
are currently defined for initial states x(0) ∈ S , such that they
are also defined for x(0) /∈ S. In case x(0) ̸∈ S , we can use
x(0+) = argmins∈Cx ∥s − x∥ with Cx := {s ∈ S | s − x ∈ im E},
to reset the state to a state inside S. Note that this reset only
occurs at the initial time and not afterwards, as the state never
leaves S for time t ∈ R>0.

Remark 3.2. It is easy to see that (9) satisfies

ΠS,E(x, A1x + Bw) = −ΠS,E(−x, −(A1x + Bw)).

This symmetry property will prove to be useful in Section 4, in
showing well-posedness of the system.

3.2. Discontinuous PWL model

In this subsection we reformulate (9) as an equivalent piece-
wise linear (PWL) model. To explicitly compute (9), we first note
that

TS(x) =

⎧⎨⎩
TK(x), if x ∈ K \ −K,

K ∪ −K, if x ∈ K ∩ −K, (12)

−TK(−x), if x ∈ −K \ K,

4

where TK(x) = {a ∈ Rn
| FI(x)a ≥ 0}, with I(x) = {i ∈ {1, 2} |

Fix = 0}. Based on (7), (12), and Assumption 3.1, we obtain that
A1x + Bw ∈ TS(x) if and only if x ∈ S1 with

S1 = {x ∈ Rn
| F2x ≥ 0 ∧ (F1x, F1(A1x)) ≥l 0}∪

{x ∈ Rn
| F2x ≤ 0 ∧ (F1x, F1(A1x)) ≤l 0}.

(13)

he proof of the statement above can be established by compar-
ng the algebraic expressions of (12) and (13) for states lying in
he interior of S where F1x > (<)0 and F2x > (<)0, and its
boundaries where F1x = 0 or F2x = 0. Due to space limitations a
complete proof is omitted here.

As a result of the discussion above, S1 is the region where the
ntegrator mode of H is active. Moreover, when

x ∈ S2 := {x ∈ S | x /∈ S1}

= {x ∈ S | F2x ≥ 0 ∧ F1x = 0 ∧ F1(A1x) < 0}  
S+

2

∪

{x ∈ S | F2x ≤ 0 ∧ F1x = 0 ∧ F1(A1x) > 0}  
S−

2

,
(14)

(8) holds. Based on (9) and (12) (with f = A1x + Bw and S
as in (4)), when x ∈ S2, by solving (9), through manipulating
(10) (see equation (17) in Sharif et al., 2019) and resorting to the
Karush–Kuhn–Tucker (KKT) optimality conditions for constrained
optimization (Boyd & Vandenberghe, 2004), we obtain

ẋ = A1x + Bw + E((F1E)−1(−F1A1x − F1Bw)) (15)

= (I − E((F1E)−1F1)(A1x))  
A2x

+Bw =: A2x + Bw.

e refer to (15) as the gain mode dynamics. By considering
oth modes of operation (given by (6) and (15)) and their cor-
esponding regions, we obtain the explicit discontinuous PWL
odel

ẋ = ΠS,E(x, A1x + Bw) =

{
A1x + Bw, if x ∈ S1,

A2x + Bw, if x ∈ S2,

y = Cx
(16)

for (9). Note that S1 has a non-empty interior while S2 does not (it
is part of the lower-dimensional sub-space kerF1). The matrices
A1, B and, C have been explicitly computed in (7). We can also
compute A2 from (15) as

ẋ = A1x + Bw + E((F1E)−1(−F1A1x − F1Bw))[
Agxg − Bgvxh

ωhCgxg

]
+

[
Bgww

0

]
+[

0
khCgAgxg − ωhCgxg + khCgBgvxh + khCgBgww

]
.

s a result of Assumption 3.1, this simplifies to

˙ =

[
Agxg − Bgvxh
khCgAgxg

]
+

[
Bgww

0

]
, (17)

nd thus for (16) we have

A2 B
C

]
=

⎡⎢⎣ Ag −Bgv Bgw

khCgAg 0 01×nw

Cg 0
01×ng 1

⎤⎥⎦ . (18)

Hence, (16) with (7) and (18) is an explicit PWL formulation of
the HIGS controlled system in Fig. 1.

Remark 3.3. As observed from the expressions of S1 and S2 the
switching in (16) is based on

F x, F x, and F (A x),
2 1 1 1
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Fig. 3. Regions F1 and F2 in (ė, e, u)-space.

here F2x = xh = u is the output of the HIGS element (input u to
he linear system G in Fig. 1) and F1x = −khCgxg −xh = −khe−u,
hich is a function of e (output of the linear plant) and u (output
f H ). Lastly, F1(A1x) = khė − ωhe is a function of ė, the first
erivative of the plant output, and the plant output e. Hence, the
egions S1 and S2 can be fully described in terms of e, ė and u.
ndeed, one has x ∈ S2 when (ė, e, u) ∈ F2, where

F2 =

{
(ė, e, u) ∈R3

| (e, u) ∈ F ∧

u = khe ∧ whe2 > khėe
}
,

(19)

here F is as defined in (3). Moreover, x ∈ S1 when (ė, e, u) ∈ F1
ith

1 = {(ė, e, u) ∈ R3
| (e, u) ∈ F} \ F2. (20)

graphical illustration of the regions F1 and F2 is provided in
Fig. 3. As a result, an (internally) equivalent representation of (16)
is given by

Σ :

{
ẋ = Aqx + Bw, if z ∈ Fq, q = 1, 2, (i)
z = C̃x, (ii)

(21a)

with augmented output signal z = [ė e u]⊤ ∈ R3, and

[
Aq B
C̃

]
=

⎡⎢⎢⎣
Ag −Bgv Bgw

B̃h,qC̃g 0 01×nw

C̃g 02×1
01×ng 1

⎤⎥⎥⎦ , (21b)

with matrices B̃h,1 = [0 ωh], B̃h,2 = [kh 0], and C̃g =

(CgAg )⊤ C⊤
g

]⊤. We will use (9), (16), and (21) interchangeably.

From (16), we also see that we are dealing with a discontinuous
differential equation, which makes proving (global) existence of
solutions, given an initial state x0 and external signal w, a difficult
problem, since typical continuity properties used for studying
differential equations/inclusions (such as upper-semicontinuity of
the right-hand side cf. Aubin & Cellina, 1984) are not fulfilled, see
also Cortes (2008).

4. Well-posedness analysis

In this section we show that the HIGS-controlled system
(16) is well-posed in the sense of global existence of solutions.
To this end, we first prove in Section 4.1 that (16) is locally
well-posed, i.e., for each initial state x(0) ∈ S and exogenous
signal of interest w, the system admits a solution on [0, ϵ] for
some ϵ > 0. We select here the class of exogenous signals
(disturbances, references, etc.) to be of piecewise Bohl (PB) nature
(see Definition 2.2). Note that sines, cosines, exponentials, poly-
nomials, and their sums are all Bohl functions, thereby showing
 s

5

that the class of PB functions is sufficiently rich to accurately
describe (deterministic) disturbances frequently encountered in
practice. In particular, any piecewise constant signal is PB, and
thus this class of functions can approximate any measurable func-
tion arbitrarily closely.1 Building on the local existence results of
Section 4.1, in Section 4.2 we prove that all (maximal) solutions
are forward complete, i.e., are defined for all times t ∈ R≥0.
To make this discussion precise, we will formalize the solution
concept.

Definition 4.1. Let T ⊂ R≥0 be an interval of the form [0, T ] or
[0, T ) with T ∈ R≥0 a finite number, or T = R≥0. A locally AC
function x : T → Rn is called a solution to the HIGS-controlled
system (16) on Twith initial state x0 ∈ S and w ∈ PB, if x(0) = x0,
x(t) ∈ S for all t ∈ T, and (16) holds almost everywhere in T.

The solutions in Definition 4.1 are Carathéodory-type solu-
tions, see also Cortes (2008) for more details regarding solution
concepts for discontinuous dynamical systems.

4.1. Local well-posedness

Definition 4.2. We call the HIGS-controlled system (16) locally
well-posed if for all x0 ∈ S and w ∈ PB, there exists an ϵ > 0
such that the system admits a solution on [0, ϵ] with initial state
x0 and input w.

Theorem 4.1. The HIGS-controlled system (16) is locally well-posed.

Proof. Take x0 ∈ S and w ∈PB. Without loss of generality we can
take w ∈ B[0,ϵ̃] by selecting ϵ̃ > 0 sufficiently small. Hence, w can
be represented as

w(t) = HweFw tvw, t ∈ [0, ϵ̃], (22)

for some matrices Hw ∈ Rnw×nFw , Fw ∈ RnFw ×nFw and a vector
vw ∈ RnFw . In other words, w is generated (on [0, ϵ̃]) by the
exo-system

ẋw = Fwxw, w = Hwxw xw(0) = vw, (23)

Combining this exo-system with (16) yields

˙̂x = ΠŜ,Ê(x̂, Â1x̂) =

{
Â1x̂, if x̂ ∈ Ŝ1,

Â2x̂, if x̂ ∈ Ŝ2,

z = Ĉ x̂,

(24)

where x̂ =
[
x⊤ x⊤

w

]⊤ and

Â1 =

[
A1 BHw

0 Fw

]
, Â2 =

[
A2 BHw

0 Fw

]
, Ĉ =

[
C 0

]
,

as an equivalent description of (16) with w as in (22) on [0, ϵ̃].
Here, Ê =

[
E⊤ 0⊤

]⊤, and Ŝ = K̂ ∪ −K̂ with K̂ = {x̂ ∈

Rn+nFw | F̂ x̂ ≥ 0}, where F̂ =
[
F̂⊤

1 F̂⊤

2

]⊤ with F̂1 = [F1 0]
and F̂2 = [F2 0]. Furthermore, the regions Ŝ1 and Ŝ2 are given
by

Ŝ1 = {x̂ ∈ Rn+nFw | F̂2x̂ ≥ 0 ∧ (F̂1x̂, F̂1(Â1x̂)) ≥l 0}∪

{x̂ ∈ Rn+nFw | F̂2x̂ ≤ 0 ∧ (F̂1x̂, F̂1(Â1x̂)) ≤l 0},

Ŝ2 = {x̂ ∈ Ŝ | F̂2x̂ ≥ 0 ∧ F̂1x̂ = 0 ∧ F̂1(Â1x̂) < 0}∪

{x̂ ∈ Ŝ | F̂2x̂ ≤ 0 ∧ F̂1x̂ = 0 ∧ F̂1(Â1x̂) > 0}.

1 An interesting future research direction is establishing the existence of
olutions for larger classes of input signals.
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F
or proving local well-posedness of (24) (and thus of (16) with w
as in (22)), we define the set

Ŝint := {x̂0 ∈ Ŝ | ∃ϵ > 0, ∀t ∈ [0, ϵ], eÂ1t x̂0 ∈ Ŝ}. (25)

In fact, since Ŝint ⊆ Ŝ1, we conclude that eÂ1t x̂0 is also a
solution to (24) on a non-trivial time window [0, ε] for some
0 < ε ≤ ε̃. Next, we will also show that for each x̂0 ∈ Ŝ \ Ŝint,
a local solution to (24) exists, so that it is established that for all
x̂0 ∈ Ŝ a local solution exists. In order to do so, we first rewrite
(25) in a more algebraic form. Using the definition of Ŝ , one can
rewrite (25) as

Ŝint =

{x̂0 | ∃ϵ > 0, ∀t ∈ [0, ϵ), F̂1eÂ1t x̂0 ≥ 0 ∧ F̂2eÂ1t x̂0 ≥ 0}∪
{x̂0 | ∃ϵ > 0, ∀t ∈ [0, ϵ), F̂1eÂ1t x̂0 ≤ 0 ∧ F̂2eÂ1t x̂0 ≤ 0}.

By using the Taylor series expansion of eÂ1t together with the
Cayley–Hamilton theorem, the characterization Ŝint =

Ŝ+

int ∪ −Ŝ+

int is obtained with

Ŝ+

int ={
x̂ ∈ Rn+nFw |

(
F̂1x̂, F̂1Â1x̂, . . . , F̂1Â

n+nFw −1
1 x̂

)
≥l 0

∧

(
F̂2x̂, F̂2Â1x̂, . . . , F̂2Â

n+nFw −1
1 x̂

)
≥l 0

}
,

Claim: x̂0 ∈ Ŝ \ Ŝint implies that F̂1x̂0 = 0∧ F̂2x̂0 ̸= 0. To prove the
claim, note that when x̂0 lies in the interior of Ŝ , then x̂0 ∈ Ŝint
since (F̂1x̂0 > 0 ∧ F̂2x̂0 > 0) or (F̂1x̂0 < 0 ∧ F̂2x̂0 < 0). Moreover,
F̂2x̂0 = 0 and x̂0 ∈ Ŝ also imply x̂0 ∈ Ŝint. To show this, we use

F̂2Â1 =
ωh

kh
(F̂1 + F̂2), (26)

which can be verified based on the expressions of F̂2, Â1, and F̂1.
Consider the sequence (F̂1x̂0, F̂1Â1x̂0, F̂1Â2

1x̂0, . . . ) and let F̂1Â
ρ

1 x̂0
be the first nonzero element of the sequence for ρ ∈ N. Then,
it follows from (26) that F̂2Âk

1x̂0 = 0 for k = 0, 1, . . . , ρ, and
F̂2Â

ρ+1
1 x̂0 =

ωh
kh
F̂1Â

ρ

1 x̂0. This shows that if F̂2x̂0 = 0 and x̂0 ∈ Ŝ ,
then x̂0 ∈ Ŝint (using the lexicographic inequalities in Ŝ+

int and
(−Ŝ+

int)). This proves the claim.
Additionally, let us make the observation that if for some x̂ ∈

Rn+nw and some N ∈ N one has F̂1Âk
1x̂ = 0, k = 0, 1, 2, . . . ,N ,

then

F̂1Â1Âk
2x̂ = 0, k = 0, 1, 2, . . . ,N − 1, (27)

F̂1Â1ÂN
2 x̂ = F̂1ÂN+1

1 x̂. (28)

This identity can be easily verified by substituting the expression
(15) for Â2 in (27) and (28).

In case x̂0 ∈ Ŝ \ Ŝint, and thus F̂1x̂0 = 0 and F̂2x̂0 ̸= 0, we
will show that a solution of the form x̄(t) = eÂ2t x̂0 ∈ Ŝ2 exists
and is a local solution to (24). For the case where F̂2x̂0 > 0, to
show x̄(t) ∈ Ŝ2, let us note that since F̂2x̂0 > 0, the constraint
F̂2x̄(t) ≥ 0 is satisfied by continuity for t ∈ (0, ϵ], with ϵ > 0
sufficiently small. Thus it is sufficient to show that

F̂1x̄(t) = 0 ∧ F̂1Â1x̄(t) < 0, t ∈ (0, ϵ],

due to the definition of Ŝ2. Since we know that F̂1x̄(t) = 0 for all
t , it suffices to show that

F̂1Â1x̄(t) < 0, for t ∈ (0, ϵ]. (29)

To prove this, we use the fact that x̂0 ∈ Ŝ \ Ŝint implies

(F̂1Â1x̂0, F̂1Â2
1x̂0, . . . , F̂1Â

n+nFw
1 x̂0) <l 0. (30)

By using (27) and (28), (30) implies

(F̂ Â x̂ , F̂ Â Â x̂ , . . . , F̂ Â Ân+nFw −1x̂ ) < 0, (31)
1 1 0 1 1 2 0 1 1 2 0 l

6

which indeed implies (29) for some ϵ > 0, and thus

x̄(t) = eÂ2t x̂0 ∈ Ŝ2 for t ∈ (0, ϵ],

for some ϵ > 0. Therefore, x̄(t) is a solution to (24). As a result
of the symmetry property shown in Remark 3.2, this also proves
local existence of solutions when F̂2x̂0 < 0. Hence, we conclude
local well-posedness. □

4.2. Forward completeness

Definition 4.3. Let T ⊂ R≥0 be an interval of the form [0, T ]

or [0, T ) with T ∈ R≥0 a finite number, or T = R≥0. A solution
x : T → Rn to (16) with w ∈ PB on T is called maximal, if there
does not exist a solution x′

: T′
→ Rn with w ∈ PB on T′, where

T′
= [0, T ′) with T ′

∈ R≥T , that satisfies x(t) = x′(t) for t ∈ T. A
solution x : T → Rn is forward complete, if T = R≥0.

Hence, a maximal solution is a solution that cannot be pro-
longed (is not a strict prefix of another ‘‘larger’’ solution for the
same input).

Theorem 4.2. All maximal solutions to HIGS-controlled system (16)
for w ∈ PB are forward complete.

Proof. Consider a maximal solution x : T → Rn of (16) for
initial state x0 ∈ S and w ∈ PB. We will show that if T is
equal to [0, T ] or [0, T ) with T ∈ R≥0 a finite number, the
left-limit x(T ) := limt↑T x(t) ∈ S exists, and we can exploit the
local existence result to prolong x to a solution on [0, T + ε).
This would contradict the maximality of the solution and thus
T = R≥0, hence x has to be forward complete.

To show the existence of limt↑T x(t), let us remark that if
T is equal to [0, T ], the solution is AC on [0, T ] and thus the
left-limit trivially exists. So, the exciting case to handle is [0, T ).
By Definition 2.2, w can be represented on [ti, T ] as in (22) for
some ti < T (in fact, ti is the largest value in the set {tk}k∈N,
which is strictly smaller than T ). Thus, (16) can be equivalently
written as (24) on [ti, T ]. This implies the existence of a constant
M ∈ R such that the vector field of (24) satisfies the linear growth
condition

∥ΠŜ,Ê(x̂, Â1x̂)∥ ≤ M∥x̂∥, for all x̂ ∈ Rn+nFw , (32)

because ΠŜ,Ê(x̂, Â1x̂) ∈ {Â1x̂, Â2x̂}. As a result of (32),

∥x̂(t)∥ ≤ ∥x̂0∥ +

∫ t

0
∥ΠŜ,Ê(x̂(τ ), Â1x̂(τ ))∥dτ

≤ ∥x̂0∥ + M
∫ t

0
∥x̂(τ )∥dτ , for t ∈ [ti, T ].

By applying Gronwall’s Lemma (Khalil, 2002), one concludes that
∥x̂(t)∥ ≤ L for some constant L > 0 and t ∈ [0, T ). Moreover, for
t ∈ [ti, T ] one has

∥x̂(s) − x̂(t)∥ ≤

∫ s

t
∥ΠŜ,Ê(x̂(τ ), Â1x̂(τ ))∥dτ .

Once again we use (32) together with ∥x̂(t)∥ ≤ L to conclude
∥x̂(s) − x̂(t)∥ ≤ M

∫ s
t ∥x̂(τ )∥dτ ≤ ML(s − t). Hence, the solution

x̂(t) is Lipschitz continuous on t ∈ [ti, T ], and thus also absolutely
continuous and uniformly continuous. Thereby, the limit x̂(T ) :=

limt↑T x̂(t) exists, as required. □

Since we proved local existence of solutions and forward com-
pleteness of all maximal solutions, it is concluded that for each
initial state x0 ∈ S and w ∈ PB a global solution exists on [0, ∞)
and all solutions can be extended to be defined on [0, ∞).
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. Time-domain stability analysis

In this section, we present a Lyapunov-based stability analy-
is for HIGS-controlled systems. In particular, an input-to-state
tability (ISS) condition in terms of LMIs is proposed that guar-
ntees the existence of a PWQ Lyapunov function (Johansson &
antzer, 1998), in which a novel partitioning is used to reduce
onservativeness.

efinition 5.1 (2 Khalil, 2002). The closed-loop system (16) is
said to be input-to-state stable (ISS), if there exist a KL-function
β and a K-function γ such that for any initial state x(0) ∈ S and
any bounded w ∈ PB, any corresponding solution x : R≥0 → Rn

satisfies for all t ∈ R≥0

∥x(t)∥ ≤ β (∥x(0)∥, t) + γ

(
sup
0≤τ≤t

∥w(τ )∥
)

. (33)

5.1. Three-dimensional partitioning

For the system given by (16) (or equivalently (21)), numeri-
cally tractable stability conditions can be formulated using LMIs.
A piecewise quadratic Lyapunov function (Johansson & Rantzer,
1998) is pursued inspired by Aangenent et al. (2009) and Za-
ccarian et al. (2005, 2011) for reset control systems. In the
cited works, however, the flow set is partitioned only in the
input–output plane of the reset element, as its nonlinear behavior
is captured within this two-dimensional space. As explained in
Remark 3.3, the HIGS’ switching dynamics, by contrast, are deter-
mined in the (ė, e, u)-space, requiring a novel three-dimensional
partitioning to reduce conservativeness. To ensure a partitioning
of the (ė, e, u)-space such that the edges of (some of) the resulting
regions exactly coincide with the boundaries of regions where
different modes are active, first note that all boundaries of the
regions F1 and F2 pass through the origin (see Remark 3.3 for
analytic expressions of F1 and F2). Hence, a spherical coordinate
system in the (ė, e, u)-space can be used to realize such a parti-
tioning. That is, the azimuthal angle θ and polar angle φ can be
used to divide this space into polyhedral (double) cones, see Cij in
Fig. 4(a), which will be used to partition F1, the region where the
integrator mode is active. For F2 (the region where the gain mode
is active), which is a subset of the plane u = khe, a partitioning
using the spherical coordinate system is possible using φ (and
fixed θ ), yielding regions such as depicted by Tj in Fig. 4(b).

The construction of the N × M polyhedral cells is as follows.
Define the N + 1 azimuthal angles and the M + 1 polar angles

0 = θ0 < θ1 < · · · < θN = arctan(kh), (34a)

0 = φ0 < · · · < φM1 < · · · < φM = π, (34b)

where φM1 = arctan(kh/(ωh cos(θN ))). The angle θN is chosen
specifically such that it describes the sector boundary u = khe.
Similarly, the angle φM1 is defined such that the vector at angular
coordinates (θN , φM1 ) (red vector in Fig. 4(b)) coincides with the
dynamics switching boundary at the intersection of the planes
ωhe = khė and the plane u = khe, at which the HIGS switches
back from gain mode to integrator mode.

Let the subsets Cij and Tj, depicted in Fig. 4, that partition the
regions where HIGS’ integrator mode and gain mode are active,
respectively, be given by

Cij = {z ∈ R3
| Cijz ≥ 0 ∨ Cijz ≤ 0}, (35a)

2 A continuous function α : [0, ∞) → [0, ∞) is said to belong to class K, if it
is strictly increasing and α(0) = 0. A continuous function β : [0, ∞)×[0, ∞) →

[0, ∞) is said to belong to class KL, if for each fixed s, the mapping r ↦→ β(r, s)
belongs to class K and, for each fixed r , the mapping s ↦→ β(r, s) is decreasing
and β(r, s) → 0 as s → ∞.
7

Fig. 4. In (a), one half of the (i, j)-th double-conical polyhedral region Cij with
nfinite radius obtained by angular division of the spherical coordinates θ and
. In (b), one half of the jth double-conical polygonal region Tj with infinite
adius obtained by angular division in φ-direction on the plane u = khe (at θN ).
he vector at angles (θN , φM1 ) spanning the intersection of the planes u = khe

and ωhe = kh ė is shown in red. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Tj = {z ∈ R3
| Tjz = [0, α, β]

⊤
∧ αβ ≥ 0}, (35b)

here the inequalities in (35a) hold element-wise, and

ij =

⎡⎢⎣ Θi−1
−Θi

−Φi(j−1)
Φij

⎤⎥⎦ , Tj =

[
ΘN

−ΦN(j−1)
ΦNj

]
. (36)

hese matrices follow from the patching hyperplanes described
y Θiz = 0 and Φijz = 0 with

Θi =
[
0 − sin(θi) cos(θi)

]
, (37a)

⊤

ij =

[ sin(φj) sin(θi − θi−1)
cos(φj)(sin(θi−1) − sin(θi))

− cos(φj)(cos(θi−1) − cos(θi))

]
, (37b)

here the latter is obtained by computing the cross product of
he unit vectors with angular coordinates (θi−1, φj) and (θi, φj),
.e., the two unit vectors that individually span the two region
orners (successive in θ-direction) shared by the regions Cij and
i(j+1), and together spanning the common boundary plane be-
ween these regions. Note that as a result of the symmetry of the
ystem with respect to the origin of the (ė, e, u) space, the subsets
ij as in (35a) are defined such that if z ∈ Cij then −z ∈ Cij.
For the actual partitioning, let the index sets be defined as
= {1, 2, . . . ,N} and M = M1 ∪M2, where M1 = {1, . . . ,M1}

nd M2 = {M1 + 1, . . . ,M}. The closure of the integrator mode
low set F1 = F can then be partitioned by Cij for i ∈ N , j ∈ M,
nd the gain mode flow set closure F2 ⊂ F1 by Tj for j ∈ M2,

i.e.,⋃
(i,j)∈N×M

Cij = F1 = F,
⋃

j∈M2

Tj = F2. (38)

Note that Tj captures the boundary plane of CNj where u = khe,
ence Tj ⊂ CNj.

.2. LMI-based stability condition

In addition toN andM, define Ñ = N\{N} and M̃ = M\{M},
and let Sn and Sn

≥0 denote the sets of n × n symmetric matrices,
the latter consisting of nonnegative elements only. The following
result then states a sufficient condition for ISS of a closed-loop
system with HIGS as described by (16) (or (21)).

Theorem 5.1. If there exist matrices Uij,Wij ∈ S4
≥0 for i ∈ N , j ∈

M, and V ∈ S2 for j ∈ M such that P ∈ Sn for i ∈ N , j ∈ M
j ≥0 2 ij
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s

w

C i
atisfy the LMIs

A⊤

1 Pij + PijA1 + Ĉ⊤

ij UijĈij ≺ 0, i ∈ N , j ∈ M, (39)

A⊤

2 PNj + PNjA2 + T̂⊤

j V̂jT̂j, ≺ 0, j ∈ M2, (40)

Pij − Ĉ⊤

ij WijĈij ≻ 0, i ∈ N , j ∈ M, (41)

Θ̂⊤

i,⊥(Pij − P(i+1)j)Θ̂i,⊥ = 0n−1, i ∈ Ñ , j ∈ M, (42)

Φ̂⊤

ij,⊥(Pij − Pi(j+1))Φ̂ij,⊥ = 0n−1, i ∈ N , j ∈ M̃, (43)

Φ̂⊤

M,⊥(PiM − Pi1)Φ̂M,⊥ = 0n−2, i ∈ N , (44)

here

ˆij = CijC̃, T̂j = TjC̃, V̂j =

⎡⎣vj,1 vj,2 vj,3

vj,2 Vj
vj,3

⎤⎦ , (45)

with Cij and Tj from (36), arbitrary scalars vj,1, vj,2, vj,3 ∈ R, C̃
as in (21a(i)) and where Θ̂i,⊥, Φ̂ij,⊥ ∈ Rn×(n−1) and Φ̂M,⊥ ∈

Rn×(n−2) are matrices of full column rank such that im(Θ̂i,⊥) =

ker(ΘiC̃), im(Φ̂ij,⊥) = ker(ΦijC̃) and im(Φ̂M,⊥) = ker([02×1 I2]C̃),
respectively, then the system in (16) (or equivalently (21)) is ISS.

Proof. Since z = C̃x (21a(i)), we can define the sets

Ĉij = {x ∈ Rn
| C̃x = z ∈ Cij}, (46a)

T̂j = {x ∈ Rn
| C̃x = z ∈ Tj}, (46b)

to describe the polytopic partitions in the state space of the
closed-loop system. For this system, consider the radially un-
bounded Lyapunov function V (x) = Vij(x) = x⊤Pijx if x ∈ Ĉij. To
prove ISS, we will show that V is an appropriate ISS Lyapunov
function.

By (35a) and (46a) together with the nonnegativity of the
elements in Wij ∈ S4

≥0, it holds that

x ∈ Ĉij ⇒ x⊤Ĉ⊤

ij WijĈijx ≥ 0. (47)

As a result, using the S-procedure (41) implies that

V (x) = x⊤Pijx > 0, if x ∈ Ĉij, x ̸= 0, (48)

thereby ensuring positive definiteness of V .
Next, using Finsler’s lemma continuity of V is imposed over

the boundary between two cells connected in azimuthal direction
by (42) and in polar direction by (43). Since φ0 = 0 and φM = π ,
we also require (44) to ensure continuity of V over the boundary
between the first and last regions in polar direction. Note that
the former two constraints ensure continuity over hyperplanes
of dimension n − 1, whereas the latter does so in only n − 2
dimensions. This is due to the fact that in (ė, e, u)-space, all region
boundaries are double-conical subsets of planes, except for the
boundary line between the first and Mth region in φ-direction,
i.e., on the intersection Ci1 ∩CiM . In fact, since φ0 = 0 and φM = π

this boundary coincides with the ė-axis, i.e., at e = u = 0, from
which it is easily seen that this leaves only n − 2 directions in
the state space of the closed-loop system in which continuity over
this boundary must be ensured. Hence, V is a locally Lipschitz
continuous function.

Inspecting the time derivative of V in integrator mode, note
that due to (35a), (46a), and Uij ∈ S4

≥0 it holds that

x ∈ Ĉij ⇒ x⊤Ĉ⊤

ij UijĈijx ≥ 0, (49)

which via the S-procedure ensures that (39) yields
∂Vij

∂x
(A1x + Bw)= x⊤(A⊤

1 Pij + PijA1)x + 2x⊤PijBw
2 ⊤

(50)

≤ −εij,1∥x∥ + 2x PijBw,

8

if x ∈ Ĉij, for some εij,1 > 0 and (i, j) ∈ N ×M by strictness of the
matrix inequalities. For the gain mode, let us first observe that
(35b), (46b), and Vj ∈ S2

≥0, imply

x ∈ T̂j ⇒ x⊤T̂⊤

j V̂jT̂jx ≥ 0, (51)

for V̂j as in (45) with arbitrary vj,1, vj,2, vj,3 ∈ R. Simultaneously
employing the S-procedure and Finsler’s lemma results in (40) to
ensure
∂VNj

∂x
(A2x + Bw) = x⊤(A⊤

2 PNj + PNjA2)x + 2x⊤PNjBw

≤ −εNj,2∥x∥2
+ 2x⊤PNjBw,

(52)

f x ∈ T̂j, with εNj,2 > 0 and j ∈ M2 by strictness of the LMIs
in (40). Combining (50) and (52) and applying Young’s inequality
yields almost everywhere the upper bound on the time derivative
of V over both modes

V̇ ≤ −ε∥x∥2
+ ρ∥w∥

2, (53)

with constants ε = min(i,j,q) εij,q −
1
δ

> 0 and ρ = δ max(i,j) ∥PijB∥,
where (i, j, q) ∈ N × M × {1} or (i, j, q) ∈ {N} × M2 × {2}
for sufficiently large δ > 0. Thus, V is an appropriate PWQ ISS
Lyapunov function by which the closed-loop system with HIGS is
ISS. □

Remark 5.1. The constraints (42) and (43) are sufficient con-
ditions for continuity of V , as they in fact demand continuity
over the entire (n− 1)-dimensional hyperplanes rather than only
over the angularly bounded subset of such a hyperplane shared
by two neighboring partitions. By contrast, (44) is a necessary
and sufficient condition, requiring continuity of V only where
it is truly needed. Moreover, for (44) one may remark that it
would suffice to only impose this condition for any single i ∈

N , provided that (42) is satisfied, since the ė-axis is a common
boundary for all regions Ĉi1 and ĈiM , i ∈ N . In fact, the HIGS’
dynamics are such that every crossing of this boundary, i.e., every
zero crossing of e, leads to trajectories traveling from T̂M into
Ĉ11 (except for trajectories traveling through z = 0, for which
continuity of V is already guaranteed by both (42) and (43)), and
hence it would be sensible to require (44) only for i = N .

5.3. Discussion

The main strength of the proposed LMI-based conditions is
that the discontinuous PWL dynamics are explicitly incorporated,
and that the flexibility of a PWQ Lyapunov function is used
to reduce conservativeness. Moreover, since the conditions pose
a convex optimization problem, they can efficiently be solved
by numerical algorithms. Furthermore, this LMI-based approach
is general in nature in the sense that it makes no restrictive
demands on G (only Assumption 3.1 is required), as opposed to
the approach presented in Section 6, which requires stability of
the linear system G . Hence, the LMI-based approach is in principle
applicable to any HIGS-controlled (motion) system that can be
written in the form (16). However, being an LMI-based stability
analysis, it has two aspects that might be experienced as less
desirable. First, it requires an accurate parametric state–space
model, which for high-precision industrial (motion) systems may
not be straightforward to obtain. Second, if infeasible, the evalu-
ated conditions provide no direction to the control engineer on
how to (re)design the controller or how to guarantee robustness
margins.
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. Frequency-domain conditions

In this section we discuss circle-criterion-like conditions used
n Deenen et al. (2017), which similarly to the circle criterion
Khalil, 2002) exploits the sector-boundedness of the HIGS’
nput–output behavior to enable nonparametric stability analysis
n the frequency domain.

.1. Circle-criterion-like condition

Similar to the classical circle criterion, we inspect the fre-
uency response function of G that connects the HIGS’ input and

output in the loop of Fig. 1, given by

Gev(s) = Cg (sI − Ag )−1Bgv, (54)

in relation to the HIGS’ input–output sector. The following theo-
rem states the sufficient condition for ISS.

Theorem 6.1. Consider the system in Fig. 1 described by (16) with
fixed ωh ∈ R>0 and kh ∈ R>0. This system is ISS in the sense of
Definition 5.1 if the following conditions are satisfied:

(I) The system matrix Ag of (1) is Hurwitz;
(II) The transfer function Gev(s) as in (54) satisfies

1
kh

+ ℜ(Gev(j∞)) > 0, and (55)

1
kh

+ ℜ(Gev(jω)) > 0 for all ω ∈ R. (56)

Proof. The proof is based on modifications of the circle criterion
as proposed in van Loon et al. (2017). Different from van Loon
et al. (2017), however, is the absence of an explicit additional de-
tectability condition when considering the scalar-state HIGS, and
the fact that, besides for the integrator dynamics, the Lyapunov
function must be proven to decrease for an additional set of flow
dynamics resulting from the gain mode. The proof is divided into
the following steps:

(1) Initially, the internal dynamics of H are disregarded. Using
the circle criterion, the sector-boundedness of its
input–output pair (e, u) is exploited to prove ISS of G with
respect to w by construction of a quadratic ISS Lyapunov
function (Sontag, 1995) Vg via the Kalman–Yakubovich–
Popov (KYP) lemma (Khalil, 2002).

(2) A quadratic Lyapunov-like function Vh is constructed for
the HIGS in isolation, and an upper bound on its time
derivative is found through explicit use of the sector con-
dition and mode constraints, showing that the hybrid ele-
ment is a (state) strictly passive system.

(3) The functions Vg and Vh constructed in the previous two
steps are combined into a (common) quadratic ISS
Lyapunov function Vc for the closed-loop system including
the HIGS to prove the theorem.

Step 1: The KYP Lemma (Khalil, 2002), shows that the condi-
tions (I) and (II) and minimality of (Ag , Bgv, Cg ) imply the exis-
tence of a positive definite matrix Pg ∈ Sng , a matrix L, and a
positive constant εg that satisfy

A⊤

g Pg + PgAg = −L⊤L − εgPg ,

PgBgv = C⊤

g −

√
2
kh
L⊤.

(57)

ence, the Lyapunov function Vg (xg ) = x⊤
g Pgxg satisfies

λ(Pg )∥xg∥2
≤ Vg (xg ) ≤ λ(Pg )∥xg∥2, where λ(Pg ) and λ(Pg ) denote

he minimum and maximum eigenvalues of the matrix Pg ≻ 0,
espectively. Following the derivation in Step 1 of the proof of
 V

9

Theorem 6 in van Loon et al. (2017), in which the sector condition
eu ≥

1
kh
u2 from (3) is explicitly used twice, we find that the time

erivative of Vg along solutions of (1) satisfies almost everywhere

V̇g ≤ −c1∥xg∥2
+ c2∥w∥

2, (58)

where c1 = εgλ(Pg ) −
1
δ1

> 0 for sufficiently large δ1, and

2 = δ1(λ(Pg )∥Bgw∥)2 > 0, from which we conclude that Vg is
ndeed an ISS Lyapunov function for G with respect to w.

tep 2: Consider the quadratic Lyapunov function Vh(xh) =
1
2 c3x

2
h ,

here c3 =
1−δ2
ωh

> 0 with 0 < δ2 < 1, for the isolated HIGS. In
integrator mode (2), the corresponding time derivative is given
by

V̇h|q=1= c3xhωhe, (59)

which using u = xh and the sector condition u2
≤ kheu from (3)

can be rewritten as

V̇h|q=1
(2)
= −c4x2h + c4u2

+ c3ωheu
(3)
≤ −c4x2h + (c4kh + c3ωh)eu

= −c4x2h + eu, (60)

here c4 =
δ2
kh

> 0 such that the last equality holds. Note
that (60) shows that the integrator mode of the isolated HIGS is
(state) strictly passive (Khalil, 2002). For the gain mode, let us
first note that substitution of u = khe into the quadratic condition
ωhe2 > khėe in (19) yields

ωheu > khėu. (61)

We consecutively use (2), (61), and the gain mode constraint
u = khe from (19) to rewrite the time derivative of Vh in gain
mode as

V̇h|q=2 = c3xhkhė
(2)
= −c4x2h + c4u2

+ c3ukhė
(61)
< −c4x2h + c4u2

+ c3ωheu
(19)
= −c4x2h + (c4kh + c3ωh)eu,

= −c4x2h + eu, (62)

which is equal to (60), and thereby denotes the uniform upper
bound on V̇h (almost everywhere) over both the integrator and
gain mode, showing strict passivity of H . Employing Young’s
inequality and ∥u∥ ≤ kh∥e∥ from (3), we find almost everywhere

V̇h ≤ −c4x2h + c5∥e∥2, (63)

where c5 = ( δ3
2 k2h+

1
2δ3

) > 0 for some δ3 > 0. Finally, substituting
(1) gives almost everywhere

V̇h ≤ −c4x2h + c6∥xg∥2, (64)

where c6 = c5∥Cg∥
2 > 0.

Step 3: For the closed-loop system consisting of the interconnec-
tion of (16) (or equivalently (21)) as depicted in Fig. 1 with state
x = [x⊤

g xh]⊤, consider the Lyapunov function

Vc(xg , xh) = Vg (xg ) + µVh(xh) = x⊤Pcx, (65)

where Pc =

[
Pg 0
0 1

2µc3

]
, and 0 < µ <

c1
c6
. Vc is positive definite

and radially unbounded according to

λ(Pc)∥x∥2
≤ Vc ≤ λ(Pc)∥x∥2. (66)

n upper bound for the time derivative is given by

˙ = V̇ + µV̇ ≤ −ε ∥x∥2
+ ρ ∥w∥

2 (67)
c g h c c
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lmost everywhere, with εc = min(c1 − µc6, µc4) > 0 and
c = c2 > 0.
Consequently, we conclude that the system is ISS in the sense

f Definition 5.1. □

.2. Discussion

Condition (I) of Theorem 6.1 restricts the theorem’s appli-
ability to stable systems G . For motion systems with floating
asses, i.e., where the transfer function of the open-loop system
ontains poles at s = 0, this means that Gev(s) may only describe
n already stabilized closed-loop system. Another weakness of
his approach with respect to Theorem 5.1 is the fact that this
pproach potentially yields a conservative estimate on stability
or two main reasons. First, the Lyapunov function that underlies
he circle criterion is a common quadratic one. Second, the actual
onlinear behavior of the HIGS is not taken into account, but
nstead condition (II) only considers the sector following from
he HIGS gain kh. In fact, from the Nyquist diagram of the linear
ystem khGev we find that condition (II) directly leads to kh,cc ≤

h,gain (which becomes an equality in case the largest negative
eal part of Gev is on the real axis), where kh,cc denotes the
mallest upper bound on the gain kh that satisfies condition (II) of
heorem 6.1, and kh,gain denotes the supremum of the gain value
y which the closed loop Gev/(1+khGev) is stable. In other words,
sing Theorem 6.1 one can only guarantee stability for gain values
h that also render the individual gain mode subsystem stable.
Another indication of the circle-criterion-like approach being

ore conservative than the LMI-based conditions is found by
he inequality in (67), which implies that any Lyapunov function
c(x) = x⊤Pcx that follows from satisfying the conditions in
heorem 6.1 also satisfies the conditions (39)–(41) of Theorem 5.1
ith N = M = 1 and P11 = Pc (rendering the continuity
onstraints trivial), and with U11, V1, and W11 being zero matrices.
onversely, satisfying the conditions in Theorem 5.1 need not
mply that the conditions in Theorem 6.1 are satisfied, hinting
hat the former may possibly guarantee stability in cases where
he latter cannot.

The main strength of the circle-criterion-like approach lies
n its convenience of application and compatibility with current
ndustrial practice for nonparametric frequency-domain stability
valuation during the controller design process. That is, classical
inear loopshaping techniques can be used to design a linear
ontroller contained in L that stabilizes Gev , thereby satisfying
ondition (I). Also, for typical motion systems and as formalized
y Assumption 3.1, it holds that Gev(jω) → 0 for ω → ∞,
mplying (55) of condition (II) is satisfied. Thus, only (56) of
ondition (II) remains to be verified, which boils down to a
raphical evaluation of (measured) frequency response data of Gev

with respect to the design parameter kh in a Nyquist diagram. As
such, this provides the control engineer with frequency-specific
information regarding violations and robustness margins toward
satisfying condition (II), which can directly be used for controller
redesign.

Remark 6.1. Let us briefly elaborate on robustness issues of a
discontinuous differential equation

ẋ(t) = f (x(t), w(t)), when x(t) ∈ X , (68)

with x(t) ∈ Rn, w(t) ∈ Rnw , and X ⊆ Rn, just as our
IGS-controlled system (9). As discussed in Goebel, Sanfelice, and
eel (2012), in order to obtain robust (with respect to arbitrary
mall state perturbations) stability guarantees, it is important to
onsider the Krasovskii regularization of (68), defined as

˙(t) ∈

⋂
co(f (B(x(t), δ)) ∩ X , w(t)), when x(t) ∈ X ,
δ>0

10
Fig. 5. A motion control feedback configuration including a HIGS, where the
nonlinear HIGS H and the linear part G of the closed-loop system are indicated
separately.

where B(x(t), δ) is the open ball of radius δ around x(t) and for a
set Ω ⊆ Rn, co(Ω) denotes its closed convex hull and X denotes
the closure of X . In case of (16), its Krasovskii regularization is
given as

ẋ(t) ∈

{
A1x(t) + Bw(t), if x(t) ∈ S1 \ S2,

co(A2x(t), A1x(t)) + Bw(t), if x(t) ∈ S2.
(69)

t can be shown that Theorems 5.1 and 6.1 hold for (69) as well,
nd thus stronger stability guarantees for (16) can be obtained
ncluding state perturbations (see Goebel et al., 2012 for more
etails).

. Illustrative example

In this section, we demonstrate how the two stability analysis
pproaches of Sections 5 and 6 can be used to evaluate stability of
typical control system including a HIGS. The reader interested

n time and frequency domain simulations/experiments of suc-
essful applications of HIGS-based control, is referred to Deenen
t al. (2017), van den Eijnden, Heertjes, and Nijmeijer (2019)
nd Heertjes, van den Eijnden, Sharif, Heemels, and Nijmeijer
2019). Moreover note that in the recent work (van den Eijnden,
eertjes, Heemels, & Nijmeijer, 2020) it is shown how HIGS-based
ontrollers overcome fundamental limitations of LTI control.

.1. System description

Consider the SISO motion control tracking problem depicted
n Fig. 5, where the LTI open-loop system L represents the series
interconnection of a single-mass plant P and the stabilizing
(nominal) linear controller C consisting of a PD-controller and
first-order lowpass filter. The corresponding Laplace transforms
are given by

L (s) = P(s)C (s), with (70a)

(s) =
1

ms2
, C (s) =

ωlp(kp + kds)
s + ωlp

, (70b)

with mass m = 1 kg, PD-controller parameters kp = 1 N/m
and kd = 0.2 Ns/m, and lowpass corner frequency ωlp = 7
rad/s, resulting in a bandwith of 1 rad/s. The plant output yl ∈

R is the position of the mass, which must track the reference
r ∈ R. Using an appropriate (non-causal) feedforward signal uf
the effects of r are assumed to be fully canceled in the closed
loop. As a result, the tracking error is given by e = −yl, and
the exogenous input d ∈ R represents only the disturbance
effects. Furthermore, corresponding to Fig. 1, the linear part G

(red dashed box) representing the baseline linear control system
is in feedback with the HIGS H , the latter generating the control
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ignal u = −v ∈ R. In particular, the transfer function Gev(s) is
iven by

ev(s) =
L (s)

1 + L (s)
, (71)

in which we recognize the complementary sensitivity function,
which similarly to L (s) has relative degree two, thereby satisfy-
ing Assumption 3.1.

7.2. LMI-based stability analysis

Evaluation of the conditions in Theorem 5.1 requires a
state–space representation of G as in (1). To this end, consider
first the state–space model of the open-loop system L given by

L :

{
ẋl = Alxl + Bl(e + u + d),
yl = Clxl,

(72)

with states xl = [xc x⊤
p ]

⊤ where xc ∈ R and xp = [ẏl yl]⊤ ∈ R2

denote the controller and plant states, respectively, and corre-
sponding matrices

[
Al Bl
Cl

]
=

⎡⎢⎢⎣
−ωlp 0 0 kp − kdωlp

ωlp
m 0 0 kdωlp

m
0 1 0 0
0 0 1

⎤⎥⎥⎦ . (73)

o obtain a state–space description of G in the form of (1), we
lose the loop using e = −yl and u = −v, resulting in

:

{
ẋg = (Al − BlCl)xg − Blv + Bld,
e = −Clxg ,

(74)

here additionally xg = xl is substituted as no pole-zero can-
ellation is found to occur by closing the loop. An extended
losed-loop state–space representation G̃ follows from augment-
ng the output in (74) to ẽ = [ė e]⊤, which using the fact that
lBl = 0 (by Assumption 3.1) results in the matrices

Ag = Al − BlCl, Bgv = −Bgw = −Bl,

C̃g =

[
−ClAl
−Cl

]
,

(75)

ith which we can construct closed-loop system (21).
To demonstrate the added benefit of higher-dimensional par-

itioning of the state space, we evaluate stability using three
ifferent sets of LMI conditions:

(1) Without partitioning, which results in a common quadratic
Lyapunov function. The corresponding LMIs are given by
(39)–(41) for N = M = 1.

(2) Planar partitioning in the (e, u)-plane, yielding a
two-dimensionally PWQ Lyapunov function. The evaluated
LMI conditions are given by (39)–(42) for N = 10 and
M = 1.

(3) Volumetric partitioning using all conditions stated in
Theorem 5.1, implying the existence of a
three-dimensionally PWQ Lyapunov function. For fair com-
parison, we choose the same number of regions N = 10 in
the azimuthal direction as in the previous case, but now
also use M1 = 3 and M2 = 2 to partition the state space in
polar direction.

The LMI-based conditions are solved using the YALMIP tool-
box (Lofberg, 2004) with SDPT3 (Tutuncu, Toh, & Todd, 2003) in
MATLAB. In the implementation, the right-hand sides of (39) and
(40) are tightened to −ϵ1I , and the right-hand side of (41) is set
to ϵ1I , where ϵ1 = 10−3 is sufficiently large with respect to the
machine precision such that the resulting LMIs may be solved in a

non-strict manner for solver compatibility. Furthermore, similar

11
Fig. 6. Nyquist diagrams of (a) L (s) for evaluating stability of G (s), and (b)
ev(s) against the value −1/kh,cc .

o Remark 4 in Zaccarian et al. (2011), the equality constraints
42)–(44) are replaced by auxiliary inequality constraints with
small tolerance of ϵ2 = 10−8 to reduce numerical problems.
oreover, a balancing state transformation x̃g = Tgxg with

g ∈ Rng×ng is applied to the linear system with matrices (75)
o improve numerical conditioning. Stability is evaluated using
heorem 5.1 for a grid of HIGS parameter values (kh, ωh), the
esults of which are shown in Fig. 7 and will be discussed in more
etail in Section 7.4.

.3. Frequency-domain stability analysis

To evaluate stability of the closed-loop system using the
ircle-criterion-like approach, we simply inspect the comple-
entary sensitivity function (71). In verifying the conditions of
heorem 6.1, we first observe that condition (I) is satisfied by
esign of the nominal controller C , as can also be seen from
ig. 6(a) using the Nyquist criterion. Next, since Gev(s) has a
elative degree of two, it holds that Gev(jω) → 0 as ω → ∞,
eaning (55) in condition (II) is satisfied for any kh > 0. For (56)

n condition (II), we inspect the Nyquist diagram of (71) shown
n Fig. 6(b), from which it follows that the closed-loop system
ncluding HIGS is guaranteed to be ISS by Theorem 6.1 for any
h ∈ (0, ∞) and kh < kh,cc = 0.12, as indicated in Fig. 7 by the
egion to the left of dashed red line.

.4. Comparison

For a grid of HIGS parameters (kh, ωh), Fig. 7 visualizes the
ange of parameter values for which the different approaches
re able to guarantee closed-loop stability of the HIGS-controlled
xample system (70). In addition, the figure shows the parameter
ange for which the system has been concluded to be stable on
he basis of time-series simulation studies. Fig. 7 illustrates the
onservativeness associated with this frequency-based approach,
hich can only guarantee stability for HIGS gains up to kh,cc =

.12 (dashed red line). This conservativeness is thought to stem
artly from inadequately accounting for the true nonlinear dy-
amics determined by the parameter pair (kh, ωh), and instead
sing an upper bound based only on kh, which is evident in Fig. 7
s the stable parameter region according to Theorem 6.1 does not
epend on ωh.
The LMI-based approach without partitioning, on the contrary,

oes explicitly include the nonlinear closed-loop dynamics. Con-
equently, the corresponding range of verifiably stable parameter
alues (black dots) increases with respect to the circle criterion,
ee Fig. 7(a). Comparing to the simulation-based stable region
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Fig. 7. A comparison of the HIGS parameters (kh, ωh) for which stability can be
uaranteed by the circle criterion (area left of dashed red line), or by the LMI-
ased conditions (a) without partitioning, and with (b) planar and (c) volumetric
artitioning (black dots). The parameter values for which stable responses have
een observed in simulation are indicated by the gray area. (For interpretation
f the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

gray), however, a considerable degree of conservativeness re-
ains due to the LMIs demanding the existence of a common
yapunov function. In Fig. 7(b), it is shown that the planar parti-
ioning as described by Theorem 5.1 for M = 1 is able to partly
lleviate this problem, resulting in a significantly larger set of
arameters for which stability can be guaranteed. For parameter
airs close to the edge of the stable region, also this approach
s consistently unable to guarantee stability. Finally, Fig. 7(c)
llustrates the potential of the conditions in Theorem 5.1 in terms
f reducing the conservativeness by extending the partitioning to
hree dimensions. The resulting range of (kh, ωh)-values for which
losed-loop stability can be concluded on the basis of LMI condi-
ions approximately coincides with the stable parameter region
ound by time-series simulation . Clearly, the LMI-based anal-
sis outperforms the circle-criterion-like approach in terms of
onservativeness. Nevertheless, the latter may sometimes be the
referable option due to its conditions being easier to verify. This
s especially true in practice, in case accurate state–space models
uch as (72) are not available. The other potential drawbacks
f the LMI-based approach are caused by the conditions being
valuated qualitatively, numerically, and for only a single param-
ter pair (kh, ωh) at a time. Moreover, using numerical solvers
ay cause sensitivity to numerical inaccuracies, especially those

elated to the continuity constraints (42)–(44). In particular, if ϵ2
s chosen too small, the solver may be unable to find a feasible
olution for some values (kh, ωh) within the stable region, while
or ϵ2 too large, increasingly many false positive conclusions on
tability occur outside the stable region. Moreover, the suitable
12
olerance values may depend on the number of partitions N , M1,
nd M2, which in turn affects the number of LMIs and thereby the
equired solver time. The process of finding a suitable partitioning
nd corresponding tolerance values, combined with the fact that
ach value of the pair (kh, ωh) must be evaluated individually,
enders this approach more time-consuming compared to the
ircle-criterion-like analysis.

emark 7.1. To reduce the numerical sensitivity of the
MI-based approach in this example, we tuned the PD-controller
ith reduced robustness margins, allowing for a fair comparison
f the conservativeness of the different approaches (i.e., indepen-
ent of numerical issues).

. Conclusion

In this paper, we have introduced the formalization of the
ybrid integrator-gain system (HIGS). The HIGS is a nonlinear
ntegrator that projects its dynamics onto a sector, thereby keep-
ng the sign of its input and output the same while maintain-
ng a continuous control signal. We have presented an appro-
riate mathematical framework for the formal description of
IGS-controlled systems based on generalizations of projected
ynamical systems, called extended projected dynamical systems
ePDS), which naturally describes the main design philosophy
ehind the HIGS. The ePDS framework was used in showing
he fundamental property of well-posedness of HIGS-controlled
ystems in the sense of existence and forward completeness
f solutions, thereby laying down a mathematical framework
or formal studies of HIGS-based controllers. Moreover, two ap-
roaches for analyzing closed-loop stability of a motion sys-
em including a HIGS have been presented. The first involves
MI-based conditions that guarantee ISS of the closed-loop sys-
em via a PWQ Lyapunov function. Its main strength lies in a
ovel three-dimensional partitioning of the state space specif-
cally tailored to the HIGS’ dynamics, which reduces conserva-
iveness of the conditions to a degree similar to what would
e expected from a necessary condition on closed-loop stabil-
ty. The second approach involves a circle-criterion-like analy-
is. Although potentially more conservative and only applica-
le to certain (common) feedback configurations, this approach
llows for a nonparametric frequency-domain evaluation of
nput-to-state stability of the closed-loop system including HIGS.
oth methods have been demonstrated on a motion system.
ince their strengths and weaknesses are largely complementary,
ogether they form a powerful set of tools for the stability analysis
f HIGS-controlled systems.
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