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Abstract— Heating cancer cells over an extended period of
time, referred to as hyperthermia, has been proven to enhance
the effects of chemotherapy and radiotherapy without inducing
additional toxicity or undesirable side effects, and is there-
fore considered a highly valuable adjuvant therapy in cancer
treatment. In this work, a model predictive control (MPC)
setup is developed for improving performance and robustness in
regulating the temperature for magnetic-resonance-guided high-
intensity focused ultrasound (MR-HIFU) hyperthermia treat-
ments. The proposed control design incorporates a disturbance
estimator as encountered in offset-free MPC that is able to
remove the steady-state temperature error caused by plant-
model mismatch. For the considered healthcare application,
such modeling errors are inevitable in practice due to the high
variability of tissue properties in patients, some of which even
exhibit time- and temperature-dependent behavior due to the
body’s thermoregulatory response, combined with the fact that
extensive model identification is undesirable in the clinic. The
controller’s performance is demonstrated by means of in vivo
experiments on a porcine thigh muscle using a clinical MR-HIFU
treatment setup.

Index Terms— High-intensity focused ultrasound, hyperther-
mia, model predictive control (MPC), offset-free control, oncol-
ogy.

I. INTRODUCTION

M ILD local hyperthermia involves the heating of a spe-
cific target volume inside the body, typically contain-

ing the tumor, to temperatures of 39 ◦C–45 ◦C for up to
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about 90 min while preserving nonelevated temperatures in
healthy tissue. Clinical trials have provided ample evidence
that hyperthermia is a potent adjuvant therapy for cancer
treatment (see [1]–[3] and the references therein). It locally
sensitizes the treated tissue to the effects of chemotherapy
and radiotherapy while leaving the untreated (healthy) tissue
unaffected. Consequently, similar or improved treatment effec-
tiveness can be achieved using lower doses of radiation and
drugs, thereby reducing the severity of the negative side effects
typically associated with cancer treatment [4], [5]. Moreover,
using temperature-sensitive liposomes, it enables localized
heat-mediated delivery of anticancer drugs, allowing for a
further reduction of the required systemic drug concentrations
[6], [7]. Most importantly, hyperthermia itself is nontoxic and
therefore introduces no additional toxicity-related side effects,
making it highly appealing for clinical application to increase
treatment success rates and improve quality of life for the
patients.

A particularly well-suited technology for hyperthermia is
magnetic-resonance-guided high-intensity focused ultrasound
(MR-HIFU). This entails the combined use of powerful and
millimeter-accurate heating using ultrasound waves and real-
time volumetric thermometry using an MRI scanner [8], [9].
Using an external HIFU applicator, this technology allows for
a completely noninvasive treatment, which is highly desirable
for patient comfort, and eliminates the need for postinterven-
tional wound care. However, realizing the desired temperature
distribution and accurately maintaining it over the course of
an entire treatment in a clinical setting is no simple task,
resulting in a need for the development of adequate feedback
controllers. This is particularly true for mild hyperthermia
since its beneficial effects have been found to be strongly
correlated with the tissue temperatures truly achieved during
treatment [10]–[12].

Currently, most implementations of MR-HIFU for tempera-
ture control in thermal therapies use predetermined sonication
plans, possibly extended with simple feedback controllers that
make (minor) online adjustments. Examples include binary
strategies to scale the sonication power and/or length of
the heating intervals in the sonication protocol [13], [14],
ad hoc proportional–integral–derivative (PID)-based methods
[15], [16], or some hybrid form of PID and bang-bang control
[17]. In addition to not exploiting the full potential control
freedom offered by the setup, the major drawback of such
designs is their inability to take the body’s future thermal
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behavior and the restrictive actuator constraints into account
when computing the control inputs, which negatively affects
treatment quality and duration.

In this respect, we believe that model predictive con-
trol (MPC) offers superior potential for temperature control
in hyperthermia treatments. This has already been recognized
by other researchers, see, for example, [18] for the control
of a scalar thermal dose parameter based on a single-point
or 1-D model, [19] (using heavily simplified models and a
fixed sonication trajectory) and [20] for thermal dose control
in 2-D systems, and more recently [21] for temperature control
in 2-D systems with online adaptation of the heating location
and power.

These works illustrate clearly the potential of MPC for
hyperthermia. However, for accurate temperature control in
mild hyperthermia treatments in a clinical setting, a more
sophisticated MPC design is required. One important reason
for this is the large variation observed in the tissue properties
in reality, which are typically patient- and tumor-specific, and
can additionally vary dramatically as functions of time, space,
and temperature [22]–[24]. Extensive pre-treatment model
identification is undesirable from a clinical perspective since,
besides improving treatment quality, the goal is also to reduce
treatment time and avoid unnecessary heating. Consequently,
model discrepancies are typically inevitable in practice and
may result in significantly deteriorated control performance.
It is the objective of this article to provide a significant
step forward in the development of an MPC setup that is
able to robustly regulate the temperature in the tumor over a
prolonged period of time, despite the presence of considerable
and possibly varying model uncertainty.

To this end, as the main contribution of this work,
we develop a temperature controller for MR-HIFU hyper-
thermia based on an offset-free MPC approach. Using a
disturbance model, the effects of constant and slowly varying
plant-model mismatch can be captured [25], [26]. An observer
is employed to identify the corresponding disturbance while
simultaneously providing temperature estimates that improve
upon the noise-corrupted MR thermometry measurements.
This enables the MPC to compensate for the model-error-
induced temperature offset in steady state, recovering the
optimal performance as achievable in case of zero plant-
model mismatch, thereby allowing for significantly enhanced
temperature control and treatment quality.

In [27], we have presented a preliminary version of this
control setup. Using simulations, it was shown that the pro-
posed solution is able to identify and compensate for model
discrepancies. In this work, we present results obtained in
porcine in vivo experiments, demonstrating the developed
feedback setup’s ability of achieving desired steady-state
heating despite the presence of realistic plant-model mis-
match in a clinical setting. Furthermore, to improve mod-
eling accuracy without increasing computation time, in this
article, we extend the modeling procedure for the controller
and observer separately, additionally accounting for computa-
tion/communication delays to reduce modeling error in the
temporal discretization of the state-space models. Finally,
more details are provided regarding the design considerations

Fig. 1. Philips MRI scanner and Profound Sonalleve MR-HIFU system.

of the cost function, which has been changed with respect
to [27].

The remainder of this article is organized as follows. First,
Section II discusses the MR-HIFU hyperthermia setup and
treatment, motivating the development of offset-free MPC for
this application. In Section III, we describe the thermal model
and its spatial discretization, which is used in the observer
and controller design presented in Section IV. In Section V,
the results of the in vivo experiments are discussed to illus-
trate the algorithm’s potential for clinical application. Finally,
Section VI summarizes the key achievements and the corre-
sponding observations.

II. SYSTEM AND TREATMENT DESCRIPTION

In this section, we introduce the hyperthermia treatment and
setup and motivate the use of MPC in this application.

A. MR-HIFU Hyperthermia Setup

Although the MPC setup we propose is generic in nature,
in this article it is designed for a clinical MR-HIFU system
consisting of a Profound Sonalleve, shown in Fig. 1, and
a Philips 3T Achieva. The former is a dedicated trolley-
tabletop in which an MR-compatible HIFU transducer is
integrated, and the latter is an MRI scanner which we use
for noninvasive near-real-time thermometry. This system is
already being used in clinics to noninvasively treat uterine
fibroids and for incision- and radiation-free palliative treatment
of pain associated with bone metastases. A custom software
layer based on [21] has been developed to connect the MPC
algorithms designed in this work to the MR-HIFU setup.

B. HIFU Applicator

This system uses a phased-array HIFU transducer to gen-
erate the ultrasound waves. It consists of 256 elements of
which the phases and amplitudes can individually be chosen
such that by interference a focal spot is created, thereby
enabling powerful and millimeter-accurate heat delivery to
internal tissues, as depicted in Fig. 2. By modulating these
settings, which is referred to as electronic beam steering, the
focal spot can be repositioned to up to 20 distinct locations per
second within a 16-mm-diameter circle around the transducer
axis. By moving the focal spot through the tumor area, all
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Fig. 2. Schematic of a HIFU beam into the focal plane in the tumor, with
the focal point by electronic beam steering.

of the cancerous tissue can be heated. Treating larger regions
additionally requires mechanically displacing the transducer
(see [14] for example). In this article, however, we limit
ourselves to the development of a controller for the treatment
of small tumors and will therefore consider electronic beam
steering only.

The focal spot has an axial length of approximately 7 mm,
which is significantly larger than its narrow radial width of
about 2 mm, as depicted in Fig. 3. Here, it is also shown how
for different focus locations in the focal plane, the acoustic
beams (each individually indicated in light gray) significantly
overlap each other before and behind the focal plane in the
direction of the beam axis (resulting in darker gray in the
figure). Consequently, the resulting temperature distribution
is fairly homogeneous in the axial direction near the focal
plane, whereas the in-plane temperature gradients may be
large. Since in this work we consider only small treatment
volumes, the temperature map in the focal plane characterizes
the tissue temperature in the entire treatment volume, allowing
us to design our MPC setup for temperature control only in
the focal plane using 2-D models. Note that, additionally, all
(constant and slowly varying) neglected out-of-plane effects,
e.g., heat conduction in case of a nonzero axial temperature
gradient, will be identified and compensated for by the offset-
free algorithm.

C. Motivation for Offset-Free MPC in Hyperthermia

The key to successful application of mild local hyperthermia
is to maintain a steady temperature elevation above 41 ◦C in
the region of interest (ROI), typically the tumor and some
adjacent tissue, during the entire treatment. The temperature
sweet spot for treatment quality is at 42 ◦C. This is required
to fully benefit from the desired heat-induced effects, such
as increased blood perfusion, aiding drug delivery to oth-
erwise poorly perfused parts of the tumor when combined
with chemotherapy [1], [28], or the inhibition of DNA repair
mechanisms during the crucial time window after radiation
therapy [4], [12]. On the other hand, overheating can also
be detrimental to successful treatment since some of these
mechanisms exhibit reversal effects at higher temperatures
(above 43 ◦C) [28], [29]. Furthermore, temperature elevations
above 41 ◦C outside the ROI must be avoided to prevent
sensitization of (or damage to) healthy tissue.

Compared to existing binary or PID-based strategies applied
in MR-HIFU hyperthermia, we believe that MPC-based
approaches can deliver superior closed-loop properties, as they
are able to achieve faster and more uniform heating by

Fig. 3. Schematic of three HIFU beams (light gray) with different focus
location in the focal plane to illustrate the beam overlap (darker gray) outside
the focal plane in the axial direction. The focal spot (red) and its dimensions
are shown in detail.

exploiting beneficial (future) behavior, e.g., heat transfer by
conduction, and can explicitly consider actuator constraints,
such as the inability to actively remove heat from inside the
body using HIFU. Unfortunately, model-based strategies are
also inherently accompanied by the possibility for modeling
errors.

As discussed in [24], accurate thermal and thermoregulatory
modeling for hyperthermia treatments is especially difficult
due to the high variability of the spatially distributed and
time/temperature-varying tissue properties [22], [23]. In addi-
tion, attempting to capture all these effects using exten-
sive personalized pre-treatment model identification is highly
undesirable in the clinic, where besides improving treatment
quality, the aim is also to reduce treatment times and to
improve safety by avoiding unnecessary (over)heating. As a
result, plant-model mismatch is typically inevitable in prac-
tice. If inadequately accounted for, however, such modeling
errors may result in insufficient heating of the tumor or in
the overheating of healthy tissue, which would significantly
deteriorate treatment quality and safety.

Given this situation, we propose an MPC setup novel for
hyperthermia inspired by offset-free MPC [25], [26]. Fig. 4
shows the resulting feedback scheme, where the observer
provides the temperature and disturbance estimates from the
noninvasively sampled MR thermometry data, such that the
MPC scheme can compute the optimal power distribution to
be generated by the extracorporeal HIFU actuator.

III. THERMAL MODEL

In this section, a model of the body’s thermal response will
be discussed and spatially discretized, yielding the state-space
model from which the observer and controller models can be
derived.

A. Bioheat Model

The tissue’s thermal behavior is modeled using Pennes’
bioheat equation [30] given by

ρ(r)c(r)
∂T (r, t)

∂ t
= ∇(κ(r)∇T (r, t)) + Qa(r, t)

−wb(r, t, T )cb(T (r, t) − Tb) (1)
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Fig. 4. Block scheme of the envisioned fully automated MR-HIFU feedback
loop for patient treatment.

where T : � × R≥0 → R is the temperature profile.
In particular, T (r, t) denotes the temperature at time t ∈ R≥0

and location r = [rx , ry]� ∈ � ⊂ R
2 with � being the

patient domain in the focal plane. Furthermore, ρ : � → R>0

denotes the tissue’s volumetric mass density, c : � → R>0

denotes the specific heat capacity, κ : � → R>0 denotes
the thermal conductivity, and wb : � × R>0 × R → R≥0

denotes the blood perfusion coefficient. The blood’s specific
heat capacity and temperature are given by cb ∈ R>0 and Tb ∈
R, respectively. Note that these tissue properties are typically
spatially varying in reality due to tissue heterogeneity or blood
vessels, for example. In addition, the blood flow coefficient
wb can also depend nonlinearly on time and temperature due
to the body’s thermoregulatory response, which is patient-
and tumor-specific [22]–[24], [31]. Although low-power
pre-treatment test sonications may serve as a practical solution
to obtain initial estimates of the tissue properties (see [21]),
fully accurate models are nearly impossible to obtain due
to the unavailability of extensive model identification for the
reasons previously mentioned. We therefore propose to assume
spatially homogeneous tissue properties that remain constant
in time, reducing (1) to

ρc
∂T (r, t)

∂ t
=κ∇2T (r, t)+Qa(r, t)−wbcb(T (r, t)−Tb) (2)

and design a feedback controller that is able to identify and
compensate for the resulting model mismatch. Note, however,
that our MPC setup can be directly applied to a fully inhomo-
geneous tissue model as well, in case such a model would be
available.

The power deposition density Qa : �×R≥0 → R≥0 depends
on the acoustic deposition intensity F : � × R≥0 → R≥0 and
scales linearly with the sonication power P : R≥0 → R≥0 as
described by

Qa(r, t) = F(r, t)P(t), r ∈ �, t ∈ R≥0. (3)

In reality, for a given focus location r f (t) at some time t , the
intensity F(r, t) also depends on spatially varying factors, such
as the acoustic properties of the (intermediate) tissue. In our
approach, however, F is modeled by a radially symmetric 2-D
Gaussian distribution centered around the focus location r f

with standard deviation σ f = 2.4 mm

F(r, t) = α

2πσ 2
f

exp

(
−	r − r f (t)	2

2σ 2
f

)
(4)

with r ∈ �, t ∈ R≥0 and acoustic energy absorption coefficient
α ∈ R>0.

B. Spatially Discretized State-Space Model

Recall that we only consider the 2-D focal plane and assume
zero out-of-plane interaction, justified by the temperature
distribution being fairly homogeneous in the axial direction,
as discussed in Section II-B. Spatial discretization of (2)–(4)
is done using the central difference scheme, which in [21]
has been concluded to best combine model simplicity with
predictive power for the considered system, on a 44 × 44 grid
with a voxel size of 1.85×1.85 mm2. As boundary condition,
we prescribe the outward heat flux corresponding to a fixed
temperature Tb just outside our grid’s edges and shift the origin
of (2) to the blood temperature Tb. The resulting continuous-
time state-space dynamics are given by

ẋ(t) = Acx(t) + Bcu(t) (5a)

where the states x(t) ∈ R
nx with nx = 442 = 1936 represent

the voxel’s temperature elevations with respect to Tb at time
t ∈ R≥0. Due to the central difference scheme, Ac is a
sparse matrix containing at most five nonzero elements per
row/column. For the input, we choose to allow sonication at
the voxel centers within the ROI, which will be referred to
as the sonication points. The input u(t) ∈ R

nu , nu = 60,
represents the applied acoustic power at the sonication points,
which may contain at most one nonzero element at any
time t , corresponding to the sonication point that coincides
with the focus location r f (t) using electronic beam steering.
Each individual column of Bc, therefore, captures the rate
of increase of the voxel temperatures when applying unit
sonication power at the corresponding individual sonication
point.

MR thermometry does not yield continuous measurement,
but instead induces a sample time of Ts = 3.7 s when
employing the acquisition protocol used in this article. The
spatial discretization in (5a) is specifically chosen such that
the voxel centers coincide with the points measured by MR
thermometry. Hence, the measurements can be modeled by

yk = x(tk) + vk (5b)

with k ∈ N connecting to real time tk = kTs and yk = y(tk) ∈
R

nx representing the measured voxel temperatures corrupted
by vk ∈ R

nx , where in the monitored area of interest, the latter
consists mainly of sensor noise, which has been experimentally
determined to typically be zero-mean and Gaussian distributed.

IV. CONTROLLER DESIGN

In this section, we first introduce the disturbance model and
discuss the sampled-data setup, based on which we then derive
the discrete-time state-space models used by the controller
and observer. The cost function is designed using the control
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Fig. 5. Sampled-data timing with nonzero computation/communication delay,
and shifted MPC prediction instants synchronized with the control input
application times.

objectives previously described in Section II-C, which in turn
is used to formulate the constrained optimization problem for
MPC.

A. Disturbance Model

To incorporate integral action in the MPC setup, a distur-
bance model together with a disturbance estimator can be
used [25], [26]. The disturbance estimate is provided to the
controller, enabling it to compensate for the steady-state offset
induced by model mismatch or slowly varying disturbances.
To facilitate the derivation of the required discrete-time mod-
els, let us augment the continuous-time dynamics (5a) to

ẋ(t) = Acx(t) + Bcu(t) + d(t) (6a)

ḋ(t) = 0 (6b)

such that it includes the additive disturbance d(t) ∈ R
nx ,

which is assumed to be constant in time. This particular choice
of disturbance model allows for the construction of a stable
discrete-time estimator, as will be shown in Section IV-D,
which in turn enables the compensation of the steady-state
offset resulting from model error.

B. Sampled-Data Setup

We design a discrete-time controller for a continuous-time
system. The sampled-data workflow is schematically visual-
ized in Fig. 5. Here, the sampled output yk is given by (5b).
The discrete-time observer variables x̂k, d̂k ∈ R

nx represent
the estimates of the state x(tk) and disturbance d(tk), which
become available at (approximately) the same time as the
measurement yk due to negligible observer computation time.
As indicated in the figure, for the considered system, there
is a delay of T0 ≈ 1.1 s between obtaining a temperature
map and applying the corresponding new heating plan, which
is caused mainly by the numerical optimization in MPC and
a significant communication and data processing overhead
between the MPC and the dedicated MR-HIFU software.

As discrete-time input, we define uk ∈ R
nu , which repre-

sents the applied sonication power averaged over one sampling
interval at each of the sonication points. This is achieved by
using electronic beam steering to rapidly switch the focal spot
r f (t) between all sonication points at which heating is desired
in such a manner that, on average over one sampling interval,
the power as requested by uk is injected. Recall that the input
u(t) in (6) can contain at most only one nonzero element.
However, due to the high steering frequency with respect to
the slow sampling and system dynamics, the input in (6) can

be well approximated using a zero-order hold (ZOH) given by
u(t) = uk for tk + T0 ≤ t < tk+1 + T0 (note the shift of the
interval by T0 due to the computation/communication delay),
where uk may contain more than one nonzero element.

Finally, in temporally discretizing the continuous-time
dynamics (6) to obtain the controller state-space models,
we account for the delay T0 without increasing the compu-
tational complexity of the numerical optimization in MPC.
That is, we first compute the prediction sequence’s initial
conditions x0|k, d0|k ∈ R

nx , representing the predicted state and
disturbance at time tk +T0, and then synchronize the prediction
instants ti|k , i, k ∈ N, in the MPC horizon with the (future)
time instants tk+i = tk+T0+i Ts at which the control inputs will
be updated, as shown in Fig. 5. As a result, a state update using
the prediction model derived in Section IV-C requires only a
single input value, as opposed to two in case the predictions
and controls were not synchronized.

C. Prediction Model

As discussed in Section IV-B, the discrete-time state-space
prediction model is then given by

xi+1|k = Axi|k + Bui|k + Bddi|k (7a)

di+1|k = di|k (7b)

yi|k = xi|k (7c)

where xi|k, di|k, yi|k ∈ R
nx and ui|k ∈ R

nu denote the predicted
states, disturbance, outputs, and control inputs, respectively,
at i ∈ N time steps ahead of the prediction sequence’s
starting time k ∈ N. Note that we assume the disturbance
to be constant over the prediction horizon and that we do not
incorporate measurement noise in the prediction model since
(approximately) E(vk) = 0. Here, we use the forward Euler
method to temporally discretize (6), i.e., A = Inx +Ts Ac, B =
Ts Bc, and Bd = Ts Inx , as this fully preserves the sparseness
present in the continuous-time state-space matrices, which
is crucial to reduce the computation time of the numerical
optimization step in the MPC, while also yielding sufficient
predictive accuracy. In particular, for the considered system,
this yields a (numerically) stable approximation for 0 < Ts <
−2/λ(Ac) = 8.35 s (where we use the fact that all eigenvalues
of Ac are real and negative and where λ(Ac) < 0 denotes
the most negative eigenvalue of Ac), and when simulating
entire treatments given typical input trajectories for Ts = 3.7 s,
it induces an approximation error in the order of 0.01 ◦C in
steady state and at most around 0.1 ◦C during the transient.
Moreover, note that since we have synchronized the time
instants of input application and state prediction, (7a) indeed
contains only a single control input term, which is beneficial
for computation time.

In addition to (7), we derive the model that computes the
prediction’s initial conditions as shown in Fig. 5, which is
given by

x0|k = A0 x̂k + B0uk−1 + Bd,0d̂k (8a)

d0|k = d̂k . (8b)

Since these need only be computed once before numerical
optimization, matrix sparseness is of negligible importance.
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To avoid numerical approximation errors, we obtain the
matrices by exact discretization using A0 = eT0 Ac , B0 =∫ T0

0 eAcτ dτ Bc, and Bd,0 = ∫ T0

0 eAcτ dτ , of which the latter two
expressions exploit ZOH on the corresponding (disturbance)
inputs.

D. State and Disturbance Estimation

We use an observer to obtain temperature estimates in which
the effects of measurement noise are reduced with respect to
the MR thermometry readings and to identify the disturbance
that captures the offset induced by plant-model mismatch. The
state and disturbance estimator is given by

x̂k = x̂−
k + Lx(yk − ŷ−

k ) (9a)

d̂k = d̂k−1 + Ld(yk − ŷ−
k ) (9b)

where

ŷ−
k = x̂−

k = Âx̂k−1 + B̂1uk−1 + B̂2uk−2 + B̂d d̂k−1 (9c)

denote the model-based output and state estimates at time k
before applying the measurement-based correction to obtain
x̂k . For the same reasons as for (8), the observer model’s
discrete-time matrices are derived by exact discretization of
(6) as given by Â = eTs Ac , B̂1 = ∫ Ts −T0

0 eAcτ dτ Bc, B̂2 =∫ Ts

Ts−T0
eAcτ dτ Bc, and B̂d = ∫ Ts

0 eAcτ dτ , where the expressions
for B̂1 and B̂2 again follow from the fact that we use ZOH on
the inputs (see also [32]).

We use [25, Proposition 1] to verify the observability of
the augmented discrete-time state-space model on which the
observer is based (i.e., (9) with Lx = Ld = 0), which is
derived using the disturbance model (6). That is, we first
verify that the nominal system (excluding the disturbance)
is observable due to the full (noisy) state measurement (5b).
Second, we evaluate the rank condition in [25, Proposition 1],
for which in our case, it holds that

rank

[
I − Â − B̂d

I 0

]
= 2n (10)

from which we conclude the augmented model to be observ-
able. Consequently, an asymptotically stable estimator is
known to exist for the proposed disturbance model. This
property also guarantees that for a stable closed-loop system,
a feasible steady-state setpoint, and constant disturbances,
there will be zero offset between the realized and desired
temperature distributions in case no constraints are active at
steady state (see [33, Th. 1]).

By observability of the augmented model, Lx and Ld can in
principle be used for arbitrary pole placement of the estima-
tion error system resulting from (9). However, determining
the observer gains using exact pole placement methods or
computing them as the Kalman gains typically results in
a prohibitively large computational burden due to the large
augmented state dimension 2nx = 3872. Therefore, we set
Lx to be a diagonal matrix instead, which, due to yk in (5b)
being the noisy full state measurement, is a practical solution
with good performance for reducing the propagation of noise
into the state estimate x̂k . Similarly, we set Ld diagonal
to achieve low-pass filtering of the measured plant-model

Fig. 6. Schematic cross section of the temperature objectives corresponding
to the circular regions R and S centered at the transducer axis. The maximum
violations ε and ε are shown for some overheated and underheated temperature
distributions such that T1 ≤ T + ε and T2 ≥ T − ε.

mismatch, which is possible since d̂k is chosen to contain
an estimate of the constant and low-frequency mismatch for
each state element individually. Using a polyacrylamide tissue-
mimicking phantom as in [34], but with the ink replaced by
water, the matrices have been tuned experimentally, resulting
in

Lx = 0.25Inx , Ld = 0.01Inx (11)

which yield desirable estimator behavior with stable closed-
loop poles.

E. Cost Function

The temperature objectives have been discussed in
Section II-C and are schematically depicted in Fig. 6 in cross-
section perspective. The concentric circular regions R and S
inside the patient domain �, for which it holds that R ⊂ S ⊂
�, denote the ROI and the region outside of which healthy
tissue must be safeguarded from overheating, respectively.
T : R → R and T : � → R represent the location-dependent
(desired) lower and upper temperature bounds, respectively,
defining the desired temperature range (green). Underheating
and overheating occur for temperatures within the (light) blue
and (light) red areas in the figure, respectively. T is nonzero
and defined only within R, where sufficient heating is desired.
T features an elevated plateau on S, preventing reversal of the
temperature-dependent mechanisms due to overheating, and
has a lower value on �\S to protect healthy tissue. Within the
aforementioned temperature range, optimal treatment efficacy
is achieved when a flat temperature distribution is realized
in the ROI, which is described by the reference temperature
Tr : R → R.

To formulate these objectives mathematically, let us denote
the nz < nx elements of xk corresponding to a point within
R by zk = H xk ∈ R

nz , where H ∈ {0, 1}nz×nx is a matrix
with one 1 in each row (and at most one 1 per column).
Furthermore, let zr ∈ R

nz , z ∈ R
nz , and x ∈ R

nx denote the
voxel-wise temperature elevation reference, lower bound, and
upper bound corresponding to the values of Tr , T , and T on the
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discrete voxel locations, respectively. This allows for the ROI
voxel temperature deviations with respect to the reference to be
given by zk − zr . The maximum violations of the temperature
bounds are defined by εk = ε(xk) = 	max{xk − x, 0nx }	∞ ∈
R≥0 and εk = ε(zk) = 	max{z − zk, 0nz }	∞ ∈ R≥0, where 0n

denotes a zero vector of length n and the maximum operator is
used elementwise, and are collected in εk = [εk εk]� ∈ R

nε

≥0,
nε = 2.

The cost function is given by

VN (zk, εk) =
N∑

i=0

�(zi|k, εi|k) (12)

where zk = (z0|k, . . . , zN |k) is the sequence of predicted
performance variables zi|k = H xi|k at time instant k ∈ N,
and similarly, εk = (ε0|k, . . . , εN |k) is the prediction sequence
of the slack variable vector εi|k = [εi|k εi|k]�. The stage cost
is given by

�(zi|k, εi|k) = (zi|k − zr )
�Q(zi|k − zr ) + f �

ε εi|k (13)

where Q is a positive-definite weighting matrix and fε ∈ R
2
>0.

The critical importance of achieving temperatures within the
desired range T ≤ T ≤ T is expressed by using a linear
penalty on ε such that its contribution to the cost does not
vanish quadratically when approaching zero. In addition, the
weighting in fε is typically chosen relatively high compared
to the weighting in Q such that any (significant) violation
of the temperature range will be the dominant component of
the cost. When the soft constraints are (nearly) satisfied, i.e.,
when εk ≈ 0, the contribution of the quadratic term will be
dominant, enforcing temperature tracking of the voxels within
the ROI to the optimal treatment temperature Tr .

Although it is a natural choice to use slack variables and soft
constraints to incorporate the desire for temperatures within
the range T ≤ T ≤ T in the cost function, the manner in
which these are implemented deserves considerable attention.
We choose to penalize the ROI voxels’ magnitudewise largest
violations using the ∞-norm, as opposed to introducing a slack
variable for each voxel individually and using a penalty on
the 1-norm of all slack variables. Compared with the latter,
the former has two main advantages. First, it requires only
two slack variables per predicted time step (one for the upper
bound and one for the lower bound) compared to 2nx slack
variables per time step (nx per bound), thereby introducing
less complexity in the MPC optimization problem. Second,
it yields superior temperature homogeneity, which is desirable
from a clinical point of view. Although this effect is important
during the entire treatment, it is especially visible during the
initial heat-up phase, and hence, we will use this interval to
illustrate the behavioral advantage of the ∞-norm approach.
To this end, compare the temperature cross sections in Fig. 7(a)
obtained through simulation with vk = 0 using the ∞-norm to
those in Fig. 7(b) corresponding to using the 1-norm. In the
former, relatively more heating is applied toward the edge of
the ROI, where the temperature is naturally lowest due to
outward heat diffusion, leading to a more uniform temperature
distribution within the ROI (gray area), whereas in Fig. 7(b),
a much larger difference exists between the maximum ROI

Fig. 7. Evolution of the voxel temperatures (×, •, and �) of the cross section
at ry = 0 m during heat-up when using (a) an ∞-norm penalty, (b) a 1-norm
penalty, and (c) no penalty on the slack variables, at the time instants indicated
in (d) (dotted), alongside the ROI (gray area), and the temperature range’s
upper and lower bounds (dashed line) and setpoint temperature (dashed–dotted
line). In (d), the difference between the maximum (�) and minimum (•)
temperature in the ROI is shown for all cases.

voxel temperatures (�) and the minima at the ROI edge (•).
In addition, in Fig. 7(c), we show the temperature profiles
obtained when omitting the slack variable penalty altogether,
i.e., when using (13) with fε = 0. Besides lacking the

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on October 17,2021 at 17:23:58 UTC from IEEE Xplore.  Restrictions apply. 



2358 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 29, NO. 6, NOVEMBER 2021

ability to explicitly counteract temperatures outside the desired
range, using fε = 0 results in similar heat-up behavior as
with the 1-norm approach. Finally, in Fig. 7(d), it is clear
to see that the resulting temperature range inside the ROI
is significantly narrower during heat-up when including the
cost on the uniform lower bound following from the ∞-norm
penalty (and even also slightly better directly thereafter), from
which we conclude that using the ∞-norm penalty is indeed
the most favorable of the considered options.

F. Optimization Problem

The control objective can now be formulated as the con-
strained optimization problem

min
uk

VN (zk, εk) (14a)

where uk = (u0|k, . . . , uN−1|k), subject to

xi+1|k = Axi|k + Bui|k + Bddi|k, ∀ i ∈ N[0,N−1] (14b)

di+1|k = di|k, ∀ i ∈ N[0,N−1] (14c)

x0|k = A0 x̂k + B0uk−1 + Bd,0d̂k (14d)

d0|k = d̂k (14e)

zi|k ≥ z − 1nz εi|k, ∀ i ∈ N[0,N ] (14f)

xi|k ≤ x + 1nx εi|k, ∀ i ∈ N[0,N ] (14g)

0nε
≤ εi|k, ∀ i ∈ N[0,N ] (14h)

0nu ≤ ui|k ≤ 1nu u, ∀ i ∈ N[0,N−1] (14i)

1�
nu

ui|k ≤ u
, ∀ i ∈ N[0,N−1] (14j)

where N[a,b] = {a, a + 1, . . . , b}, a, b ∈ N and a ≤ b, denotes
the set of natural numbers from a through b, and 1n represents
an all-ones vector of length n. Equality constraints (14b) and
(14c) ensure satisfaction of the dynamics according to (7),
with the prediction sequence’s initial conditions given by (14d)
and (14e) corresponding to (8). Inequalities (14f) and (14g)
capture the temperature bounds as soft constraints using the
slack variables bounded from below in (14h). Finally, (14i)
and (14j) describe the actuator constraints, where u = 15 W
and u
 = 60 W are the maximum allowable power applied
to a single sonication point and to the entire treatment region,
respectively.

Furthermore, a horizon of N = 5 is used, and for the
weights, we choose

Q = 1

nz
I, fε =

[
10

100

]
(15)

which are normalized with respect to the number of corre-
sponding variables (note that ε and ε are scalar) for more
intuitive balancing of the objectives’ relative contribution to
the cost function.

We choose to incorporate the desired temperature range
objective as soft constraints to prevent the optimization prob-
lem from becoming infeasible, as proper controller operation
is crucial for patient safety and treatment quality. Note that
this is of particular importance for the considered application,
as the minimum temperature bound will be directly violated
during heat-up. In addition, violations may occur as a result
of unexpected heat sinks or sources, or due to measurement

artifacts that may occur in MR-based thermometry due to
patient motion or magnetic field drift.

Remark 1: The stage cost (13) is improved with respect
to [27] by excluding the cost on the predicted input power
ui|k . That is, removing this penalty slightly increases control
effort, but consequently also removes the associated downward
shift of the tumor temperature away from the reference zr .
This is desirable for hyperthermia treatments, where achieving
optimal tumor temperatures, and thereby optimal treatment
quality, is of the utmost importance, in comparison to which
the desire to reduce the control energy is negligible. In addi-
tion, note that the control effort is, in fact, upper bounded by
the hard input constraints (14i) and (14j). Similarly, we chose
not to include an input rate penalty in (13), since reducing
changes in the input signal is also of little to no importance
compared to the temperature objectives. Moreover, the input
oscillations resulting from the propagation of noise into the
state and disturbance estimates are reduced to a negligi-
ble level by adequate filtering in the observer, as will be
shown in Fig. 11 in the upcoming discussion of the in vivo
experiment.

Remark 2: The cost function (12) describes an economic
cost, as the setpoint zr does not correspond to a reachable
steady-state solution of the considered system (7). This is
due to the combination of the ROI radius being equal to
the lateral range using electronic beam steering, meaning that
all sonication points are inside the ROI, the finitely narrow
power deposition in (4), and the fact that the nonnegativity
constraints on the inputs (14i) are active at steady state. As a
result, although having satisfied (10), we cannot guarantee
that zk → zr for k → ∞. Instead, using the fact that
the estimator is asymptotically stable and the disturbances
are (nearly) constant, we only claim to be able to remove the
part of the steady-state offset resulting from the plant-model
mismatch, recovering the performance as optimally achievable
without modeling error. An alternative approach would be to
formulate the objective as a tracking problem with respect to a
feasible steady-state setpoint. To this end, a target selector as
discussed in [35] and [36] could be used to determine the
economically optimal steady state and corresponding input
(x∗

s , u∗
s ) as a function of the current disturbance estimate by

solving at each time k

(x∗
s , u∗

s ) = arg min
xs ,us

�(zs, εs) (16)

with zs = H xs and εs = [ε(zs), ε(xs)]�, subject to

[
I − A − B

][xs

us

]
= Bd d̂k (17)

and inequality constraints similar to (14f)–(14j). However,
such a setup has been observed to deteriorate performance
compared with the current design during the transient of d̂k

and in the presence of measurement noise, while yielding at
best similar performance after convergence of the disturbance
estimate (see also [37]). In addition, this increases com-
plexity (and thereby computation time), which is particularly
unwanted in the clinic, where any additional complexity is
regarded as a potential source of errors. We have, therefore,
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chosen to omit such a target selector and instead optimize the
economic cost in (12) directly.

V. IN VIVO EXPERIMENTS

In this section, the experimental results obtained on an
in vivo porcine thigh muscle are presented to demonstrate
the effectiveness of the designed feedback control setup for
removing the part of the treatment temperature steady-state
offset caused by plant-model mismatch.

A. Implementation

The MR-HIFU system, consisting of the combination of
an MRI scanner and a dedicated HIFU therapy platform,
has been discussed in Sections II-A and II-B. The MPC
and estimator algorithms were implemented in MATLAB
2017b and executed in real time using Python 2.7 via the
MATLAB engine API, running on an HP Z800 Workstation
with Intel Xeon X5650 CPU at 2.67 GHz and 12 GB RAM.
The communication with the MR-HIFU system was achieved
using the matMRI and matHIFU toolboxes [38]. For fast
numerical optimization, we used Gurobi 7.0.2 to solve a sparse
formulation of the MPC problem (14), which after comparative
testing with a dense formulation was concluded to result in
significantly smaller computation times.

In particular, the solver times recorded during the experi-
ments were fairly consistent, averaging at approximately 0.26 s
when the disturbance estimator was disabled, i.e., when run-
ning MPC without offset-free capabilities, and around 0.33 s
for the offset-free MPC (14). Since the computation time of
the observer (9) is negligible (≤5 ms in both cases), this
difference illustrates the additional computation time associ-
ated with using an offset-free approach. Recalling that the
sample time is Ts = 3.7 s, we find that the resulting
computation times for both MPC strategies are still well within
the bounds for real-time implementation. Given the significant
performance improvement demonstrated by the experimental
results shown next, this strongly motivates the offset-free MPC
approach.

B. Tissue Parameters

Using our proposed approach, we assume the treatment area
to have homogeneous tissue properties and rely on the dis-
turbance estimator to identify the effects of (inhomogeneous)
parameter error. Baseline values for the relevant muscle tissue
parameters have been obtained from the IT’IS Foundation
database [39], which have then been slightly adapted according
to the identification procedure in [21] based on low-power test
sonications. For the thermal model equations (2)–(4), from
which the continuous-time state-space model (6) and in turn
the discrete-time controller and observer models (7)–(9) are
derived, however, we have intentionally introduced additional
parameter mismatch that results in a negative temperature
offset in closed loop. In particular, corresponding to the obser-
vations in [21], this is achieved by underestimating the thermal
conductivity κ in (2) and overestimating the acoustic energy
absorption coefficient α in (4), resulting in the parameters

TABLE I

TISSUE PARAMETERS

listed in Table I, and a plant-model mismatch as visualized
in the Appendix by an open-loop model validation.

This is done for two reasons. First, for the purpose of this
article, it allows for a better illustration of the controller’s
ability to achieve the desired treatment temperature despite
significant model error. Second, although any plant-model
mismatch is obviously undesirable in general, in case it is
inevitable due to large model uncertainty, for patient safety it is
preferred to have a model bias toward underheating instead of
toward overheating. That is, in case of the former, no harm
is unintentionally inflicted to the tissue, and, after proper
identification of the mismatch, increasing the sonication power
will directly contribute to achieving the desired temperature.
Contrarily, overheating the tissue may induce hyperthermic
reversal effects detrimental to treatment success or directly
cause unwanted tissue damage and, after identification, cannot
be actively counteracted using HIFU (as expressed by the
nonnegativity constraints on the inputs uk ≥ 0).

C. Initial Disturbance Estimator Inactivity

In line with the desire to demonstrate the benefits of
using the proposed offset-free implementation, the disturbance
estimator is disabled during the initial heat-up phase by setting
d̂k = 0 and Ld = 0 for all k ∈ N corresponding to tk < 180 s.
This is, however, also desirable from a clinical point of view,
as hereby we avoid a potential and unnecessarily large build-
up of d̂k that would otherwise lead to increased temperature
overshoot or undershoot, see Remark 3.

Remark 3: Initially disabling the disturbance estimator is
especially useful in case of a mismatch in the input matrix Bc

in (6) (from which the observer and controller input matrices
are derived), e.g., resulting from an incorrect value for the
acoustic absorption coefficient α, combined with rapid and
substantial changes in the input uk such as typically occurring
in the transient behavior during heat-up (especially when
transitioning from heat-up toward steady state). This effect is
due to two reasons. First, a model error in Bc is multiplicative
in nature, whereas we use an additive disturbance in the
augmented model (6) and corresponding observer (9). Second,
our disturbance estimator (9) is designed to estimate steady-
state (or slowly varying) errors, while the input uk (and thus
the mismatch in the terms B̂i uk , i = 1, 2) can vary rapidly.
Although this could possibly be tackled by using different
disturbance models or a more sophisticated adaptive controller
including online parameter estimation, in the context of MR-
HIFU hyperthermia the resulting performance improvement is
believed to be minor for the following reasons. First of all, due
to its general form, the design proposed in this work is able
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Fig. 8. Sagittal focal plane MR image of the porcine right thigh area,
ranging from halfway the abdomen (cranial) to the ankle (caudal), indicating
the location of the ROI (red circle).

to fully capture the effects of any constant or slowly varying
model mismatch and disturbance in steady state, rather than
only specific types of model errors. Furthermore, our control
setup already achieves heat-up times of less than 1 min, which
is short with respect to the envisioned 90-min treatment time,
after which the disturbance estimator can be enabled. In fact,
the maximum power limit is already typically reached during
heat-up, indicating that there is relatively not much room for
shortening the heat-up phase.

D. Results

To test the performance of the developed offset-free con-
troller and observer setup under realistic clinical conditions,
experiments have been conducted on an in vivo porcine thigh
muscle. The focal plane MR image is shown in Fig. 8,
indicating the treatment area (green) and ROI (red). We set
rx = ry = 0 m at the center of the ROI, with positive rx - and
ry-axis directions toward the ventral (belly) and cranial (head)
side, respectively. In Fig. 9, the results of a 30-min MR-HIFU
hyperthermia treatment are presented. Note that the baseline
body/blood temperature of the treated pig was Tb ≈ 38 ◦C. The
mean (solid line) and minimum/maximum (dashed line) voxel
temperatures are shown corresponding to, with a temperature
shift of Tb, both the state estimate in the ROI ẑk = H x̂k

(black thick line) and the measurement in the ROI zy,k = H yk

(red thin line), together with the ROI’s reference temperature
Tr and lower and upper bounds of the desired temperature
range T and T , respectively. The disturbance estimator is
disabled for tk < 180 s indicated by the gray area. In Fig. 9(a),
the temperature indicators are given for the full length of
the treatment, showing that after heat-up and disturbance
estimator convergence, the entire ROI is heated to within the
desired temperature range, with the mean temperature settling

Fig. 9. Mean (solid line) and minimum/maximum (black dashed line) voxel
temperatures of the ROI corresponding to the measurements zy,k = H yk (red
thin line) and state estimates ẑk = H x̂k (black thick line) with the disturbance
estimator disabled for t < 180 s (gray area), shown for (a) the entire experi-
ment and (b) zoomed in on the first 400 s of the experiment [dotted rectangle
in (a)].

at Tr . Moreover, it illustrates the benefit of using a model-
based observer to obtain temperature estimates that contain
significantly reduced noise effects compared to the corrupted
measurements.

Closer inspection of the interval where 0 ≤ tk ≤ 400 s
in Fig. 9(b) reveals the effect of the existing plant-model
mismatch on the treatment temperature in closed loop. Due
to the overestimation of the achievable temperature increase,
it appears from the observer as if the minimum ROI tempera-
ture has exceeded the desired 41 ◦C at tk ≈ 26 s, whereas the
measured (noisy) minimum ROI temperature is around 39.7 ◦C
at this time. It can also be seen that with the disturbance
estimator disabled, the modeling error results in a discrepancy
between the measured and estimated temperatures that settles
around 0.3 ◦C on average at t = 180 s. Consequently,
a negative mean temperature offset of almost 0.5 ◦C can be
observed, assuming that the effect of vk on the mean of zy,k

is sufficiently suppressed by averaging and, therefore, zy,k

is representative of the actual mean ROI temperature. After
activating the disturbance estimator, i.e., setting Ld = 0.01Inx

as defined in (11) for tk ≥ 180 s, the state and disturbance
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Fig. 10. The 7-sample averaged temperature cross sections at rx =
0 m corresponding to ¯̂x (black ◦) and the measurement ȳ (red ×) with
corresponding 2σ confidence intervals (red/gray areas) when the disturbance
estimator is (a) inactive over the interval 154 ≤ tk ≤ 180 s, and (b) active
during 374 ≤ tk ≤ 400 s, alongside the T and T (dashed black) and Tr
(dash-dotted black).

estimates converge within approximately 1 min, allowing
for the feedback setup to achieve the desired temperature
distribution, as would typically be the result in case of no
model error.

Temperature cross sections at rx = 0 m, i.e., through the
center of the ROI in the rx -direction, are shown in Fig. 10
corresponding to the averages of the state estimate ¯̂x (black ◦)
and measurement ȳ (red ×) over the seven-sample intervals
154 ≤ tk ≤ 180 s [see Fig. 10(a)] and 374 ≤ tk ≤ 400 s
[see Fig. 10(b)], together with the corresponding 2σx and
2σy confidence intervals (gray/red areas), where σx̂ and σy

denote the standard deviations over the corresponding seven-
sample intervals. The values shown in Fig. 10(a) correspond
to the last seven samples before activating the disturbance
estimator for tk ≥ 180 s. First of all, the confidence intervals
illustrate the need for an observer, as the measurements yk

clearly suffer from noise effects, whereas these are filtered
down to a negligible level in the estimates x̂k . Second, a clear
discrepancy can be observed between ¯̂x and ȳ, particularly
in the ROI where heat loss effects are most strongly present,
indicating an offset between x̂k and yk , which is the result of

Fig. 11. Total input power per time step with the disturbance estimator
disabled for t < 180 s (gray area).

plant-model mismatch. The results over the last seven samples
before tk ≈ 400 s, shown in Fig. 10(b), exemplify the offset-
free implementation’s ability to enable the convergence of the
estimator and enforce the desired heating behavior.

The corresponding total input power per time step is shown
in Fig. 11. The benefit of using an observer, reducing the
propagation of noise effects into the control input, is expressed
in the small magnitude of the power fluctuations occurring dur-
ing the treatment. The figure also clearly visualizes the large
acoustic power required for initial heat-up limited only by the
input constraint (14j), and the increased power demand after
activating the disturbance estimation that eventually brings the
tissue in the ROI to its desired temperature. Interestingly, the
requested sonication power in this experiment also exhibits a
steady increase for tk ≥ 800 s during which the tissue temper-
ature does not significantly change. This is most likely due to
the tissue’s thermoregulatory response, increasing perfusion
when having been exposed to elevated temperatures for an
extended period of time, as will be discussed in more detail in
Section V-E. This clearly demonstrates the controller’s ability
to maintain optimal performance also in the presence of slowly
varying model mismatch.

Possibly even more remarkable, however, is that the power
increase can be observed to be seemingly linear. This is of
special importance for medical science since measuring and
modeling the transient behavior of the body’s thermoregu-
latory response to thermal stress has proved to be difficult
[24]. By providing the means for accurately controlling the
hyperthermic conditions and identifying tissue changes, our
controller may serve as an enabler for research into better
physiological tissue models.

E. Spatially and Temporally Varying Disturbance Estimation

For the considered experiment, the ROI contained signif-
icantly vascularized tissue, as can be seen from the focal
plane MR image shown in Fig. 12, which corresponds to the
area marked in Fig. 8 (green box). The outer edges of the
ROI R and the area including the surrounding tissue S are
marked by the red solid circle and the black dashed circle,
respectively. Tissue areas with stronger perfusion, typically
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Fig. 12. MR image of the treatment area (green box in Fig. 8), highlighting
the intensity of the vascularization (grayscale) in and around the ROI R (red
circle) and S (dashed black circle).

Fig. 13. Estimated voxel-wise temperature mismatch B̂d d̂k at time (a) tk ≈
800 s and (b) tk ≈ 1800 s for the tissue area containing the ROI R (red solid
circle) and S (black dashed circle).

containing networks of small blood vessels and the tissue in
their vicinity, are visualized in darker gray. In Fig. 13, the
estimated voxel-wise temperature mismatch B̂d d̂k is shown
for two different time instants. In addition, the subfigures
herein also include the MR image in the background (gray,
with increased contrast for visibility). Both Fig. 13(a) and (b)

Fig. 14. Heating Buk at tk ≈ 1800 s for the tissue area containing the ROI R
(solid red circle) and S (black dashed circle). Active sonication points (green
dots) are distinguished from inactive sonication points (black dots). For the
former, the relative magnitude of the applied acoustic power is indicated by
the radius of the corresponding green circle.

illustrate that the proposed disturbance estimator is able to
capture spatially varying model discrepancies. Moreover, when
comparing the temperature mismatch estimate before the input
power increases at tk ≈ 800 s in Fig. 13(a) to the estimated
mismatch at tk ≈ 1800 s in Fig. 13(b), it is clear to see
that the estimated local heat loss has increased in some
areas, demonstrating the estimator’s ability to identify model
mismatches that (slowly) change over time.

Especially inside the ROI, where heating is applied and,
consequently, the temperature is elevated, negative values for
the estimated temperature mismatch (cyan/blue) can be seen
to largely coincide with the more strongly perfused tissue
(gray). Also, at the edge of and outside the ROI, a striking
spatial correlation can be observed, most notably so in the
areas around the coordinates (−0.01, 0.003), (0.004,−0.008),
and (0.007, 0.006). In the regions outside the ROI where
neither sonication occurs, and thereby modeling errors in the
overestimated B are not expressed, nor significant perfusion
is present, the disturbance estimate mostly takes on small
positive values (yellow). This is the result of the estimator
identifying the effects of underestimating the thermal conduc-
tivity κ , by which more heat is transported outward from the
ROI than expected by the nominal model.

In Fig. 14, a spatial resemblance can also be observed
between the disturbance estimate and the heating that is
applied using this value for d̂k at time tk ≈ 1800 s. Here, the
active and inactive sonication points (green and black dots,
respectively) are shown inside the ROI (solid red circle). The
radii of the green circles drawn around the active sonication
points represent the relative magnitude of the applied acoustic
power. The resulting spatial distribution of Buk and the active
sonication points can be seen to correspond well to the
highlighted tissue in Fig. 12 and the temperature mismatch
in Fig. 13(b).

From this, we draw several conclusions. First, neglect-
ing perfusion in (2) may indeed be the cause of signifi-
cant unmodeled spatially varying heat loss when the ROI
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contains (considerably) vascularized tissue. Second, the effects
of perfusion increasing over time due to the body’s ther-
moregulatory response can be of sufficient magnitude to
require an increasing steady-state power demand, as shown
in Fig. 11. Next, note that although the identified heat loss
shows an obvious similarity to the MR perfusion image,
it is not an exact match. In addition, relating the MR image
to the magnitude of the perfusion-related heat loss is not
straightforward. In fact, even the relative magnitude of these
effects does not exactly correspond to the MRI data, as shown
in Fig. 13(b) by the disturbance estimates at (−0.001,−0.005)
and (−0.002, 0.002) being larger in magnitude than the esti-
mate at (−0.001, 0.008), whereas from Fig. 12 the latter area
is seen to be most strongly perfused. Therefore, we conclude
that accurately modeling the thermal effects of perfusion a
priori based on an MR image as in Fig. 12 may be considered
as extremely difficult, even more so due to the unavailability
of extensive model identification (as previously mentioned).
These conclusions motivate our offset-free MPC approach,
involving the use of a simple homogeneous thermal model
(2) and incorporating a disturbance estimator to allow for
the identification and compensation of the potentially time-,
space-, and temperature-dependent unmodeled thermal effects.

VI. CONCLUSION

In this article, an offset-free MPC scheme is presented to
enhance the performance and robustness in temperature control
using an MR-HIFU hyperthermia system for cancer treatment.
Since plant-model mismatch inevitably occurs when treating
different patients and tumors, and accurate thermal modeling
is impracticable for MR-HIFU hyperthermia, we propose to
assume a simple model with homogeneous tissue properties
and (near) database parameter values, and then include a
disturbance estimator to cope with the resulting model mis-
match. We showed that this estimator is able to identify the
effects of constant and slowly varying modeling errors (and
disturbances), enabling the controller to eliminate the steady-
state offset otherwise resulting from such errors. By means
of experiments on the thigh muscle of a living anesthetized
pig using a clinical MR-HIFU system, we have verified the
feedback setup’s effectiveness in terms of recovering optimal
treatment temperatures despite the presence of realistic plant-
model mismatch.

APPENDIX

OPEN-LOOP MODEL VALIDATION

The plant-model mismatch in the in vivo experiment is
visualized by feeding the inputs applied during the experiment,
of which the total power is shown in Fig. 11, to the nominal
model (5) in open loop. The nominal model’s resulting min-
imum/maximum (dashed line) and mean (solid line) tumor
temperatures are shown in Fig. 15 (red line), and compared to
the thermal response of the porcine thigh muscle measured
during the experiment (black line). Clearly, there exists a
severe mismatch, which, in addition, can be seen to grow
over time due to the increased perfusion caused by the
body’s thermoregulatory response (see also Figs. 11 and 14).

Fig. 15. Mean (solid line) and minimum/maximum (dashed line) voxel
temperatures of the ROI corresponding to the experiment measurements (black
line) and generated by the nominal model (red line) when supplied with the
inputs applied during the in vivo experiments. The gray background indicates
when the disturbance estimator was disabled during the in vivo experiments.

This illustrates the degree of model error that our offset-free
MPC was able to compensate for during the in vivo experiment
(see Fig. 9).
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