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1. INTRODUCTION posed in recent years. In the discrepancy between the
concepts a crucial role is played by the particular types

. — . of admissible Zeno behaviour, i.e. the phenomenon
Very broadly speaking, scientific modeling may be de-hat an infinite number of discrete events occur in a

fined as the process of finding common descriptions fofnjte |ength time interval. A motivation for looking at

groups of observed phenomena. Often, several descrigrang solutions may be derived from the following water

tion forms are possible. In system and control theoryapn example (Alur and Henzinger, 1997). Consider the
differential equations are often used. Such descrlptlongystem

may be viewed as being fairindirect; after all it rep-
resents trajectories only as solutions to some problem, . . 1
rather than expressing directly what the trajectories are. Xp=—etu ip=—e+1-uw),
There are many examples in science where, as above, an .
implicit description (that is, a description in terms of a Wheree is a constant betweed and 1 and where
mathematical problem that needs to be solved) is usefu$ a hybrid control defined as follows: ifiy = 0 and
and possibly more powerful than explicit descriptions.x, > 0 then the control switches o= 1, if xp = 0
Whenever an implicit description is used, however, oneandx; > 0 then the control switches to= 0. The idea
has to show that the description is a “good” one inis that we have a pump that tries to prevent the tanks
the sense that the stated problem has a well-defineidom running empty; but the tanks are leaking with a
solution. This is essentially the issue of well-posednesdotal outflow 2 larger than the inflow of 1 and so there’s
Typically, for differential equations it is required that no ultimate cure. Nevertheless, one can show that the
solutions exist and are unique for any given initial goal is achieved along all non-Zeno trajectories.
condition. Both for the existence and for the uniqueness, . L . .
statement, one has to specify a function class in whicsﬁg"s example shows that it is crucial to incorporate
solutions are considered. The broader the function class€noness in the study of hybrid systems (i.e. in the
is, the easier existence of trajectories is guaranteed argpUtion concept) to prevent that wrong conclusions are
the more difficultitis to have uniqueness of trajectories 3rawn. Since the inclusion of Zeno behaviour leads to
Hence, there is a clear interaction between the chosefySubstantial increase of the complexity of the analysis,
solution concept and well-posedness. conditions excluding Zenoness would be very practical
and welcome, but unfortunately verifiable conditions
Inthis article we will compare several solution conceptsare hardly ever presented. In this paper we will also
being around in the literature fogbrid dynamical sys-  discuss the difficulties caused by Zeno behaviour in the
tems. Many different description formats have been pro-study of well-posedness.



2. MODEL CLASSES 0}, respectively. Now d@ifferential inclusion has been
obtained, and corresponding solution concepts can be
We will start by presenting certain model classes thagpplied (Aubin and Cellina, 1984). Other methods to
have been adopted faontinuous-time® hybrid sys- obtain differential inclusions are proposed by Utkin

tems and for which well-posedness isstes have bedrfOntrol equivalent definition’) and Aizerman and Py-
studied. atnitskii (see (Filippov, 1988) for an overview).

2.1 The hybrid automaton model

) ] . 2.3 Piecewise or multi-modal linear systems
A useful framework to describe hybrid dynamical
systems is that of &ybrid automaton, see (Aluret
al., 1995; Lynchet al., 1996). Basically, a hybrid au-
tomatonnerg_esthg standard (t:)oncepdts Ipf aurt]omda}ta an
continuous-time dynamics, by modeling the discrete R Lo
part of the dynamics by means of a graph whose vertices = A’x’,'f X€C, i= 1_’ ol @
are calledocations and whose edges ateansitions. ~ WhereC; are certain subsets &' with
To every discrete state docation ¢ € Loc of the au- r
tomaton one associates a continuous-time dynafnics U G, =R"and int¢; NintC; =¥, i+#j. (3)
X = fi(x) governing the evolution of the continuous !
statex. Interaction between the discrete dynamics and
the continuous dynamics takes place throuiglari-
ants andtransition relations. Indeed, the continuous- 2.4 Complementarity systems
time dynamics may induce discrete transitions in the

locations by specifying for every locatidra so-called  systems of the form (1) are sometimes known as
location invariant Inv(¢), which is a subset of the con- yariable-structure systems; they describe a type of
tinuous state space = R", specifying the feasible set mode-switching. A similar mode-switching behavior is
of continuous states for the locationin the sense that gptained from a class of systems knowrtasplemen-

if exit of the continuous state from the location invariant tzrjty systems (van der Schaft and Schumacher, 1998;
is imminent, then a transition to another locatin  Heemelst al., 2000). Equations for a complementarity
and / or a reset of the continuous statéas to take system may be written in terms of a state variabésd

place (or the system is in a deadlock). The discreteyxiliary variablesy andz, which must be vectors of
transitions are given by a collectionof edges” Locx  the same length, as:

Loc. For every discrete transitioft, ¢') € E a guard

As a subclass of the systems of the previous subsection,
onsider multi-modal or piecewise linear systems of the
orm

i=1

G (¢, ') C X is specified, definingnabling conditions X = f(x,v) (4a)
on the continuous state in order that the transition to z = h(x,v) (4b)
¢’ may take place. Another interplay between discrete 0<zlv>0, (4c)

and continuous dynamics is provided by the reset rela- )

tionsR(¢, ¢') C X x X, specifying for every discrete where the last line means that the components of the
transition(¢, ¢) € E the continuous state reset from auxiliary variablesy andz should be nonnegative, and

x € G, ¢') tox" € X such that(x, x’) € R(¢,¢). thatfor each index and for each time at least one of
Sometimes a set of initial (hybrid) statest € Locx X  the two variables); (r) andz; () should be equal to 0.

is given. The description (4) isin principle implicitin the discrete
variables or modes. However, like (1), the system (4)
2.2 Discontinuous differential equations can be considered to consist of a number of different

dynamical systems or “modes” that are glued together.

For a typical example ofiifferential equations with ~ The modes can be thought of as discrete states. They
discontinuous right hand sides (Filippov, 1988; Utkin, correspond to a fixed choice, for each of the indices

1981), consider: i, between the two possibilitieg > 0, z; = 0 and
. v; = 0, z; > 0, so that a complementarity system in
r = J1(x) (h(x) > 0) (1a)  whichthe vectors andz have lengthn has 2" different
X = falx)  (h(x) <0, (1b)  modes. The specification (4) is In general not complete

yet; one has to add a rule that describes possible jumps
of the state variable when a transition from one mode
4o another takes place (think of mechanical systems
with impacts). In principle, this forms a distinction with
one would rewrite the equations (1) &s € F(x) the previous two subsections as the state trajectories
where the set-valued functiah(x) is defined by ' are continuous in those cases. The complementarity
system can in principle be rewritten in the explicit
F(x) ={faix)}, (h(x) > 0) hybrid automaton format, but the representation that is
F(x) = {fo(x) (h(x) <0), obtained may be awkward (see (Heenstll ., 1999)).

F(x) ={afi(x) + (1 —a)f2(x) | a € [0, 1]} (h(x) = 0),

where it is assumed thaf; and f> are continuous
functions defined ofix | 2(x) > 0} and{x | A(x) <

whereh is a real-valued function. The specification
above is incomplete as no statement is made oy =
0. One way to arrive at a solution concept is to adopt
suitablerelaxation. Specifically, in aconvex relaxation

3. SOLUTION CONCEPTS

A description format for a class of dynamical systems
only specifies a collection of trajectories if one pro-
1 The restriction to continuous-time is taken as the interaction be-videsda notion of SIOIUtlon' ACtLtlally the tel.m: &Q‘om“.o?.
tween discrete and continuous dynamics gives much moreinterestingjrea y more or less suggests an implicit description

questions (e.g. related to Zenoness) than for the discrete-time casffMat; in computer science terms, one may also say
For discrete-time systems well-posedness usually comes down that a definition should be given of what is understood

solvability properties of algebraic problems. by arun (or anexecution). Formally speaking, descrip-
2 In a more general setting these might also be specified by differtion formats are a matter of syntax: they specify what
ential and algebraic equatio (x, %) = 0. is a well-formed expression. The notion of solution




provides semantics: to each well-formed expression i8.3 Multimodal linear systems
associates a collection of functions of time. Here we

review solution concepts for several of the descriptionThe solution concept that is employed for (2) in (Imura

formats that were introduced. and van der Schaft, 2000) is the extended Carathéodory
, solution, which is based on considering the differential
3.1 Hybrid automata equationsi = f(x) with f(x) the (discontinuous)

_ ) vector field given by the right-hand side of (2).
To present the solution concept for hybrid automata, we

first define “hybrid time trajectories.” Definition 3.4. The functionx : [fo.71] — R” is
o o an extended Carathéodory solutionyxifs absolutely
Definition 3.1. (Johanssoetal., 199%) A hybridtime  continuous orizg, #1], satisfies

trajectoryt = {Ii}lN:o is a finite (V < oo) or infinite

t
g]\/ t: 00) sequence of intervals of the real line, such x(t) = x(to) +/ f(x())dr, (5)
al fo
o [ =[r,t/]witht, <7/ =741for0<i < N; and if there are no left-accumulation points in the set
o if N < oo, either Iy = [ty.7,] of Iy = Of eventtimes, i.e. the collection of time instants at
[tn. 70) With 7y < T/, < 00 N which switches are made from;x to A;x for some
HIN =T =02 i# )

Definition 3.2. An executiony of a hybrid automaton

is a collectiony = (r, 4, &) with = a hybrid time 3 4 Complementarity systems
trajectory,A : t — Locandx : T — X, satisfying

* f(c/}r(rgl)l’ § (;?J)ghetlhr;% (.|n|t|al Qogd:gf’ggh finuously  FOF complementarity systems one may develop several

e 0 r T < T Y solution concepts, which may be similar to the notion
differentiable and is constant or{z;, /], and  of an execution for hybrid automata, or to the solution
£(t) € Inv(A(t)) andé(r) = fuy)(E(r)) for all  concept for differential inclusions as discussed above.
t € [%, 7)) (continuous evolution); and A solution concept of the first type can for instance be

° for a” i, e = (}\.(Tl-/), )"(ri-i-l)) c E, S(Ti/) c G(e) formulated as f0||OWS

and(x(z}), x(ti+1)) € R(e) (discrete evolution).  penition 3.5. A triple (v, x, z) of vector functions is

said to be dorward solution of the system (4) on the
) ) _ ) ] interval[a, b), if x is continuous, there exists a sequence
3.2 Discontinuous differential equations of time points(to, t1, ...) with o = a, tj+1 > t; for
all j, and eithery = b or lim;_ . t; = b, as well
As seen above, some hybrid systems can be viewesls for eacty = 0, 1,... an index sef;, such that for
as differential inclusions with the following standard all ; the restrictions ok (-), v(-), andz(-) to (tj, tj+1)

solution concept. are real-analytic, and for alle (¢;, ;1) the following
holds:

Definition 3.3. A function x : [a,b] — R" is a .

solution of ¥ € F(x), if x is absolutely continuous X)) = f(x (@), v(1), z(t) = h(x(t), v(1))

and satisfies (t) € F(x(¢)) for aimost all € [a, b]. zi(t) =0fori € I, v;(t) =0fori ¢ I

zi(t) = 0fori & I;,v;(t) = 0fori e I;.

An alternative solution concept for € F(¢, x) can . . .
be formed by taking limits of approximate solutions The definition requires that the-part of the solution
defined by some approximation scheme (“samplingS continuous across events. For so-called “high-index
solutions” (Clarkeet al., 1997) and “Euler solutions” Systems (e.g. unilaterally constrained mechanical sys-
(Clarkeet al., 1998)). This concept is based on taking t€ms), this requirement is too strong and one has to add
aselection f of F, i.€. afunctionf such thatf (¢, x) e  Jump rules that connect continuous states before and
F(t,x) for all (¢,x) (Clarke et al., 1998). Then a after an event has taken place. Under suitable condi-
generalized solution concept is used for the differentiafions, & general jump rule may be given; see (Heemels
equationi = f(z,x), which does not require any €t a., 2000; van der Schaft and Schumacher, 1998).
particular regularity off. Another possibly restrictive aspect of the definition lies

_ o . in the fact that it assumes that the set of event times
Given initial statex(0) = xo an approximation on is well-ordered by the usual order of the reals, but
the interval[O, T] is made by selecting a set of dis- not necessarily by the reverse order; in other words,
cretization pointst = f{ro,11,.... 5} With ;o = O event times may accumulate to the right, but not to the
andty = T. The mesh size of this set is defined by left. This lack of symmetry with respect to time can
K = maxy —ti—1 | 1 < i < N}. Given this set  be removed by allowing the set of event tin@so be
of discretization points we obtain a piecewise linearof a more general type. For instance, one may require
functionx, by applying the Euler integration routine: it ¢ is closed and nowhere denSethis guarantees

Xr (tig1) = Xg (&) + (tigr — 1) f(xr (1), 1) that the complement of is open and that for each

) o event timer one can construct sequences of non-event
fori =0,...,N — 1, x;(top) = xo and using linear

interpolation between the discretization points. Such

a piecewise linear approximation Is called an Euler an element of a seté is said to be deft (right) accumulation
polygonal arc. A solution tat = f(z, x) with initial  pointifforall /' > 7 (¢ <) (r, ) N & ((, 1) N €) is not empty.
statexg Is a UnIfOl'mlllmlt of some sequence of EUler 4 An ordered sef is said to be well-ordered if each nonempty subset
polygonal arcscz; with 11, — 0. An Euler solution  of s has a least element.

of x € F(t,x) with initial statexg is now defined as 5 Aclosed subset of a topological space is nowhere dense if and only
an Euler solution to: = f(z, x) with initial statexo, if its interior is empty.

where f is some selection of.




times converging ta, both of which may be useful hybrid automaton “it still remains to be investigated
properties for other parts of the definition. Indeed, atwhether executions can be extended over arbitrary time
a right-accumulation point of event times one can tryhorizons.” A first step to a stronger notion is obtained
to construct the left-limit of the stateand to continue by requiring that a solution exists on some interval
from this limit state in ‘forward time.’ In the setting of [0, ¢) with ¢ > 0; system descriptions for which such
complementarity or multi-modal linear system this is solutions exist and are unique are calledally well-
possible as the discrete state is in principle determinedosed. In computer science terminology, such systems
by the continuous state. Hence, this provides a mearigllow time to progress”. Finally, if solutions exist and
to define a ‘natural relaxation’ of these discontinuousare unique on the whole half-ling, oo), then one
dynamical systems to arrive at solutions beyond Zenapeaks ofjlobal well-posedness.

times. See for instance, the three-ball example and

Filippov’'s example below. Solutions that are obtained

in this way are callechybrid solutions, because the 5. EXAMPLES

corresponding solution concept is still based on explicit

reference to event times. In this section we will discuss several examples of

; i ; hybrid systems, which will highlight the difference
'g\?eﬂigrigatﬂ\éefgﬁg@?npg ?r?éforegoes explicitmention 0fbetween the solution concepts mentioned above.

L , nom i Example5.1. The example of three balls in which
Definition 3.6. A triple (x, v, z) € L5 “" is saidto be  inelastic impacts are modeled by successions of simple
an Lp-solution of (4) on the intervalO, T'] with initial  impacts (Figure 1) has also been mentioned in (Heemels
conditionxg if for almost all7 € [a, b] the following et al., 1999) as an example of a system with live-lock,

conditions hold: i.e. an infinite number of events at one time-instant.
' Suppose the balls all have unit mass and are touching at
x(t) = xo+ / Fx(s), v(s)) ds time 0. The initial velocityv1 (0) of ball 1 is equal to 1
0 and for balls 2 and 32(0) = v3(0) = 0. By modelling
all impacts separately, first an inelastic collision occurs
2(1) = h(x(0), v(®) between ball 1 and 2 resulting in(0+) = vo(0+) =
0<z(®) Lv@) =>0. % v3(0+) = 0. Next, ball 2 hits ball 3 resulting in

1 1 .
This definition is in the spirit of the one given above for V1(0++) = 5, v2(0++) = v3(0++) = 7 after which
differential inclusions like Filippov's solutions (‘con- ball 1 hits ball 2 again. In this way, a sequence of jumps
vex definition) or Utkin’s solutions (‘control equivalent 1S generated

definition’). - % % 33 1
1% 8H
4. WELL-POSEDNESS v2:0 3 7 % > ?
1
Well-posedness roughly means that solutions exist and v3: 0 0 17216 16

are unique for any given initial condition. Both for the . .

existen?:e and forytr?e uniqueness statement, one has{§1ich converges tcﬁ%, 3 :%,;)T after which a smooth
specify a function class in which solutions are consid-continuation is possible with constant and equal veloc-
ered. The function class used for existence may be thiéy for all balls. Note that a limiting operation is needed
same as the one used for uniqueness, or it may be dit0 getbeyond the Zeno-time 0. This mightbe considered
ferent. If solutions exist and are unique, a given systend form of regularization, which works in the case the
description defines a mapping from initial conditions todiscrete state is subordinate to the continuous state.
trajectories. In the theory of smooth dynamical systemsOther forms of regularization are discussed in (Lygeros
it is usually taken as part of the definition of well- € al., 1999; Johanssost al., 199%) (cf. Section 6
posedness that this mapping is continuous with respe&emw)-

to suitably chosen topologies. This may be a too strong V(0)=1 V=0 V(00

requirement for hybrid systems.
Besides the function classes (‘solution concepts’) con- @
sidered, one may also distinguish between various no-

tions of well-posedness on the basis of the time interval

that is involved. For instance, in the context of hybrid Fig. 1. Three balls example.

automata, one may say that a given automatamis

blocking (Johanssomt al., 199%), if for each initial ) ) )
condition either at least one transition is enabled or &€everal hybrid examples are around in the literature
smooth continuation within one of the locations duringdisplaying right-accumulations of event times like the
an interval of positive length is possible. Alternatively, bouncing ball (Brogliato, 1996), the water tank system
this type of We||-posedness can be described by sa f the Introductlo_n, and so on. Here we WI” present
ing that “deadlock is absent.” If the continuation is an example that fits into many of the mentioned model
unique (the automaton ieterministic (Johanssort  classes.

al., 199%)), one may then say that the automaton is . )

initially well-posed. This definition allows a situation Example5.2. The time reversed version of a system
in which a transition from location 1 to location 2 is studied by Filippov (Filippov, 1988, p. 116) is given by
immediately followed by a transition back to location 1
and so on. Hence, an infinite loop occurs with= z/
for all i > ig for someig in the definition of an execu- .
tion of the hybrid automatorigelock). In (Lygeroset A1=—Sgrxy) + 2sgrix2) (62)
al., 1999), itis stated that for an initially well-posedness X = —2sgr(x1) — Sgn(x2), (6b)




where “sgn” denotes the signum-function given byFilippov, Utkin or Euler solutions or thé »-solution

sgnx) = 1,ifx > 0,sgnx) = —1,if x < 0 and
sgnx) € [—1, 1] whenx = 0 (note that this choice

concept for complementarity systems are not using any
references to modes or event times. In general this

complies with Filippov’s convex and Utkin's control means that they allow broader types of event times sets.
equivalent definition). Solutions of this piecewise con-Therefore, a further classification can be made on the
stant system are spiraling towards the origin, whichbasis of the nature of the event set.

is an equilibrium. Sincel (Ix1(1)| + lx2(1)) = -2,

whenx(t) # 0, solutions reach the origin in finite
time. See Figure 2 for a trajectory. However, solutionspefinition 6.1. A seté€ c R, is called anadmissible
cannot arrive at the origin without going through an g ent times set if it is closed and countable, andede.

infinite number of mode transitions (relay switches).1q each admissible event times $@twe associate a
Since these mode switches occurin afinite time intervaleg|iection of intervals between events = {(t1, 12) C

the event times contain a right-accumulation point (i.e: _
the time that the solution reaches the origin) afterwhichR“L 11,72 € € U{oo} and(ny, 12) N € = ).
the solution stays at zero. Again a limiting operation can
define a “reasonable” solution beyond the Zeno point.Note that both left and right accumulations of event
times are allowed by the above definition.

6.2 Nature of event times set

Definition 6.2. An admissible event times sétis said
to beleft (right) Zeno freg, if it does not contain any left
(right) accumulation points.

Note that a hybrid time trajectory as defined in subsec-
tion 3.1 does not allow left-accumulation points. The
eventse€ := {O}U{,—ll | n € N} and the corresponding
sequence of intervalg cannot be rewritten in terms
of a hybrid time trajectory. The hybrid time trajectory
corresponds to a well-ordered event set with respect to
the usual (increasing) ordering of the real line.

Fig. 2. Trajectory in the phase plane.

Left-accumulation points are awkward as well. Of
course, time-reversal of systems with right-accumulatiorer general hybrid automata it is in principle im-
lead to such systems. Here, we mention an example thaossible to define a solution concept beyond a right-
is discussed in (Pogromslegyal., 2001). accumulation point of event times. In (Johanssbn
al., 199%) one mentions three possibilities of extension
of Zeno executions: regularization (i.e. modifying the

Example 5.3. Consider the following system ! !
original Zeno automaton by adding temporal or spa-

010 0 tial regularization parameters), averaging (averaging
i=[1001)x+{0)u 7) the vector field close to the Zeno time) and Filippov
000 1 relaxation, which only applies in particular cases of
y=(10 Ox differential equations with discontinuous right-hand
i = —sgny ®) sides. In principle, in the latter case we are dealing

) ) ) ) _with a situation in which the location (discrete state)
This system might also be written as the piece-wisgs determined fully by the continuous state. Actually,
linear bi-modal system: this is also true for solution concepts with no explicit
mention of the discrete state or an application to classes

{ mggg %j ; _ ﬁ;i :; i _ g; = 8 (9) like discontinuous differential equations, complemen-
' ’ tarity systems, or multi-modal linear systems as one can
wherex € R", y € R and continue by taking the left-limit of the state — provided
it exists — and define a continuation from the left-limit
010 0 0100 state (as if it was a new initial state). In this manner, a
A= 8 8 é 01 CAp= 8 8 é (1) (10) ‘natural relaxation’is obtained.
000 O 0000 Execution of hybrid automaton : & is left Zeno free.
No continuationis possible beyond right-accumulation
C=(1000 (11) (besides regularization).

There are infinitely many ‘solutions’ starting in the ori- Filippov’s, Euler or Utkin’s : No restrictions or€.
gin, if left-accumulations of relay switching times are Extended Carathéodory : € is left Zeno free. Con-

allowed in the solution concept (as e.g. for Filippov's
solution concept).

6. COMPARISON
6.1 Use of event sets

tinuation beyond right-accumulation point possible
due to taking left-limit of state which can determine
new discrete state.

Forward solution : & is left Zeno free. Continuation
beyond right-accumulation point possible due to

taking left-limit of state which can determine the new
discrete state.

In a classification of solution concepts, one m'ghth-sqution - No restrictions ore.

begin by making a distinction as to whether or not
there is explicit mention of different modes and/or an
event set. Clearly, th? execution .for hybrid automatas In (Imura, 2001) a solution concept has been introduced based on
the e_Xtende_d Carathéodory solutions, the _forward angdifferent mode transition rule called the “switch-based rule,” which
hybrid solution concept for complementarity systemsyitrers from the usually applied “mode-based rule.” In this modified
mention the event set and the different modes. Theersion of the extended Carathédory notion of solutions continuation
solution concepts based on differential inclusions likebeyond right-accumulation points is in principle not possible.




Hybrid solution : No restrictions or€. classes. The explicit mention of modes and / or event
. T . . times and the kind of event times set that are allowed
For livelock the situation is similar as for continuation o med the major differences between the notions. The
beyond right-accumulation points. This means that foryhsence of accumulations of event times will cause
Example 5.1 no local solution exists if taking limits of 4y of the mentioned solution concepts to coincide.
the event states at= 0 is not included in the solution  A|sqthe kind of relaxations used (e.g. to go from a dif-
c?ncept._ Foasgluhtlog_ concepts m_fe[jred from ént?d%ferential equation to a differential inclusion) affects the
classes in which the discrete state Is determined by th,q of solution trajectories obtained. The interaction

continuous state, a local and even global solution can bgeyeen the solution concepts and the well-posedness
defined for the three balls example. Similar statements; e has been pointed out. In a broad solution space

hold for Example 5.2 for global solutions. existence of trajectories is easier satisfied than in a small

On the basis of the previous we can also state tha@ne, for uniqueness the converse statement hold. One
Example 5.3 (see (Pogromskyal., 2001)) will have ~Mightalsotry to show existence of trajectories inasmall
one execution (for a hybrid automaton with three mode$!ass (e.g. forward solution) and show uniqueness in a
(including the sliding mode)) , infinitely many Filippov bigger one (e.gL>- or Filippov solutions). In this way,
solutions, no extended Carathéodory solution, one forl.t IS pOSSIble to obtain conditions that exclude partlcular

ward solution, infinitely many.»-solutions and hybrid ~ types of Zeno behaviour (in this case left-accumulation
solutions. points within the class of Filippov solutions) as is de-

] ) o ] sirable from an analysis point of view as demonstrated
The above discussion also indicates that time-reversajy the two-tank system in the introduction.
of executions, forward solutions, extended Carathéodory
solutions does not necessarily yield such solutions again 8. REFERENCES
bECﬁuze ?cfthe We'”-or'dered e'ven]:[ttimes Sgt?' Henc|e’ t'g\?ur R. and T.A. Henzinger (1997). Modularity for timed an hybrid
method of reversing time as is often used for analysis'!" ~ A .
of smooth dynamical systems, is not possible without ~ SyStems. INCONCUR97. Lect. Notes Comp. . 1243. pp. 74—

switching to adifferent (more general) solution Concept'AIur, R C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,

X. Nicollin, A. Olivero, J. Sifakis and S. Yovine (1995). The
algorithmic analysis of hybrid systemBheoretical Computer
Science 138 3-34.

6.3 Smple variable structure system
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