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We study the notion of passivity in the context of
complementarity systems, which form a class of
nonsmooth dynamical systems that is obtained from
the coupling of a standard input/output system to
complementarity conditions as used in mathematical
programming. In terms of electrical circuits, the
systems that we studv may be viewed as passive
networks with ideal diodes. Extending results from
earlier work, we consider here complementarity sys-
tems with external inputs. It is shown that the
assumption of passivity of the underlyving inputjoutput
dynamical system plays an important role in establish-
ing existence and uniqueness of solutions. We prove
that solutions may contain delta functions but no
higher-order impulses. Several characterizations are
provided for the state jumps that may occur due to
inconsistent initialization or to input discontinuities.
Many of the results still hold when the assumption of
passivity is replaced by the assumption of “passifia-
bility by pole shifting”. The paper ends with some
remarks on stability.
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1. Introduction

In this paper we study implications of the notion
of passivity in the context of the class of linear
complementarity systems. This class consists of non-
smooth dynamical systems that are obtained in the
following way. Take a standard linear input/output
system. Select a number of input/output pairs (i, ),
and impose for each of these pairs that at each time ¢
both u(t) and y{r) must be nonnegative, and at least
one of them should be zero. Such “complementarity
conditions” are well-known in mathematical pro-
gramming, although not usually in combination with
differential equations; they arise for instance in the
Kuhn—Tucker conditions for optimality. In the con-
text of electrical circuits, imposing complementarity
conditions simply means that some ports are termi-
nated by ideal diodes. This analogy already suggests
that one should obtain a well-defined dynamical
system under suitable assumptions. It is shown in this
paper that passivity of the original input/output
dynamical systems (before the complementarity con-
ditions are imposed) plays an important role in
establishing existence and uniqueness of solutions.
Associated to each complementarity pair (u;, y;)
there is a choice between the two situations w;=0,
¥z 0 and y;=0, u;>0 that are allowed by the
complementarity conditions. In mathematical
programming terms, constraints may be binding or
non-binding; in electrical network terms, diodes
may be conducting or blocking. If there are m
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complementarity conditions, there are m of these
binary choices and so in total we have 2" different
“modes”. The systems that we consider are char-
acterized by periods of smooth evolution in a fixed
mode, separated from each other by “event times”
where a change of mode takes place. Such evolution
patterns are typical of hvbrid systems which have
drawn much attention recently [31].

The fact that events occur also means that we have
to take into account the possibility of impulsive
behavior caused by the presence of inconsistent initial
states or of discontinuities in external inputs. In this
paper we limit ourselves to linear underlying dynamics
and we use the language of distribution theory to deal
with impulses. One of the purposes of the paper is to
establish the orders of impulses that may arise in
linear passive complementarity systems. It is shown
that in such systems, under the assumption that the
external inputs do not contain impulses themselves, at
most first-order delta distributions can occur.

The class of linear complementarity systems was
introduced in [29] and has been further studied in
a series of papers [6,7,14,15,18,30]. A standard
assumption in these papers has been that &/l input—
output pairs are connected through complementarity
conditions, so that a “closed” dynamical system
is obtained. These closed (sometimes also called
“autonomous”) systems can still be studied by
methods from the theory of input/output systems,
because of the way they have been constructed, but
they do not specify themselves an input/output
relation. In this paper, we consider complementarity
systems that do have external inputs and outputs and
that therefore do specify input/output relations.

To start the study of linear complementarity
systems with external inputs and outputs, we first need
to establish some results on existence and uniqueness
of solutions. Here, we follow results in [6,13], but some
adjustments need to be made because of the presence
of an external input. It turns out that the assumption
of passivity of the underlying dynamical systems
(before the complementarity conditions are imposed)
is very helpful in establishing well-posedness results.
For further analysis, it is important to have results
available on the degree of nonsmoothness of solu-
tions. Here, we also extend earlier results from [6,13].
While in the autonomous case it has been shown that
there can only be a jump of the state at the initial time,
as a consequence of inconsistent initialization, in the
situation studied in this paper there can be jumps at
arbitrary times, due to input discontinuities. The
solution concept of [6,13] needs to be extended to take
into account the presence of external inputs. As in
[6,13] and in contrast to the more general situation
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considered in [15], due to the passivity assumption the
computation of the jump does not require prior
computation of the continuation mode. For many of
the results that we obtain the passivity assumption
may be weakened to the assumption of passifiability
by pole shifting (PPS). As far as we are aware, the PPS
property has not been introduced in the literature
before. )

The paper is structured as follows. After a preli-
minary section, linear complementarity systems are
motivated by a network example in Section 3 and
formally defined in Section 4. The solution concept
that we use for complementarity systems is subse-
quently built up by considering first “initial solutions”
(solutions between two events) in Section 5 and pre-
senting existence and uniqueness results for these
(Section 6), and then continuing towards global
solutions (Section 7). Sections 8§ and 9 are concerned
with the conditions under which a state jump occurs,
and with the computation of the jump in case one
occurs. Several jump characterizations are provided.
The notion of passifiability by pole shifting is intro-
duced in Section 10. The paper ends with remarks on
stability in Section 11.

Some of the results of this paper were announced
before (without proofs, and with an emphasis on the
relevance of the results for simulation) in [12]. We do
not emphasize computational aspects here; let us just
note that the jump characterizations that we provide
are stated in terms of linear complementarity
problems and quadratic programming problems for
which many algorithms have already been developed
in the mathematical programming literature [9,17,19].

2. Preliminaries
2.1. Notation

Throughout the paper, R denotes the real numbers,
R, :=[0,00) the nonnegative real numbers, C the
complex numbers, £2(7T) the square integrable func-
tions on a time-interval (0, T)CR, £‘2°° locally the
square integrable functions and B the Bohl functions
(i.e. continuous functions having rational Laplace
transforms) defined on R ...

The distribution 55') stands for the ith distributional
derivative of the Dirac impulse supported at t. The
dual cone of a nonempty set Q CR" is defined by
Q" ={xeR"x"y >0 for all y € Q}. For a positive
integer m, the set /7 is defined as {1,2,...,m} and 2™
denotes the collection of all subsets of /7. A vector
u € R" is called nonnegative, denoted by u >0, if
u; > 0 for all i € m. This means that inequalities for
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vectors have to be interpreted componentwise. The
orthogonality " y = 0 between two vectors v € R” and
y R is denoted by v L y. For a complex number z,
Re(z) denotes its real part and Z denotes its complex
conjugate. The direct sum of two vector spaces will be
denoted by @&. We say that a proposition P(x) holds
for all sufficiently small (large) x if there exists xo > 0
such that it holds for all 0 < x < xg (xp < X).

Let 4 be a matrix. We write 4; for the (7, /)th
element of 4. The transpose of 4 is denoted by 4.
For JCi, and K C m, Ay, denotes the submatrix
{Ai}jesvex If J=17 (K=m), we also write A.x
(A7,). In order to avoid bulky notation, we use 4
and A7} instead of (47),, and (4,,)"', respectively.
Given two matrices 4 and B (with appropriate sizes),
the matrix obtained by stacking A over B is denoted
by col(4, B). The notation pos 4 is used to indicate
all positive combinations of the columns of 4, i.e.,
pos 4 := {v|v=>_",o;4,; for some o; > 0}. A real matrix
A €R"™" is said to be nonnegative definite (positive
definite) if x"Ax>0 (x'Ax>0) for all 0#xeR"
As usual, we say that a triple (4, B, C) with 4 e R™" is
minimal, when the matrices [B AB--- A" 'B] and
[CTATCT---(47)"~'C™] have full rank.

2.2. Linear Complementarity Problem

We define the linear complementarity problem
LCP(g, M) (see [9] for a survey) with data ¢ € R™ and
M € R™" by the problem of finding z € R"” such that
0 <zl g+ Mz>0. The solution set of LCP(gq, M) will
be denoted by SOL(g, M).

2.3. Passivity of a Linear System

Ever since it was introduced in system theory by
Popov [25,26], the notion of passivity has played an
important role in various contexts such as stability
issues, adaptive control, identification, etc. Particu-
larly, the interest in stability issues led to the theory of
dissipative systems [34] due to Willems. Before going
further, we will quickly recall the notion of passivity as
it is defined in [34].

Consider a continuous-time, linear and time-
invariant system given by

x(1) = Ax(t) + Bu(r), (1a)
»(1) = Cx(1) + Du(t), (1b)
where x(f) e R", u(r) e R”, y(r) € R™ and 4, B, C, and

D are matrices with appropriate sizes. We denote (1)
by X(4, B, C, D).
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A triple (v, x, y) € L (1, 1) is said to be an
Lo-solution on (ty, 1;) of (A4, B, C, D) with the initial
state x; if it satisfies (1a) in the sense of Carathéodory,
i.e., for almost all 1 € (1, 1),

x(t) =xp+ /,[Ax(s) -+ Bu(s)] ds. (2)
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and (1b) holds almost everywhere.

Definition 2.1. The system ¥(A4, B, C, D) given by (1) is
said to be passive (dissipative with respect to the
supply rate u' y) if there exists a function V:R" —R |,
(called a storage function), such that

4]

Vi) + [Ty a2 V), @)
fy

holds for all #, and #; with t; >, and for all L;-

solutions (u, x, ¥) € Ly (19, 11) of £(4, B, C, D).

The inequality (3) is sometimes called the dissipation
inequality. Next, we quote a very well-known char-
acterization of passivity.

Theorem 2.2. [34] Assume that (4, B, C) is minimal.
Let G(s):=D+ C(sI— A)"'B be the transfer matrix
of ¥(4,B,C,D). Then the following statements are
equivalent:

1. The system ¥(4, B, C, D) is passive.
2. The matrix inequalities

K=K'>0 and
ATK+KA KB-CT 0 4)
B'K-C —(D+D"))="

have a solution. _
3. G(s) is positive real, i.e., G(A) +G'(\) > 0 for all
A e C with Re(\) > 0.

Moreover, the following holds:

1. V(x)=(1/2)x"Kx defines a quadratic storage
function if and only if K satisfies the above system
of linear matrix inequalities.

2. All solutions K of (4) are positive definite.

Remark 2.3. Note that minimality assumption is not
needed for the equivalence of 1 and 2.

The equivalence of the statements 2 and 3 is some-
times called the positive real lemma or the Kalman—
Yakubovich—Popov lemma (see e.g. [16, p. 406]).

Similar to the nomenclature “strict positive real-
ness” for transfer matrices as in [33, p. 223}, we will
define strict passivity of ¥(A4, B, C, D). For brevity,
we opt for defining this notion in terms of matrix
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inequalities analogous to (4) instead of using a
modified version of the dissipation inequality.

Definition 2.4. The system X(A4,B,C,D) is called
strictly passive, if the matrix inequalities

K=K >0 and
ATK+KA+eK  KB—CT \ _, (5
BTK-C  —(D+DT)) ="

have a solution K for some ¢ > 0.

3. Linear Networks with Ideal Diodes

Linear electrical networks consisting of (linear) resis-
tors, inductors, capacitors, gyrators, transformers

(RLCGT), ideal diodes and current and/or voltage

sources can be formulated by the complementarity
formalism. Indeed, the RLCGT-network is given by
the state space description

x(t) = Ax(r) + Bu(t) + Ew(1), (6a)
»(1) = Cx{(1) + Du(t) + Fw(t), (6b)

under suitable conditions (the network does not con-
tain loops with only capacitors and voltage generators
or nodes with the only elements incident being
inductors and current generators). See Chapter 4 in [2]
for more details. In (6) 4, B, C, D, E, and F are real
matrices of appropriate dimensions. The variables
x() € R”, (u(t), y(£)) € R and w(f) € R? are the state
variable, the connection variables to the diodes and
the variables corresponding to the external ports
(connected to the sources) on time ¢, respectively. To
be more specific, the pair (u;, y;) denotes the voltage—
current variables at the connections to the diodes,
ie,fori=1,...,m
up=—-V;, yi=1 or

u=1, yi=-V;

(7N
where V; and I; are the voltage across and current
through the ith diode, respectively (adopting the usual

sign convention for ideal diodes). The ideal diode
characteristic is described by the relations

Vi<0, ;20, {Vi=0orl =0},
i=1,...,m, (8)
and is shown in Fig. 1. By combining (6), (7) and (8),

and by eliminating ¥; and I; the following system
description is obtained:

x(t) = Ax(t) + Bu(t) + Ew(1), (9a)

(2) ®) tip

-V

Ideal diode Ideal diode characteristic

Fig. 1. Ideal diode and its voltage-current characteristic;
(a) Ideal diode; (b) Ideal diode charactersitc.

() = Cx () + Du(r) + Fuw(1), (9b)
0<y(t)Lu(r) = 0. (9¢)

The following technical assumption will be used often
in this paper.

Assumption 3.1. The system X(4,B,C,D) is
passive with the storage function x+ (1 [2)x T Kx
where K is positive definite and col(B,D+ D7) has
full column rank.

Note that minimality of (4, B, C) is sufficient for the
existence of a positive definite solution to the linear
matrix inequality (4). However, it is not necessary.
Indeed, the system ¥(a,0,0,1) with @ <0 is passive
with the storage function x— (1/2)x” although it is
neither controllable nor observable.

Passivity of a system has some useful implications
for the subsystems which are obtained by forcing some
components of u variable to be zero and not exam-
ining the corresponding components of y variable.! In
what follows, we collect all such implications that will
be employed later on.

Lemma 3.2. Consider a matrix quadruple (4, B, C, D)
satisfying Assumption 3.1. Let the matrices P’ and Q"
be such that kerP =kerQ’={0}, imQ’=
ker (Dyy +D1,) and imP’@im Q’=R"! for each
index set J C . Then the following statements hold
for each J C m.

Dj;is nonnegative definite.

(PYT D, ;P is positive definite.

KB.;0' = CLO’.

(07 CjoB.,Q is symmetric positive definite.
There exists an o’ >0 such that wu(D,;+
CreBoyo ) >a’o™! for all sufficently large o

P S

'For linear networks with ideal diodes, this corresponds to
replacing some of the diodes by either open or short circuit
behaviour depending on whether the corresponding port is voltage
or current controlled.
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where p(X) denotes the smallest eigenvalue of the
symmetnc part ofX 1 e, $(X+XT).
6. 57 (Dyy+ CroBaoys~ ") is proper.
In order to prove this lemma, we need the following
auxiliary result.

Lemma 3.3. Let M=M'eR™" be nonnegative
definite. The following statements hold.

1. NTMN=0= MN=0.
2. For any index set J C 7, v' M v=0= M,,y=0.

Proof.

1. Evident.
2. Let the index set J C /m and the vector v be such
that v' M ,;v=0. Clearly, we have

v > T My Mg I _p
0 M NS J M a\Jg, ii\J 0 '

Hence, item 1 implies that

( My Mg Y _ g
Mags Mpgms )\ 0 '

Equivalently, M,;v=0.

Now, we are in a position to prove Lemma 3.2.

t

Proof of Lemmma 3.2. Assumption 3.1 and Remark 2.3
imply that the system of linear matrix inequalities

K=K">0 and
ATK+KA KB-CT <0 (10)
B'K—-C —(D+D")

1s feasible. It follows that for each index set JCm
we have
ATK+ KA KB, —Cl,
<B};K—CJ. (DJJ+D > <0 (1)

1. Evident from (11).

2. It follows from the previous item that
(PYTD,,P’ is nonnegative definite. Let v be such
that VT(PJ)TDJJP]VZO. Hence, we have

v (P))(Dys+ Dyy)PPv=0. (12)

It follows from (12) and Lemma 3.3 item [ that
P’v € ker(Dy; + D};) =im Q7. Thus, P’ve imP/N
imQ’. By the hypothesis, v=0. Consequently,
(P7YTD,;P’ is positive definite.
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3. For any real number o€R and matrix
M e RYPVL e have

0> (aMJ>T(ATK+ K4  KB.-Cl, ) <aMf>
AN Bj,K—Cj —(Dy+DJ) o’
(M) (ATK+KA) M +a(M’) (KB, — C1)Q’
+a(0)" (BJ,K~ Cr)M’. (13)

The absence of a constant term in the above non-
positive quadratic form in o implies that (M7)7
(KB.y — CT)O' + (Q7) (BJ.K — Cr)M? =0 for all
M. In particular, the choice MY = (KB,; — C1,)Q’
results in

(@) (BLK~Cr)=0. (14)
4. Right multiplying (14) by B.,0” results in

() CrBoyQ’ = (Q7) " B}, KB.;0’. (15)

Since K is positive definite, the right-hand side of the
above equation is (at least) nonnegative definite. Let
v be such that vT (/)" (B],)" KB.;0’v = 0. Clearly,

BQJQJV = 0. (16)

Note that v'(Q”)" (Ds;+ D},)Q’v = 0 implies from
Lemma 3.3 item 2 that

(Dey +DL)Qv=0. (17)

Thus, the Egs (16) and (17) result in

Bn] Bo]f QJV . O
D+ D], Dos-+Dl. o )

It follows from the hypothesis of col(B,D+DT)
having full column rank that Q'v=0. Since
ke1Q ={0}, v must be =zero. Consequently,
(0”)" B], KB.JQJ is positive definite and so is
©oHT CJ, 707 due to (15). From (15), it is clear that
(09" CoB. ;0 is symmetric.

5. Note that D,; is nonnegative definite due to
item 1 and the implication

u#0, ' Dyu=0= 1" CroBeyu >0

holds due to item 4. Therefore, the statement follows
from Lemma 13.2 in the Appendix.

6. It follows from item 5 that D,;+ Cs.Bess™ ' is
invertible as a rational matrix. The properness
of sT'D,;+CrB.s ! is a consequence of
item 5. |
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4. Linear Complementarity Systems

Systems of the form (9) are called linear com-
plementarity systems, which have been introduced in
[29] and further studied in [6,7,14,15,18,30]. In fact, in
all these references (9) was studied only for the input
free case meaning that the “inputs” w were absent. In
this paper we will work mostly under the assumption
that Y3(A4, B, C, D) is passive. Systems of the form (9)
satisfying a passivity condition on (4, B,C,D)
will be referred to as linear passive complementarity
systems.

As (9¢) implies that u (1) =0 or y(r)=0foralli € m
(each diode is either conducting or blocking), the
system (9) has 2" modes. Each mode is characterized
by the active index set J C 7 (also written as J € 2™),
which indicates that v;,=0, i € J, and u;=0, i€J",
where J¢:= {i € m|i¢ J}. For each such mode the
laws of motion are given by a set of DAEs. Specifi-
cally, in mode J they are given by

X(t) = Ax(t) + Bu(t) + Ew(r), (18a)
v(t) = Cx(t) + Du(t) + Fw(1), (18b)
o y{t)=0, ield, (18c)
(1) =0, ielJ. (18d)

Note that the system (9) will be represented by (18) for
mode J as long as the remaining inequalities in (9¢)
given by

yi(t) >0, ieJ and w(t)>0, ied, (19)
are satisfied. The violation of (19) will trigger a mode
change (one or more diodes going from conducting to
blocking or vice versa). As a consequence, during the
evolution in time of the system several mode dynamics
will be active successively. This point of view leads to
considering linear complementarity systems as hybrid
systems. A popular model for hybrid systems is the
hybrid automaton model [3,22], which combines
finite automata with continuous dynamics. Basically,
a hybrid automaton consists of a number of modes,
dynamics associated to these modes and mode tran-
sition rules. Starting from a mode, the trajectories of
the system evolve according to the dynamics of that
mode until the mode transition rules trigger a mode
change (called an evenr). After the mode change, the
dynamics of the new mode shapes the behavior of
the system until the next event takes place. We believe
that the existing formal definitions of hybrid auto-
mata are rationalizations of the solution concepts
that are desired. That is why our approach will put
emphasis on the solution concept rather than on the
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hybrid automaton model. However, the hybrid point
of view is convenient as it will result in a constructive
existence proof. Since our interest is focused on a
rather special class of hybrid systems, our hybrid
solution concept will be a trimmed version of a solu-
tion concept one needs for more general classes of
hybrid systems. Nevertheless, our solution concept is
more general than some existing ones in the sense that
it allows the existence of both left and right accumu-
Jations® of event times. Before presenting a global
solution concept that incorporates the switching of
modes, we will first concentrate on what we call
“initial solutions,” which are trajectories satisfying the
dynamics of one mode only and satisfy the inequality
conditions (9¢) only for some time or even only in an
impulsive sense.

5. Initial Solutions

The theory of distributions is convenient in formaliz-
ing the solution concept, since the abrupt changes in
the trajectories can be modeled adequately by impul-
ses. To do so, we need to recall the definition of a Bohl
distribution and an initial solution [15].

Definition 5.1. We call u a Bohl distribution, if
U= Wimp + Ureg With Wjmp = ZLO u! 68') for ' e R and
Ureg € B. We call uy;, the impulsive part of u and ureg
the regular part of u. The space of all Bohl distribu-
tions is denoted by Bimp.

Note that Bohl distributions have rational Laplace
transforms. It seems natural to call a (smooth) Bohl
function u € B initially nonnegative if there exists an
£>0 such that u(r)>0 for all t€[0,¢). Note that
a Bohl function u is initially nonnegative if and only
if there exists a oo € R such that its Laplace transform
satisfies @i(c) >0 for all o>o0, Hence, there is
a connection between small time values for time
functions and large values for the indeterminate s in
the Laplace transform. This fact is closely related to
the well-known initial value theorem (see e.g. [10]).
The definition of initial nonnegativity for Bohl
distributions will be based on this observation (see
also [14,15]).

Definition 5.2. We call a Bohl distribution u initially
nonnegative, if its Laplace transform ii(s) satisfies
ii(c) > 0 for all sufficiently large real o.

Remark 5.3. To relate the definition to the time
domain, note that a scalar-valued Bohl distribution u

2An element 7 of a set ¢ C R is said to be a right (left) accumulation
point if (1 —&, N NEAB((1, 1 +e) NE # ) for all £>0.
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without derivatives of the Dirac impulse (i.e.
Uimp = %5 for some W’ €R is initially nonnegative if
and only if

1. %> 0, or
2. u®=0 and there exists an € > 0 such that Wpee(7) >0
for all r€[0,¢).

With these notions we can recall the concept of an
initial solution [15]. Loosely speaking, an initial
solution to (9) with initial state xo and Bohl input
w e B is atriple (u, %, y) € By satisfying (18) for
some mode 7 and satisfying (19) either on a time
interval of positive length or on a time instant at which
delta distributions are active (as formalized in the
notion of initial nonnegativity).

At this point we only allow Bohl functions for
inputs w. This is not a severe restriction as we consider
initial solutions in this section. In the global solution
concept we will allow the inputs to be concatenations
of Bohl functions (i.e., piecewise Bohl), which may
consequently even be discontinuous.

Definition 5.4. The distribution (u, x, y) € Bl s

imp
said to be an initial solution to (9) with initial state xg

and input w € B if
1. The equations

x = Ax + Bu-+ Ew + xg6p,
y = Cx+ Du+ Fw,

hold in the distributional sense.

2. There exists a J C /m such that u;=0, i€J° and
y; =0, i € J as equalities of distributions.

3. The distributions w and y are
nonnegative.

initially

The items 1 and 2 in the definition above express
that an initial solution satisfies the dynamics (18) for
mode J on the time-interval R,.

6. Initial and Local Well-Posedness

In this section, we are interested in existence and
uniqueness of initial solutions that will be extended
to a local well-posedness result. The statements in
Sections 6 and 7 are extensions of the corresponding
results in [6,7,13], which deal with the input free
case only.

Theorem 6.1. Consider an LCS given by (9) such
that Assumption 3.1 is satisfled. Define Qp :=
SOL(0,D) = {v e R"|0 <v.LDv>0}and let O} be
the dual cone of Qp.
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u—

For arbitrary initial state xo€R" and any input
w € I8, there exists exactly one initial solution,
which will be denoted by (u™", x™",y"").

2. No initial solution contains derivatives of the Dirac
distribution. Moreover,

Xp.W

_ L 0s . Yo _ . Yo _ 7y0
W = U bo; x2V =0; = Du’ &y

imp Yimp
for some 1’ Op.

3. For all xpeR” and we B’ it holds that
Cxo + Fw(0) + CBu® € Q.

4. The initial solution (u°,w,x™,w, y*,w) is smooth
(i.e., has a zero impulsive part) if and only if

Cxg + Fw(0) € Qp,.

Before proving the theorem, we recall the so-called
rational complementarity problem and its relation with
the initial solution.

Problem 6.2. (RCP(xy, W(s), 4, B,C, D, E, F)). Given
xo€R", (s) e RP(s), and (4,B,C,D,E F) find
i(s) € R™(s) such that

1. i(o) L 3(o) for all e R.
2. i(o) > 0and (o) > 0for all sufficiently largec € R

where

P(s) = C(sT — 4) "xo + [F+ C(sI — A) " Eliv(s)
+ [D + C(sT — 4)7' Blia(s).

Remark 6.3. The rationality of the pair (ii(s), (s)),
together with the first condition, implies that either
i;(s) = 0 or y,(s) = 0 for each i € .

For brevity of notation, we denote RCP(xp, w(s),
A,B,C, D, E, F) by RCP(xp,(s)) if (4,B,C,D,E,F)
is clear from the context. There is a one-to-one
correspondence between the solutions of RCP and
initial solutions of L.CS as described in the following
lemma.

Lemma 6.4, Consider a given matrix 6-tuple
(A,B,C, D, E, F). The following statements hold.

I. Let @i(s) be a solution of RCP(xy, w(s)) for some x
and strictly proper w(s). Define X(s) and j(s) as
follows

#(s) = (sT — A) " xp + (sT — 4)™" Bii(s)
+ (s — A) " Ev(s),
#(s) = Cx(s) + Dii(s) + Fw(s).
Then, the inverse Laplace transform (u,x,y) of
(#i(s), X(s), ¥(s)) is an initial solution with the initial
state xo and input w € B where w is the inverse
Laplace transform of 1 (s).
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2. Let (u,x,y) be an initial solution with the initial
state xo and input w € B°. Also let (i(s), w(s)) be
the Laplace transform of (u, w). Then, i(s) solves
RCP(xg, w(s)).

Proof. Evident from the proof of [15, Theorem 5.3].
]

The following lemma will play a key role in the
proof of Theorem 6.1.

Lemma 6.5. Consider a matrix 6-tuple (4,B,C,D,E,F)
satisfying Assumption 3.1. Then the following state-
ments hold.

1. RCP(xgp,w(s)) has a unique solution for all xo€R”"
and for all Ww(s) € R?(s).

2. For a given strictly proper w(s) € R”(s), the unique
solution of RCP(xy, W (s)) is strictly proper if and
only if Cxg+ Fw(0) € Q}, where w is the inverse
Laplace transform of #(s).

Proof.

1. It follows from Lemma 3.2 item 5 that
D+ C(oI— A)"'B is positive definite for all suffi-
ciently large o. Therefore, [14, Theorem 4.1] and
[9, Theorem 3.1.6] imply that RCP(xp,W(s)) has a
unique solution for all xo € R" and for all i(s) € R?(s).

2. Let ii(s) be the unique sohition of RCP(xy, W(s)).
For the ‘only if’ part, suppose that 7(s) is strictly
proper. Let the power series expansions around
infinity of ii(s) and v (s) be of the form

a(s) = wys™ s 4 -, (20a)
W(s) = wisT A wps T2 (20b)

Note that w;=w(0) by the initial value theorem
(see for instance [10]). Define

Ps) = C(sT — A) ' xq + [F+ C(sI — A) " Ei(s)
+ [D + C(sT — 4)™" Blii(s).

By substituting (20) into the above equation, we get

P(s) =(Cxg + Fw(0) 4+ Duy)s™" + (CAxg + CEw(0)
+ Fwy + CBuy + Dug)s_2 + .

It follows from the formulation of RCP (xy, 1#(s)) that

u] (Cxp + Fw(0) + Duy)

=0,
up >0 and Cxp+ Fiw(0)

+ Duy > 0.
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Consequently, LCP(Cxp+ Fw(0),D) is solvable.
Then, it follows from [9, Corollary 3.8.10] that
Cxy + Fw(0) € Q. To show the ‘if’ part, suppose
that Cxo + Fiw(0) € QF. This means that LCP(Cxp +
Fw(0), D) is solvable by virtue of [9, Corollary 3.8.10].
Let i be a solution of LCP(Cxp + Fir(0), D). It is clear
that o~'7 solves LCP(o~'(Cxp + Fw(0)), D) for all
o>0. Then, it also solves LCP(c™!(Cxo + Fiw(0)—
C(oI — 4)~'Bit), G(0)). Tt follows from Lemma 13.1
(see Appendix) and Lemma 3.2 item 5 that there exists
a v >0 such that

l#(e) — o'
< y0||C(oT = A) ' xo+[F + CloT — A) ™ Eliv(0)
— oY (Cxp + Fw(0) — C(al — 4)™' B)|,
(21)

for all sufficiently large 0. Note that the final factor at
the last term of the right hand side is less than Bo 2 for
all sufficiently large o for some 8 > 0. Therefore, (21)
results in

la(o) ~ o~"all < 6o

for all sufficiently large o. This implies that #(s) is
strictly proper.

Proof of Theorem 6.1.

1. It follows from Lemma 6.5 item 1 and Lemma 6.4.

2. Let (ii(s),7(s)) be the Laplace transform of
(@™, y*"). Lemma 6.4 item 2 and the formulation
of RCP imply that there exists an index set J C m
such that

tms(s) =0 (22)
75(8) = Cra(sT — A)"xg + Ha (8)10(s)
-+ GJJ(S)I?](S) =0, (23)
where G(s)=D+C(sI-A)~'B and H(s)=F+

C(sI— A) ™ 'E. By solving (23) for i;(s), we get

f17(s) = —G7} ()[Cre(sT - A xg + Hyo (s)1(s)).

Note that the second factor of the above equality is
strictly proper. Since s~'G7}(s) is proper due to
Lemma 3.2 item 6, ii{s) must be proper. Therefore, its
inverse Laplace transform uw*®" contain derivatives of
the Dirac distribution. Let wp) = 4’6 for some
1% € R™. Clearly, we get xoo' =0 and y;o = Du’§
from Definition 5.4 item 1. It follows from
Remark 5.3 and Definition 5.4 item 3 that 2° >0 and
Du®>0. Finally, Definition 5.4 item 2 results in

(1®) " Du® = 0. So, u° € Qp.
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3. Since w(s) is strictly proper and #(s) is proper, their
power series expansions around infinity can be
given by

W(s) = s F s -

24
a(s) = 1 + s FunsE 4 (24)

Note that w; = w(0) due to the initial value theorem.
Then, we get

P(s) = C(sT — A) 'xg + [F+ C(sT — A)™ E}i(s)
+ [D + C(sI — 4)™" Bii(s)
= Du® + (Cxq + Fw(0)
+ CBi® + Duy)s™ 4 - -, (25)

It follows from (24), (25) and the formulation of
RCP that

W+ >0, (26)
Cxg + Fw(0) + CBu® + D(u® + uya7") > 0,
27)
- (@ + w07 [Cxo + Fw(0) + CBu®
+ D@’ +uj07)] =0, (28)

for all sufficiently large o. Therefore, LCP(Cxp+
Fw(0) + CBu®, D) is solvable. This means that
Cxq + Fw(0) + CBu® € Q},dueto[9, Corollary 3.8.10]
and the fact that D is nonnegative definite.

4. It follows from Lemma 6.5 item 2 and Lemma 6.4.

O

Theorem 6.1 gives explicit conditions for existence
and uniqueness of solutions to a class of hybrid
dynamical systems of the complementarity type.
Similar statements for general hybrid systems are hard
to come by (cf. [21] for partial results). The second
statement indicates that derivatives of Dirac dis-
tributions are absent in the behavior of linear passive
complementarity systems. The fourth statement gives
necessary and sufficient condition for an initial solu-
tion to be smooth. In particular, an LCS satisfying the
conditions of Theorem 6.1 is “impulse-free,” if
SOL(0, D)= {0} (in other words, if D is an Ry-matrix
[9]). Note that in this case Q* = R¥. In case the matrix
[C F1] has full row rank, this condition is also neces-
sary. Other sufficient conditions, that are more easy to
verify, are D being a positive definite matrix, or
ker(D+ D7) NR7T = {0}.

Note that the first statement in Theorem 6.1 by
itself does not immediately guarantee the existence of
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a solution on a time interval with positive length. The
reason is that an initial solution with a nomn-zero
impulsive part may only be valid at the time instant on
which the Dirac distribution is active. If the impulsive
part of the (unique) initial solution is equal to /%6, the
state after re-initialization is equal to xo + Bu®. From
this “next” initial state again an initial solution has to
be determined, which might in principle also have a
non-zero impulsive part,' which results in another state
jump. As a consequence, the occurrence of infinitely
many jumps at ¢ =0 without any smooth continuation
on a positive length time interval (sometimes called
“livelock” [31] in hybrid systems theory) is not exclu-
ded immediately. However, Theorem 6.1 does exclude
this phenomenon: if smooth continuation is not
directly possible from x,, it is possible after one
re-initialization.  Indeed, since  Cxg -+ Fw(0)-+
CBu® € @, it foliows from the fourth claim that the
initial solution corresponding to xq + Bu® and input w
is smooth. This initial solution satisfies the Eq. (9) on
an interval of the form (0,¢) with £ > 0 by definition
and hence we proved the following local existence and
uniqueness result.

Theorem 6.6. Consider an LCS given by (9) such that
Assumption 3.1 is satisfied. For all initial states xy and
all input functions w € B, there exists a unique Bohl
distribution (u, x, y) satisfying

. X XWX X W
1. (ulmp’ lepf Yimp)_ - (uignp s Ximp » Yimp )5 . L
where (u™", x™%, y*) is the unique initial

solution corresponding to initial state x° and
input w,
2. Xpeg(0H) =xo+Bu® with - u’€¢R” such that

Wimp =1 6,
3. there exists an € > 0 such that for all r € (0, ¢)

Zreg (1) = Xreg(0+)
+ / [Axsog (7) + Butgeg (7)+Ew(r)] dr,
0

Yreg(’) = CXl’eg(r) +Duf€g(t) + FW(Z‘),
0 S ureg(f) J‘Yreg(t) Z 0.

7. Global Well-Posedness

In this section we aim at extending Theorem 6.6 to
obtain global existence and uniqueness of solutions.
Before we can formulate such a theorem, we need to
define a class of allowable input functions and the
global solution concept.
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Definition 7.1. A function w:R | —R is called piece-
wise Bohl,3 if wis righ’[—continuous4 and there exists
a collection T\, = {7;}CR , such that

e I', is a set of isolated points, and
e for every i there exists a v € B such that w(f) = v(1)
forall re (’T,‘, Ti+1)-

The set of piecewise Bohl functions is denoted by PB.

We call the collection I',, = {r;} the set of transition
points associated with w. The subset of {r;} at which
w is not continuous is called the collection of dis-
continuity points of w and is denoted by I'Y, = {6;}.
Note that the right-continuity is just a normalization,
which will simplify the notation in the sequel. The
isolatedness of the transition points is required to
prevent the occurrence of an accumulation of Dirac
impulses in the solution trajectories. Indeed, dis-
continuities in Fw might cause a violation of condition
for smooth continuation as stated in Theorem 6.1 item
4. Allowing accumulations would require technical
details and assumptions that would blur the main
message of the paper.

Definition 7.2. The distribution space Los(Ry) is
defined as the set of all u=1uy,,+u., where
Wimp = Y_pept B for 1’ €R with TCR . a set of iso-
lated points, and uye € £y,

Definition 7.3. Let (u x,y)€ Ly (Ry) be
given with

a
Wimp = § u”bg,

el

for #° € R and some (set of isolated points) I'. Similar
expressions hold for Ximp and yimp with the same T'.
Then we call (u,x,y) a (global) solution to LCS (9)
with input function w € PB? and initial state xo, if the
following properties hold.

1. For any interval (a,b) such that (a,b))NT'=0 the
restriction Xyeg|(a.5) 1S (absolutely) continuous and
satisfies for almost all 1€ (a, b)

Kreg (1) = AXreg (1) + Bugeg(t) + Ew(1),
Vieg(1) = CRreg(t) + Dureg (1) + Fiv(1),
0< ufeg(r)—LYreg(t) > 0.
2. For each 6#e€I" the cormresponding impulse

(196,, x859_, 196,) is equal to the impulsive part of the
unique initial solution® to (9) with initial state

3Strictly speaking, we define a subspace of the class of piecewise
Bohl functions. For reasons of brevity we will refer to this subspace
as the space of piecewise Bohl functions.

“This means that lim, ;. w{() =w(7) for all Te R, ..
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Xree(0—) 1= lim,pXeg(?) (taken equal to xo for §=0)
and input t— w(t —6).

3. For times feI' it holds that x.(0+)=
%reg(0—) + Bu” with ° the multiplier of the Dirac
impulse supported at 4.

Remark 7.4. Note that a solution in the above sense
satisfies % = Ax + Bu+ Ew+ xp6y and y=Cx+
Du + Fw as equalities of distributions.

The fact that solutions of linear networks with ideal
diodes do not contain derivatives of Dirac impulses is
widely believed to be true. But, the authors are not
aware of any previous rigorous proof. The framework
proposed in this paper makes it possible to prove this
intuition rigorously.

Theorem 7.5. Consider an LCS given by (9) such that
Assumption 3.1 is satisfied. The LCS (9) has a unique
(global) solution (u, x,y)€ LyF"*™(R,) for any
initial state xq and input w € PB”. Moreover, Xiyp =0
and impulses in (4, y) only show up at the initial time
and times for which Fw is discontinuous (i.e. I' in
Definition 7.3 can be taken as a subset of {0} UTY, ).

Proof.

Existence. The construction of a solution will be based
on concatenation of initial solutions. Let the Bohl
function v be such that w ) = v, for some e, >0.
Theorem 6.6 implies that a solution (u, x, y) exists on
[0,¢) (take t; as large as possible with f; <g;) for
initial state x, and input w. Note that
Cxreg(0+) + Fiw(0) € QJ, due to Theorem 6.1 item 3.
Therefore, (Ueg, Xregs Yreg) i part of a smooth initial
solution with initial state x.(0+). Since for any
p€(0,11), t—(Ureg, Xreg, Yreg)(f +p) forms a smooth
initial solution for the initial state x.q(p) and mput
t+—v(t+ p), we have that Cxreg(p) + Fiw(p) € Q) for
all pe(0,11). Since (Ureg, Xreg, Yreg) 1S @ Bohl function,
the lLimit lim, Xreg(?) =: Xreg(ti—) exists. Due to
Theorem 6.6, there exists a continuation (an initial
solution) from =x.(#;—) such that a solution is
obtained on [0, ;) with 1, >1t,. Note that if Fw is
continuous at #; then Cxyeg(t1—) + Fw(t;) € Q) dueto
the closedness of Q7. This means that the initial
solution from xeg(?1—) is smooth due to Theorem 6.1.
In this case x.e, is continuous at #;. Only if Fw is not
continuous at #; then the initial solution for the initial
state X,eo(f;—) might contain a non-trivial impulsive
part as Cxreg(t1—) + Fw(t;) € Q}, might be violated.
Consequently, a discontinuity of x,, at #; might occur
only in this situation. Note that the last claim of the

“Note that we shift time over 6 to be able to use the definition of an
initial solution, which is only given for an initial condition at 7==0.
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theorem is satisfied for the constructed solution. In
combination with the uniqueness result as given later
the constructed solution is the only solution and thus
the claim holds that impulses only show up at the
initial time and at discontinuity points of Fw.

Suppose that the maximal interval on which
a solution can be generated by this construction is
[0,7*). As we would like to prove global existence, we
want to show that ¢* cannot be finite. The proof will
be based on showing that the limit lim, ¢ Xreg() exists,
as the local existence result Theorem 6.6 then shows
that a solution can be extended beyond r*, which
contradicts the definition of 7* and the fact that * is
assumed to be finite. As w is Bohl (and thus Fw con-
tinuous) on an interval of the form (¢* —e¢,1*) for
some € > 0, no impulses occur and x,, is continuous in
(" —&,1"). Note that Xreg|(._, ) is by construction a
concatenation of (smooth) initial solutions. Hence,
Xreg 18 concatenated by (possibly an infinite number of)
pieces of solution trajectories obtained from a finite
number of mode dynamics given by linear differential
and algebraic equations (DAEs) (18). By using The-
orem 3.10 in [11] and noting that the mode dynamics
have unique Bohl solutions, these DAEs can be
transformed into a collection of linear ordinary dif-
ferential equations, where the input w is included by a
linear dynamics (a so-called exosystem) as well. Note
that this is possible due to the fact that w is a Bohl
function on (r* — ¢, r*). From this it can easily be seen
that x., is Lipschitz continuous on (t* —¢,#*) and
hence uniformly continuous. It follows from a stan-
dard result in mathematical analysis [28, Exercise
4.13] that x* := limyy X, (f) exists, which ends the
proof of the global existence part.

uniqueness. Suppose that (u', x', y') is a global solution

for some initial state x and input w for i=1,2. Let I'"

be as in Definition 7.3. Since the impulsive part of a
global solution is determined by an initial solution due
to Definition 7.3, Theorem 6.1 item 2 implies that

;mp —] 0 for z‘= ],2.7 Define (@, %, 7) = (uﬁeg——
ureg’ reg reg! yreg Yreg ). Note that x(0)=0.
Suppose that X = 0. Then T :=sup{r[x|p ) = 0} is
finite. Tt follows that |7z, # 0 for all sufﬁmently
small £ >0. We claim that A(T—i—) = 0. To see this,

consider the following three cases.

o Case I: x, and x;,; are both continuous at T.
Clearly, X is continuous at T'too. Hence, X(7+) = 0.
e Case 2: x!,, and x- are both discontinuous at T.
The jump from xreg(T ) to xre,(T~|—) is determined
by the unique initial solution for the initial state
oo (T—). Since X(T—) = xlp, (T—) — x2,(T—) =0,

reg Teg
both jumps are the same. Consequently,
X(T+) =0.
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e Case 3: One of x!, e and x;eg is continuous and the
other is discontinuous at 7. Without loss of gen-
erality, Wwe can assume that xmg is continuous at 7.
Since T is a set of isolated points and w is a
piecewise Bohl function, there exists a p >0 such
that (7, T+ w)NT'=0 and w(=v({) for all
t& (T, T+ p) for some v € BY. Hence, Xpegl 7.7y ) 1
absolutely continuous and
0 < uly (1) LCxly (1) + Dulyg(1) + Fi(1) > 0,
for almost all € (T, T+ ) due to the definition of
global solutions. In other words, (LCPCXr’eg(f)-k
Fw(t), D) is solvable for almost all r& (T, T+ p). It
follows from [9, Corollary 3.8.10] that

Cx reg( )_'_ FW(Z‘) € QD’ (29)

for almost all z& (T, T+ p). Since both x),, and w

are continuous on (7, T+ ), and Q7 is closed, (29)

holds for all r &[T, T+ p]. In particular, we get
Cx! (

reg(T—) + Fw(T—-) € Qp,
due to continuity of xrleg and w. Note that
~(T—) =0 and hence x].,(7—) = x7,(T—). Since
Cx;eg(T—)+Fw(T—-) € Qp, Theorem 6.1 item 4
implies that the unique initial solution for the initial
state  x2 g(T—) is smooth. This implies that
rcg(T—) = %7, (T+) and thus %, is continuous at
T. Contradiction! So, this case cannot occur at all.

Since discontinuity points of xieg are separated, there
exists a p>0 such that both of them are continuous
on (T,T+ p). This means that (&, %, 7)| (7.7, is an
Lo-solution on (T, T+p) of X(4,B,C,D) with
X(0) = 0. Assumption 3.1 implies that there exists a
positive definite K such that

t
/ i (T+5)§(T+s)ds > % (T+t)KZ(T+ 1),
0

(30)
holds for all 7€ (0, p). Note that u/,, and yi,, satisfy

0 < ey (1) Lyl (1) 2 0,

for almost all 7. Hence,

5T ()7(1) = (wleg(1) = iy (1) (yhg (1) — ¥ (1))
= _‘(urcg(t)) Yreg(t) - (UTzeg(f))TYleg(f)
<. (31)

Since K is positive definite, it follows from (30) that
¥T+1t)=0 for all r€(0,p). This contradicts the
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definition of 7. Therefore, X = 0. So, we have shown
the uniqueness of state trajectories. An immediate
consequence 1s the uniqueness of the impulsive part of
the global solution since it is determined via (unique)
initial solutions. Tt remains to prove that (&, ) = 0.
Note that (i, 0, ¥)|(,4) is an L;-solution on (e, 8) of
(A, B, C, D) with the zero initial state for any o and
with a < 8. Hence, we get

0 = Bii,

7 = Dil.

It follows from (31) and (32b) that &' (£)Dii(f) < 0
for all r€(w,[). Since D is nonnegative definite,
we get #(t)Dii(r) =0 and hence (D+ DT)i(t) =0
for all 1€ (a, F). Together with (32a), this implies
that ## =0 due to Assumption 3.1 and the fact that
(o, B) is an arbitrary interval. Clearly, ¥ = 0 follows
from (32b).

Hence, if Fw is continuous, jumps of the state can
only occur at the initial time instant.

Remark 7.6. It can be extracted from the proof
of Theorem 7.5 that there are no left accumula-
tions of events for linear passive complementarity
systems.

8. Regular and Nonregular Initial States

In this section, we characterize the initial states
from which no Dirac distributions show up in
the corresponding initial solution (given an input
function).

Definition 8.1. We call an initial state x, regular with
respect to the input w € B for the system (9), if the
corresponding initial solution (u™™™,x™",y™") is
smooth (Le. (wp', X', viny) = 0). A state x is
called nonregular with respect to w, if it is not regular
for w.

The mnext theorem is partially a corollary of
Theorem 6.1 and gives several tests for determining

whether an initial state is consistent or inconsistent.

Theorem 8.2. Consider an LCS given by (9) such that
Assumption 3.1 is satisfied. Define Qp := SOL(0, D)
and let Qj, be the dual cone of Qp. The following
statements are equivalent.

X is regular with respect to w € B for (9).
Cxo + Fw(0) € Q).

LCP(Cxy+ Fw(0), D) has a solution.

Cxq + Fw(0) € pos(, —D).

B

Proof.

1< 2: It follows from Theorem 6.1 item 4.

2 3 <4 It follows from [9, Corollary 3.8.10]. [
To give an idea about the structure of the dual cone,

a few examples are in order.

Example 8.3. Consider the following cases.

e D=0: Then, Qp = RY. Hence, Q) = R}
0 ~—1
cD:(l O): Then, QDz{(Z;>|zq_>_0and

1 = 0} and Q) = {(::)m > 0},

e D is positive definite: It follows that Qp = {0}
which implies that Q}, = R”.

9. Characterizations of Re-initializations

From the nonregular states a discontinuity of the state
variable occurs. In this section, we will present several
equivalent characterizations of the jumps in a linear
passive complementarity system that are possibly
of computational interest. The relevance of these
results for event-driven simulation methods are
pointed out in [12].

Theorem 9.1. Consider an LCS given by (9) such that
Assumption 3.1 is satisfied. Define Qp := SOL(0, D)
and let Q7 be the dual cone of @p. Consider the initial
solution (u™",x™",y**") corresponding to initial
state xo€R"” and input w € B’. Moreover, denote
the impulsive part wp" by u%6;. The following
equivalent characterizations can be given for u° and
the re-initialization® from x, to x"(0+):=
im0 %38 (1) = xo + B,
(i) The jump multiplier «° is uniquely determined by
the generalized LCP (see [9, p. 31] on com-
plementarity problems over cones)

Qp 2 u®L Cxp + Fw(0) 4+ CBL® € Q5. (33)

(i) The cone Qp is equal to pos N := {NA|A >0}
and Qf, = {v|N"v > 0} for some real matrix N.
The re-initialized state x**"(0+) is equal to
xo+ BNA? and 1 = NX? where )\’ is a solution of
the following ordinary LCP.

0 < AL(NTCxo+NTFw(0)+ NTCBN)) > 0.
(34)

Xgaa

$Observe that «° determines x™"(0+) uniquely.
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(illy The re-initialized state x™"(0+) is the unique
minimizer of

(35a)

(35b)

minimize 4 [p — xo]' K[p — Xo),
subject to Cp + Fw(0) € 9,

where K is any positive definite solution to (4)
and thus ¥(x) = 1xTKx is a storage function for

(A4, B, C, D).
(iv) The jump multiplier #° is the unique minimizer of

minimize 1 (xo + Bv) K(xy + Bv) + v Fiw(0),

subject to v € Qp,

where K is any positive definite solution to (4)
and thus ¥(x) =1xT Kx is a storage function for
(4, B, C, D).

Proof.
(i) It is already known from Theorem 6.1 item
2-3 that '

e gp
Cxg + Fw(0) + CBu® € Q3.
Note that y}%"(0+) = Cxp+ Fw(0) + CBu". As a

consequence of Definition 5.4 item 2, i and y;"
are orthogonal. Hence, we have

1’ 1 Cxp 4+ Fw(0) + CBu.

It remains to prove that u° is uniquely determined by
(33). Suppose that z' is a solution of the generalized
linear complementarity problem

e QDv
Cxo + Fw(0) + CBz € Qj,
27 (Cxp + Fw(0) + CBz) = 0,

for i=1,2. Note that

(' =2)TCB(' - )
= (= = 22)T[(Cxo + Fw(0) + CBz")
— (Cxo + Fw(0) + CBz%)]
= — (=) (Cxp + Fw(0) + CB2)
~ (%) T (Cxo + Fw(0) + CBz")

<0. (39)
Since Qp Cker(D+D'), we have z'—z’¢
ker(D+D").  Hence, ('—z)TCB(E' -H)=

(z' = zz)TBTKB (z! —z*) >0 due to Lemma 3.2 item 3.
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Together with the above inequality, this gives
(' ~ADTCBE - = (' =2 TBKB(z' - =0.
Since col(B,D+DT) is of full column rank and K is
positive definite, we get z' =z Consequently, the
jump multiplier /° is uniquely determined by (33).

(1) Since 34, B, C, D) is passive, D is necessarily
nonnegative definite. It follows from [9, Theorem
3.1.7(c)] that SOL(0, D) is a polyhedral cone, i.e., the
solution set of a homogeneous system of inequalities
of the form Hx >0 for some matrix H. Minkowski’s
theorem {32, Theorem 2.8.6] states that every poly-
hedral cone has a finite set of generators. Therefore,
one can find a matrix N such that Qp =posN =
{NA[X > 0}. It can be checked that the dual cone can
be given in the form Q} = {v|NTv > 0}. Since
u® € Qp, there exists \° >0 such that = N%. Note
that Cxp + Fw(0) + CBNX® € Q},. Hence, N'(Cxo+
Fw(0) + CBN)X®) > 0. Note that

(AOTNT(Cxp + Fw(0) + CBNXY) = 0,

since u° = NX°. This means that A\° is a solution of the
LCP (34). _

(ii1) The minimization problem (35) admits a unique
solution since {p|Cp + Fw(0) € Qp} is a polyhedron
and K is positive definite. Let p be the solution of (35).
Dorn’s duality theorem [23, Theorem 8.2.4] implies
that there exists a A such that the pair (7, A) solves -

minimize p’ Kp + 2w’ (0)FT N, (40a)
subject to A >0 and p=xp+BNA. (40b)
Since NA€ Qp Cker(D+DT) for all A>0, it
follows that KBNA=CTNX for all A>0 due to
Lemma 3.2 item 3. Thus,
P Kp = (xp + BNA) K(xq + BN))
= ATNTCBN) 4 2x] CTNX + x Kxg
(41)

whenever A > 0. So the vector ) solves the minimiza-
tion problem

minimize 1 \TNTCBNA + (Cxo + Fiw(0))T N,
(42a)
(42b)

Since NTCBN is nonnegative definite, the Karush—
Kuhn-Tucker conditions

subject to A > 0.

A>0, (43a)
NT(Cxg + Fw(0) + CBNX) > 0, (43b)
XTNT(Cxo + Fiw(0) + CBNX) =0, (43c)
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are necessary and sufficient for the vector \ to be a
globally optimal solution of (42). For a detailed dis-
cussion on this equivalence, the reader is referred to [8]
or [9, Section 1.2]. Note that the LCP given by (43) is
the same as the one in (ii). It follows from (ii) that
O = NXand p = xy + Bu.

(iv) It has been shown in the proof of the previous
item that the minimization problem

minimize p' Kp 4+ 2w" (0)FT N,
subject to A> 0 and p=x,-+ BNA.

has a solution (p, \) and moreover j = xo + Bu and
u® = NX. Therefore, 1° is the unique solution of the
quadratic program

minimize (xo + Bv)' K(xo + Bv) + 2v! Fw(0),
subject to v > 0

0

Observe that (i) is a generalized LCP, which uses the
cone Qp instead of the usual positive cone R [9,
p. 31]. Indeed, in case Qp = RY and thus Qp = RY
(33) reduces to an ordinary LCP (actually equivalent
to (34) with N equal to the identity matrix). Statement
(ii) actually shows a way to transform the generalized
LCP as given here into an ordinary LCP. Statement
(iii) expresses the fact that among the admissible re-
initialized states p (admissible in the sense that smooth
continuation 1is  possible after the reset, (i.e.,
Cp + Fw(0) € Q) the nearest one is chosen in the
sense of the metric defined by any arbitrary storage
function corresponding to (4,B,C,D). A similar
situation is encountered in mechanical systems with
inelastic impacts [24, p. 75], where it has been called
“a principle of economy.” Observe that the
re-initialization as formulated via the minimization in
(iii) is independent of the choice of the storage func-
tion. Finally, (iv) states that in case Fw(0)=0, the
jump multiplier satisfies the complementarity condi-
tions (i.e., v € Q) and minimizes the internal energy
(expressed by the storage function 1x" Kx) after the
jump. Note that xq -+ Bv is the re-initialized state when
the impulsive part is equal to vd,. It can be shown that
the two optimization problems are actually each
other’s dual (see e.g., page 117 in {9]).

10. Passifiability by Pole Shifting

Consider a given system X(4,B,C,D) and its
pole-shifted version 3(A4 + pl, B,C,D). Note that
if (u,x,y) 18 a solution of the former one then
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¢” (u,x,y) 1s a solution of the latter one. By using
this correspondence, we reach the following rather
obvious fact.

Fact 10.1. The triple (u,x,y) is an initial solution of
LCS(A4,B,C,D,E, F) on some interval of (9) with
some initial state xg and input w € B if and only if
e’ (u,%,y) is an initial solution of LCS(4 + pl, B, C,
D, E, F) on the same interval with the same initial state
xp and the input-e¢”'w. The statement holds muratis
mutandis for global solutions in case of piecewise Bohl
inputs. The multiplication ¢’ (u, x, ¥) must be under-
stood as the multiplication of distributions by C*
functions (see e.g. [27, Chapter 2]).

This fact opens the possibility of applying all the
results obtained so far to a class of nonpassive sys-
tems. Indeed, one might find a p such that
(A + pl, B, C, D) is passive although (4, B,C, D) is
not. In what follows, we will investigate under what
conditions ¥(A4, B, C, D) can be made passive by pole
shifting.

Definition 10.2. A system %(A4, B, C, D) is said to be
passifiable by pole shifting if there exists a p € R such
that (4 + pl, B, C, D) is passive.

We sometimes say that a system is passifiable by
pole shifting with a specific storage function meaning
that it is a storage function for the pole shifted passive
system.

In the following theorem we give necessary and
sufficient conditions for passifiability by pole shifting.

Theorem 10.3. Consider a matrix 4-tuple (4, B, C, D)
such that col(B, D+ D ") is of full column rank. Let E
be such that ker E={0} and im E=ker(D+D").
Then (4, B, C, D) is passifiable by pole shifting with a
storage function x— (1/2)x' Kx where K is positive
definite if and only if D is nonnegative definite and E
CBE is symmetric positive definite.

In order to prove this theorem, we need the fol-
lowing technical lemma.

Lemma 10.4. Let P, Q € R"" and let P be of full row
rank. Then, there exists a symmetric positive definite
matrix X such that PX=Q if and only if QP" is
symmetric positive definite.

Proof. Only if: By postmultiplying PX=0Q by P', we
get PXPT =QP". Since X=X">0,0P" =PQ" >0.

If: Note that P can be written as P=(/ 0}V for some
nonsingular ¥ € R™”. Postmultiplying PX=Q by V'™
and defining Y:=VXV", we get (I 0)Y=QV".
Clearly, finding a solution to the latter equation with
Y=Y" >0 is equivalent to finding a solution to
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PX=0Q with X=X">0. Let ¥ and QV"' be parti-
tioned as follows:

Y; Yi»
Y:(Y; Y) 0V = (0, ).

To satisfy I 0)Y=QV", we can take Y;»= (0, and
Yu=0,=0V'( 0)'= QP'. Hence, by the hypo-
thesis Yy = YITI > 0. It remains to determine Y-, and
Y1 in such a way that Y= Y" >0. Choose Y2 = Y],
and Yy =T+ Y], Y7 ¥1o. Then, it follows from

I 0N /¥y 0
Y: T w1 T y—1
YLry oI 0 Yo-YplyTn

( I Yi—ll Y1g>
X 2
0 I

that ¥=Y" >0. 0

Proof of Theorem 10.3.

If: Since col(B, D+ D") is of full column rank, BE is
also of full column rank. Then, the equation
E'TB'K=E"C has a symmetric positive definite
solution K according to Lemma 10.4. Define
B=Amax(K). Let F be such that ker F={0} and
im Egim F=R". It follows from Lemma 3.2 item 2
that F'DF is positive definite. Define o=
(1/21)Amax(PT K + KP), f=(1/2u)|KBF — C" F|| and
v=—(12)Amin(F (D +D")F). Note that ~v<O0.

Take p <(6*/v) —  and note that [a;p ﬂ is non-

positive  definite. It can be wverified that
(A4 + pl, B, C, D) is passive with the storage function
V(x) =1xTKx. Indeed,

s\ [((A+pD)TK+KA+pl) KB—CT \/x
(u) ( B'K-~C —(D+DT))(M>
= x"(ATK+ KA)x +2px" Kx +2x" (KB - C")u

—u' (D+DNu
=xT(ATK + KA)x + 2px" Kx + 2x" (KB — C" ) Fuy
- L{;«FFT (D + DT)Fuy,

where u= Eu,+ Fuz From the Rayleigh-Ritz (see
e.g., [20, Theorem 5.2.2.2]) and Cauchy-Schwarz

inequalities, we get
(x)T (A+p)TK+K(A+pl) KB—CT (x)
u B'K~C —(D+D") ) \u
< )‘maX(A,TK+ KA)“»\'“2 + ZP)‘maX(K)”xnz +2||KBF
= CTAfurdlllxl = Amin(FT (D + DTYF){jud?
N T :
<o Y (a0 (1) <a
lluerd] B v/ \lull
Hence (4 +pl, B,C, D) is passive with the storage
function x— x ' Kx.
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only if: If (4, B, C, D) is passifiable by pole shifting
then there exist a p such that (A4 + pl, B,C, D) is
passive. Then, it follows from Lemma 3.2 items | and
4 that D is nonnegative definite and E' CBE is sym-
metric positive definite. I

We are in a position to apply all previous results on
passive systems to the class of systems that are
passifiable by pole shifting as stated in the following
corollary.

Corollary 10.5. Theorems 6.1. 6.6, 7.5, 8.2 and 9.1
remain valid if one replaces ‘passive’ by ‘passifiable by
pole shifting’ in Assumption 3.1. J

Especially, the case when D is positive definite is
worth stating separately.

Corollary 10.6. Consider an LCS given by (9) such
that D is positive definite. The LCS (9) has a unique
(global) solution for any initial state xy and input w.
Moreover, no solution contains impulses.

Proof. Since D is positive definite, we have

e Qp = {0} and hence Q7 = R", and
e col(B,(D+D")) is of full column rank.

It can be checked (by using a Schur complement
argument) that (A4 + pl, B,C,D) 1is passive with
the storage function x— (1/2)x'x whenever 2p is
less than or equal to the maximum eigenvalue
of —[A+AT+(B—CYD+D""(B-CT). Then,
the statement follows from Proposition 10.5, Theorem
7.5 and Theorem 6.1 item 4. |

11. Stability of LCS

The solutions to absolute stability or Lur’e problems
(in various forms and known as the passivity
theorems) are fundamental tools for the study of
the stability of smooth nonlinear systems. Concrete
examples are the circle and Popov criterion
([16, Ch. 10] or [33, Ch. 5]). These stability results deal
with an important class of control systems consisting
of linear time-invariant system interconnected with
a memoryless nonlinear feedback.
The system obtained in this way 1s described by

x(1) = Ax(t) + Bu(1), (44a)
»(t) = Cx{(t) + Du(s), (44b)
u(t) = —¢(y(1)), (44c)

where ¢:R”7—R" is
function.

As an interesting consequence of the results in the
previous sections we will obtain an extension of the
simplest version of the circle criterion [33, Thm. 5.6.18]

a memoryless nonlinear
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(see also Exercise 10.4 in [16]) addressed as the
passivity theorem} and formulated as follows.

Proposition 11.1. [33, Thm. 5.6.18] Consider the
system (44) and suppose that

e (A, B, () is minimal;
e (A, B,C,D)is strictly passive (see Definition 2.4);
e ¢ is a function and belongs to the sector [0, c0), i.e.

zTp(z) >0 for all z € R,
then the system is globally exponentially stable.’

In case strict passivity is replaced by (ordinary)
passivity, the proposition still holds with global
exponential stability replaced by Lyapunov stability.
A simple modification in the proof of [33, Thm.
5.6.18] leads to this resuit.

In [4] a first extension has been presented of the

_original passivity theorem in the sense that it allows
the nonlinearity to belong to the sector [0, oo] instead
of being restricted to [0, c0) (the generalization even
holds for the so-called monotone operators as the
feedback nonlinearity). However, this result assumes
the solutions trajectories to be time-continuous as is
not the case for linear complementarity systems as
studied here. Here, we will obtain a passivity theorem
for a particular type of nonlinearity relation belonging
to the sector [0, oo] (i.e. complementarity conditions),
which includes the possibility of discontinuities in the
state trajectory. A result of a similar nature has also
been proven in [4] that describes the stability of uni-
laterally constrained mechanical Lagrangian systems
having re-initializations in the velocity vector at
impact times.

Consider the system (9) with the input w being
absent, i.e.

(1) = Ax(t) + Bu(z), (45a)
y(t) = Cx(t) + Du(r), (45b)
0<y(t)Lu(t) >0. (45¢)

It is interesting to remark that in [16] only the situa-
tion D=0 is studied (i.e. G(s) is strictly proper) in
the main text, because the case D=0 requires the
verification of well-posedness of the feedback inter-
connection (44) and is treated partially in the exercises
(see the footnote on page 401 of [16]. Note that we
have resolved the issue of well-posedness for the case

"The system is called globally exponentially stable (with respect
to the origin), if there exists constants «, >0 such that for all
initial states n, the solution trajectory x with x{0)=x, satisfies
Ix(N)| < allxolle™ for all > 0.
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(45) in which the nonlinearity is not even a function.
For such systems the following result can be proven.

Theorem 11.2. Consider the system (45), where
(A4, B, C, D) is strictly passive and Assumption 3.1
holds. Then the system is globally exponentially
stable. In case (4, B, C, D) is passive only, then the
system is Lyapunov stable. Moreover, each jump from
xp to x(0+) satisfies TH{x(0+)) < V(xp), where V is
any quadratic storage function of the system
3(4,B,C,D).

Proof. The main difference with the standard proof
lies mainly in the handling of the initial jump (note
that due to the absence of inputs, jumps only occur at
time 7=0). Let K be any solution to the matrix
inequalities (4) (or (5)). By considering the minimiza-
tion problem (35) and observing that 0 € Qp, it
follows that

Lx§ Kxg > 1x7(0+)Kx(0+), (46)

where x(0+4) denotes the state after the re-initializa-
tion from xq. Note that the left-hand side of (46)
corresponds to substituting v=0 in the to be mini-
mized criterion in (35) and the right-hand side corre-
sponds to substituting the minimizer v=1". Hence,
V(x(0+)) < V(xq), where V(x)=(l /2)x" Kx is an arbi-
trary storage function of (4, B, C, D). It can easily be
derived from (5) that for t >0

V() — " (1) < ~eVx(0).

By using that 1" ()p(f) is smooth and equal to zero for
¢t > 0 together with Theorem 5.3.62 in [33], the global
exponential stability of the system follows. In case the
system X(A4,B,C,D) is passive, similar reasoning
as above and using Theorem 5.3.1 in [33] yields
Lyapunov stability (of the origin). |

12. Conclusions

In this paper we studied a class of discontinuous
dynamical systems that are suitable for modeling
linear passive electrical networks with ideal diodes and
voltage/current sources. To be precise, the class con-
sists of linear complementarity systems with external
inputs satisfying a passivity assumption on the
underlying linear system. The paper started by
analyzing one of the most fundamental issues in the
study of dynamical systems, we have proven the
existence and uniqueness of solution trajectories for
(a subset of ) piecewise Bohl inputs. On the basis of
a fundamental framework the nature of the solutions
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has been characterized in the sense that it has been
shown that derivatives of Dirac distributions do not
show up in the solution trajectories and continuous
inputs result in re-initializations of the state vector
only at the initial time. Moreover, the inconsistent
initial states have exactly been described by several
equivalent conditions in terms of cones and linear
complementarity problems (LCPs). Knowing the
inconsistent states, we have been able to compute the
jump multiplier and re-initialized state by solving
either a generalized LCP, an ordinary LCP or one of
the (dual) minimization problems. The minimization
problems provided nice physical interpretations of the
discontinuities in the state trajectory: the re-initialized
state is the unique admissible state vector that mini-
mizes the distance to the initial state in the metric
defined by an arbitrary storage function. Moreover,
the re-initialization minimizes the internal energy
stored in the network after the reset.

All the above results have been generalized under an
assumption of passifiability by pole shifting, a new
concept that has been formally introduced in the
paper. Moreover, necessary and sufficient conditions
for this property have been presented and turned out
to be easily verifiable.

Furthermore, we have extended the simplest version
of the circle criterion (sometimes addressed as the
“passivity theorem™) in the sense that it also holds for
a particular type of nonlinear relations that belong to
the sector [0,00] (i.e. complementarity conditions).
This result cannot be directly deduced from the circle
criterion since the nonlinearity we consider is not even
a function and results in a nonsmooth system that has
discontinuous state trajectories.
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Appendix

In this appendix, we state two lemmas of a technical
nature without any proofs. The proofs can be found in
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[5]. First, we will recall Lipschitzian properties of LCP
with positive definite matrices. The following propo-
sition is a restatement of Lemma 7.3.10 and Proposi-
tion 5.10.10 of [9].

Lemma 13.1. Let M R be a positive definite
matrix and z;€R™ be the unique solution of
LCP(g;, M) for i=1,2. Then,

3/2
Iz — 2] < 2— g1 — a2,
u(n) '

where (M) denotes the smallest eigenvalue of the
symmetric part of M, i.e., 1/2(M + M").

Next, we state a result on the positive definiteness of
first order polynomial matrices.

Lemma 13.2. [5, Lemma 3.8.3] Let M eR?*? and
NeRP*? be given. Suppose that M is nonnegative
definite and the following implication holds

x#0, x'Mx=0=xNx>0. (47)

Then, there exists > 0 such that M +eN > eul for all
sufficiently small e.



