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1. INTRODUCTION

Very broadly speaking, scientific modeling may be de-
fined as the process of finding common descriptions for
groups of observed phenomena. Often, several descrip-
tion forms are possible. In system and control theory
differential equations are often used. Such descriptions
may be viewed as being fairlyindirect; after all it rep-
resents trajectories only as solutions to some problem,
rather than expressing directly what the trajectories are.
There are many examples in science where, as above, an
implicit description (that is, a description in terms of a
mathematical problem that needs to be solved) is useful
and possibly more powerful than explicit descriptions.
Whenever an implicit description is used, however, one
has to show that the description is a “good” one in
the sense that the stated problem has a well-defined
solution. This is essentially the issue of well-posedness.
Typically, for differential equations it is required that
solutions exist and are unique for any given initial
condition. Both for the existence and for the uniqueness
statement, one has to specify a function class in which
solutions are considered. The broader the function class
is, the easier existence of trajectories is guaranteed and
the more difficult it is to have uniqueness of trajectories.
Hence, there is a clear interaction between the chosen
solution concept and well-posedness.

In this article we will compare several solution concepts
being around in the literature forhybrid dynamical sys-
tems. Many different description formats have been pro-

posed in recent years. In the discrepancy between the
concepts a crucial role is played by the particular types
of admissible Zeno behaviour, i.e. the phenomenon
that an infinite number of discrete events occur in a
finite length time interval. A motivation for looking at
Zeno solutions may be derived from the following water
tank example (Alur and Henzinger, 1997). Consider the
system

ẋ1 = −ε + u; ẋ2 = −ε + (1 − u),

whereε is a constant between12 and 1 and whereu
is a hybrid control defined as follows: ifx1 = 0 and
x2 > 0 then the control switches tou = 1, if x2 = 0
andx1 > 0 then the control switches tou = 0. The idea
is that we have a pump that tries to prevent the tanks
from running empty; but the tanks are leaking with a
total outflow 2ε larger than the inflow of 1 and so there’s
no ultimate cure. Nevertheless, one can show that the
goal is achieved along all non-Zeno trajectories.

This example shows that it is crucial to incorporate
Zenoness in the study of hybrid systems (i.e. in the
solution concept) to prevent that wrong conclusions are
drawn. Since the inclusion of Zeno behaviour leads to
a substantial increase of the complexity of the analysis,
conditions excluding Zenoness would be very practical
and welcome, but unfortunately verifiable conditions
are hardly ever presented. In this paper we will also
discuss the difficulties caused by Zeno behaviour in the
study of well-posedness.
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2. MODEL CLASSES

We will start by presenting certain model classes that
have been adopted forcontinuous-time 1 hybrid sys-
tems and for which well-posedness issues have been
studied.

2.1 The hybrid automaton model

A useful framework to describe hybrid dynamical
systems is that of ahybrid automaton, see (Aluret
al., 1995; Lynchet al., 1996). Basically, a hybrid au-
tomatonmerges the standard concepts of automata and
continuous-time dynamics, by modeling the discrete
part of the dynamics by means of a graph whose vertices
are calledlocations and whose edges aretransitions.
To every discrete state orlocation � ∈ Loc of the au-
tomaton one associates a continuous-time dynamics2

ẋ = f�(x) governing the evolution of the continuous
statex. Interaction between the discrete dynamics and
the continuous dynamics takes place throughinvari-
ants and transition relations. Indeed, the continuous-
time dynamics may induce discrete transitions in the
locations by specifying for every location� a so-called
location invariant Inv(�), which is a subset of the con-
tinuous state spaceX = R

n, specifying the feasible set
of continuous states for the location�, in the sense that
if exit of the continuous state from the location invariant
is imminent, then a transition to another location�′
and / or a reset of the continuous statex has to take
place (or the system is in a deadlock). The discrete
transitions are given by a collection of edgesE ⊂ Loc×
Loc. For every discrete transition(�, �′) ∈ E a guard
G(�, �′) ⊂ X is specified, definingenabling conditions
on the continuous state in order that the transition to
�′ may take place. Another interplay between discrete
and continuous dynamics is provided by the reset rela-
tionsR(�, �′) ⊂ X × X, specifying for every discrete
transition(�, �′) ∈ E the continuous state reset from
x ∈ G(�, �′) to x′ ∈ X such that(x, x′) ∈ R(�, �′).
Sometimes a set of initial (hybrid) statesInit ⊆ Loc×X
is given.

2.2 Discontinuous differential equations

For a typical example ofdifferential equations with
discontinuous right hand sides (Filippov, 1988; Utkin,
1981), consider:

ẋ = f1(x) (h(x) > 0) (1a)
ẋ = f2(x) (h(x) < 0), (1b)

whereh is a real-valued function. The specification
above is incomplete as no statement is made forh(x) =
0. One way to arrive at a solution concept is to adopt a
suitablerelaxation. Specifically, in aconvex relaxation
one would rewrite the equations (1) asẋ ∈ F(x),
where the set-valued functionF(x) is defined by

F(x) = {f1(x)}, (h(x) > 0)

F (x) = {f2(x) (h(x) < 0),

F (x) = {af1(x) + (1 − a)f2(x) | a ∈ [0, 1]} (h(x) = 0),

where it is assumed thatf1 and f2 are continuous
functions defined on{x | h(x) ≥ 0} and{x | h(x) ≤

1 The restriction to continuous-time is taken as the interaction be-
tween discrete and continuous dynamics gives much more interesting
questions (e.g. related to Zenoness) than for the discrete-time case.
For discrete-time systems well-posedness usually comes down to
solvability properties of algebraic problems.
2 In a more general setting these might also be specified by differ-
ential and algebraic equationsF�(x, ẋ) = 0.

0}, respectively. Now adifferential inclusion has been
obtained, and corresponding solution concepts can be
applied (Aubin and Cellina, 1984). Other methods to
obtain differential inclusions are proposed by Utkin
(‘control equivalent definition’) and Aizerman and Py-
atnitskii (see (Filippov, 1988) for an overview).

2.3 Piecewise or multi-modal linear systems

As a subclass of the systems of the previous subsection,
consider multi-modal or piecewise linear systems of the
form

ẋ = Aix, if x ∈ Ci , i = 1, . . . , r, (2)
whereCi are certain subsets ofR

n with
r⋃

i=1

Ci = R
n and intCi ∩ int Cj = ∅, i 
= j. (3)

2.4 Complementarity systems

Systems of the form (1) are sometimes known as
variable-structure systems; they describe a type of
mode-switching. A similar mode-switching behavior is
obtained from a class of systems known ascomplemen-
tarity systems (van der Schaft and Schumacher, 1998;
Heemelset al., 2000). Equations for a complementarity
system may be written in terms of a state variablex and
auxiliary variablesv andz, which must be vectors of
the same length, as:

ẋ = f (x, v) (4a)
z = h(x, v) (4b)
0 ≤ z ⊥ v ≥ 0, (4c)

where the last line means that the components of the
auxiliary variablesv andz should be nonnegative, and
that for each indexi and for each timet at least one of
the two variablesvi(t) andzi(t) should be equal to 0.
The description (4) is in principle implicit in the discrete
variables or modes. However, like (1), the system (4)
can be considered to consist of a number of different
dynamical systems or “modes” that are glued together.
The modes can be thought of as discrete states. They
correspond to a fixed choice, for each of the indices
i, between the two possibilitiesvi ≥ 0, zi = 0 and
vi = 0, zi ≥ 0, so that a complementarity system in
which the vectorsv andz have lengthm has 2m different
modes. The specification (4) is in general not complete
yet; one has to add a rule that describes possible jumps
of the state variablex when a transition from one mode
to another takes place (think of mechanical systems
with impacts). In principle, this forms a distinction with
the previous two subsections as the state trajectories
are continuous in those cases. The complementarity
system can in principle be rewritten in the explicit
hybrid automaton format, but the representation that is
obtained may be awkward (see (Heemelset al., 1999)).

3. SOLUTION CONCEPTS

A description format for a class of dynamical systems
only specifies a collection of trajectories if one pro-
vides a notion of solution. Actually the term “solution”
already more or less suggests an implicit description
format; in computer science terms, one may also say
that a definition should be given of what is understood
by arun (or anexecution). Formally speaking, descrip-
tion formats are a matter of syntax: they specify what
is a well-formed expression. The notion of solution



provides semantics: to each well-formed expression it
associates a collection of functions of time. Here we
review solution concepts for several of the description
formats that were introduced.

3.1 Hybrid automata

To present the solution concept for hybrid automata, we
first define “hybrid time trajectories.”

Definition 3.1. (Johanssonet al., 1999b) A hybrid time
trajectoryτ = {Ii}Ni=0 is a finite (N < ∞) or infinite
(N = ∞) sequence of intervals of the real line, such
that

• Ii = [τi, τ
′
i ] with τi ≤ τ ′

i = τi+1 for 0 ≤ i < N ;
• if N < ∞, either IN = [τN , τ ′

N ] or IN =
[τN , τ ′

N) with τN ≤ τ ′
N ≤ ∞.

Definition 3.2. An executionχ of a hybrid automaton
is a collectionχ = (τ, λ, ξ) with τ a hybrid time
trajectory,λ : τ → Loc andx : τ → X, satisfying

• (λ(τ0), ξ(τ0)) ∈ Init (initial condition);
• for all i such thatτi < τ ′

i , ξ is continuously
differentiable andλ is constant on[τi, τ

′
i ], and

ξ(t) ∈ Inv(λ(t)) and ξ̇ (t) = fλ(t)(ξ(t)) for all
t ∈ [τi, τ

′
i ) (continuous evolution); and

• for all i, e = (λ(τ ′
i ), λ(τi+1)) ∈ E, ξ(τ ′

i ) ∈ G(e)

and(x(τ ′
i ), x(τi+1)) ∈ R(e) (discrete evolution).

3.2 Discontinuous differential equations

As seen above, some hybrid systems can be viewed
as differential inclusions with the following standard
solution concept.

Definition 3.3. A function x : [a, b] �→ R
n is a

solution of ẋ ∈ F(x), if x is absolutely continuous
and satisfieṡx(t) ∈ F(x(t)) for almost allt ∈ [a, b].

An alternative solution concept foṙx ∈ F(t, x) can
be formed by taking limits of approximate solutions
defined by some approximation scheme (“sampling
solutions” (Clarkeet al., 1997) and “Euler solutions”
(Clarkeet al., 1998)). This concept is based on taking
aselection f of F , i.e. a functionf such thatf (t, x) ∈
F(t, x) for all (t, x) (Clarke et al., 1998). Then a
generalized solution concept is used for the differential
equationẋ = f (t, x), which does not require any
particular regularity off .

Given initial statex(0) = x0 an approximation on
the interval[0, T ] is made by selecting a set of dis-
cretization pointsπ = {t0, t1, . . . , tN } with t0 = 0
and tN = T . The mesh size of this set is defined by
µπ := max{ti − ti−1 | 1 ≤ i ≤ N}. Given this set
of discretization points we obtain a piecewise linear
functionxπ by applying the Euler integration routine:

xπ(ti+1) = xπ(ti) + (ti+1 − ti )f (xπ (ti), ti)

for i = 0, . . . , N − 1, xπ(t0) = x0 and using linear
interpolation between the discretization points. Such
a piecewise linear approximation is called an Euler
polygonal arc. A solution tȯx = f (t, x) with initial
statex0 is a uniform limit of some sequence of Euler
polygonal arcsxπj

with µπj
→ 0. An Euler solution

of ẋ ∈ F(t, x) with initial statex0 is now defined as
an Euler solution tȯx = f (t, x) with initial statex0,
wheref is some selection ofF .

3.3 Multimodal linear systems

The solution concept that is employed for (2) in (Imura
and van der Schaft, 2000) is the extended Carathéodory
solution, which is based on considering the differential
equationsẋ = f (x) with f (x) the (discontinuous)
vector field given by the right-hand side of (2).

Definition 3.4. The function x : [t0, t1] �→ R
n is

an extended Carathéodory solution, ifx is absolutely
continuous on[t0, t1], satisfies

x(t) = x(t0) +
∫ t

t0

f (x(τ))dτ, (5)

and if there are no left-accumulation points in the set
of event times3 , i.e. the collection of time instants at
which switches are made fromAix to Ajx for some
i 
= j .

3.4 Complementarity systems

For complementarity systems one may develop several
solution concepts, which may be similar to the notion
of an execution for hybrid automata, or to the solution
concept for differential inclusions as discussed above.
A solution concept of the first type can for instance be
formulated as follows.

Definition 3.5. A triple (v, x, z) of vector functions is
said to be aforward solution of the system (4) on the
interval[a, b), if x is continuous, there exists a sequence
of time points(t0, t1, . . . ) with t0 = a, tj+1 > tj for
all j , and eithertN = b or limj→∞ tj = b, as well
as for eachj = 0, 1, . . . an index setIj , such that for
all j the restrictions ofx(·), v(·), andz(·) to (tj , tj+1)
are real-analytic, and for allt ∈ (tj , tj+1) the following
holds:

ẋ(t) = f (x(t), v(t)), z(t) = h(x(t), v(t))
zi(t) = 0 for i ∈ Ij , vi(t) = 0 for i 
∈ Ij

zi(t) ≥ 0 for i 
∈ Ij , vi(t) ≥ 0 for i ∈ Ij .

The definition requires that thex-part of the solution
is continuous across events. For so-called “high-index”
systems (e.g. unilaterally constrained mechanical sys-
tems), this requirement is too strong and one has to add
jump rules that connect continuous states before and
after an event has taken place. Under suitable condi-
tions, a general jump rule may be given; see (Heemels
et al., 2000; van der Schaft and Schumacher, 1998).
Another possibly restrictive aspect of the definition lies
in the fact that it assumes that the set of event times
is well-ordered4 by the usual order of the reals, but
not necessarily by the reverse order; in other words,
event times may accumulate to the right, but not to the
left. This lack of symmetry with respect to time can
be removed by allowing the set of event timesE to be
of a more general type. For instance, one may require
thatE is closed and nowhere dense;5 this guarantees
that the complement ofE is open and that for each
event timeτ one can construct sequences of non-event

3 An elementt of a setE is said to be aleft (right) accumulation
point if for all t ′ > t (t ′ < t) (t, t ′) ∩ E ((t ′, t) ∩ E ) is not empty.
4 An ordered setS is said to be well-ordered if each nonempty subset
of S has a least element.
5 A closed subset of a topological space is nowhere dense if and only
if its interior is empty.



times converging toτ , both of which may be useful
properties for other parts of the definition. Indeed, at
a right-accumulation point of event times one can try
to construct the left-limit of the statex and to continue
from this limit state in ‘forward time.’ In the setting of
complementarity or multi-modal linear system this is
possible as the discrete state is in principle determined
by the continuous state. Hence, this provides a means
to define a ‘natural relaxation’ of these discontinuous
dynamical systems to arrive at solutions beyond Zeno
times. See for instance, the three-ball example and
Filippov’s example below. Solutions that are obtained
in this way are calledhybrid solutions, because the
corresponding solution concept is still based on explicit
reference to event times.

An alternative concept that foregoes explicit mention of
events is the following one.

Definition 3.6. A triple (x, v, z) ∈ Ln+2m
2 is said to be

anL2-solution of (4) on the interval[0, T ] with initial
conditionx0 if for almost all t ∈ [a, b] the following
conditions hold:

x(t) = x0 +
∫ t

0
f (x(s), v(s)) ds

z(t) = h(x(t), v(t))

0 ≤ z(t) ⊥ v(t) ≥ 0.

This definition is in the spirit of the one given above for
differential inclusions like Filippov’s solutions (‘con-
vex definition) or Utkin’s solutions (‘control equivalent
definition’).

4. WELL-POSEDNESS

Well-posedness roughly means that solutions exist and
are unique for any given initial condition. Both for the
existence and for the uniqueness statement, one has to
specify a function class in which solutions are consid-
ered. The function class used for existence may be the
same as the one used for uniqueness, or it may be dif-
ferent. If solutions exist and are unique, a given system
description defines a mapping from initial conditions to
trajectories. In the theory of smooth dynamical systems,
it is usually taken as part of the definition of well-
posedness that this mapping is continuous with respect
to suitably chosen topologies. This may be a too strong
requirement for hybrid systems.

Besides the function classes (‘solution concepts’) con-
sidered, one may also distinguish between various no-
tions of well-posedness on the basis of the time interval
that is involved. For instance, in the context of hybrid
automata, one may say that a given automaton isnon-
blocking (Johanssonet al., 1999b), if for each initial
condition either at least one transition is enabled or a
smooth continuation within one of the locations during
an interval of positive length is possible. Alternatively,
this type of well-posedness can be described by say-
ing that “deadlock is absent.” If the continuation is
unique (the automaton isdeterministic (Johanssonet
al., 1999b)), one may then say that the automaton is
initially well-posed. This definition allows a situation
in which a transition from location 1 to location 2 is
immediately followed by a transition back to location 1
and so on. Hence, an infinite loop occurs withτi = τ ′

i
for all i ≥ i0 for somei0 in the definition of an execu-
tion of the hybrid automaton (livelock). In (Lygeroset
al., 1999), it is stated that for an initially well-posedness

hybrid automaton “it still remains to be investigated
whether executions can be extended over arbitrary time
horizons.” A first step to a stronger notion is obtained
by requiring that a solution exists on some interval
[0, ε) with ε > 0; system descriptions for which such
solutions exist and are unique are calledlocally well-
posed. In computer science terminology, such systems
“allow time to progress”. Finally, if solutions exist and
are unique on the whole half-line[0, ∞), then one
speaks ofglobal well-posedness.

5. EXAMPLES

In this section we will discuss several examples of
hybrid systems, which will highlight the difference
between the solution concepts mentioned above.

Example 5.1. The example of three balls in which
inelastic impacts are modeled by successions of simple
impacts (Figure 1) has also been mentioned in (Heemels
et al., 1999) as an example of a system with live-lock,
i.e. an infinite number of events at one time-instant.
Suppose the balls all have unit mass and are touching at
time 0. The initial velocityv1(0) of ball 1 is equal to 1
and for balls 2 and 3v2(0) = v3(0) = 0. By modelling
all impacts separately, first an inelastic collision occurs
between ball 1 and 2 resulting inv1(0+) = v2(0+) =
1
2, v3(0+) = 0. Next, ball 2 hits ball 3 resulting in
v1(0++) = 1

2, v2(0++) = v3(0++) = 1
4 after which

ball 1 hits ball 2 again. In this way, a sequence of jumps
is generated

v1 : 1 1
2

1
2

3

8

3

8

11

32
. . .

v2 : 0 1
2

1

4

3

8

5

16

11

32
. . .

v3 : 0 0
1

4

1

4

5

16

5

16
. . .

which converges to(1
3, 1

3, 1
3)� after which a smooth

continuation is possible with constant and equal veloc-
ity for all balls. Note that a limiting operation is needed
to get beyond the Zeno-time 0.This might be considered
a form of regularization, which works in the case the
discrete state is subordinate to the continuous state.
Other forms of regularization are discussed in (Lygeros
et al., 1999; Johanssonet al., 1999b) (cf. Section 6
below).

V (0)=11 V (0)=02
V (0)=03

Ball 1 Ball 2 Ball 3

Fig. 1. Three balls example.

Several hybrid examples are around in the literature
displaying right-accumulations of event times like the
bouncing ball (Brogliato, 1996), the water tank system
of the Introduction, and so on. Here we will present
an example that fits into many of the mentioned model
classes.

Example 5.2. The time reversed version of a system
studied by Filippov (Filippov, 1988, p. 116) is given by

ẋ1 = −sgn(x1) + 2sgn(x2) (6a)

ẋ2 = −2sgn(x1) − sgn(x2), (6b)



where “sgn” denotes the signum-function given by
sgn(x) = 1, if x > 0, sgn(x) = −1, if x < 0 and
sgn(x) ∈ [−1, 1] whenx = 0 (note that this choice
complies with Filippov’s convex and Utkin’s control
equivalent definition). Solutions of this piecewise con-
stant system are spiraling towards the origin, which
is an equilibrium. Sinced

dt
(|x1(t)| + |x2(t)|) = −2,

when x(t) 
= 0, solutions reach the origin in finite
time. See Figure 2 for a trajectory. However, solutions
cannot arrive at the origin without going through an
infinite number of mode transitions (relay switches).
Since these mode switches occur in a finite time interval,
the event times contain a right-accumulation point (i.e.
the time that the solution reaches the origin) after which
the solution stays at zero.Again a limiting operation can
define a “reasonable” solution beyond the Zeno point.

−1 0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

4

5

x_1

x_
2

Fig. 2. Trajectory in the phase plane.

Left-accumulation points are awkward as well. Of
course, time-reversal of systems with right-accumulations
lead to such systems. Here, we mention an example that
is discussed in (Pogromskyet al., 2001).

Example 5.3. Consider the following system
 ẋ =

(
0 1 0
0 0 1
0 0 0

)
x +

(
0
0
1

)
u

y = (1 0 0)x

(7)

u = −sgny. (8)
This system might also be written as the piece-wise
linear bi-modal system:{mode 1: ẋ = A1x, if y = Cx ≥ 0

mode 2: ẋ = A2x, if y = Cx ≤ 0 (9)

wherex ∈ R
n, y ∈ R

1 and

A1 =

 0 1 0 0

0 0 1 0
0 0 0 −1
0 0 0 0


 , A2 =


 0 1 0 0

0 0 1 0
0 0 0 1
0 0 0 0


 (10)

C = (1 0 0 0) (11)
There are infinitely many ‘solutions’ starting in the ori-
gin, if left-accumulations of relay switching times are
allowed in the solution concept (as e.g. for Filippov’s
solution concept).

6. COMPARISON

6.1 Use of event sets

In a classification of solution concepts, one might
begin by making a distinction as to whether or not
there is explicit mention of different modes and/or an
event set. Clearly, the execution for hybrid automata,
the extended Carathéodory solutions, the forward and
hybrid solution concept for complementarity systems
mention the event set and the different modes. The
solution concepts based on differential inclusions like

Filippov, Utkin or Euler solutions or theL2-solution
concept for complementarity systems are not using any
references to modes or event times. In general this
means that they allow broader types of event times sets.
Therefore, a further classification can be made on the
basis of the nature of the event set.

6.2 Nature of event times set

Definition 6.1. A setE ⊂ R+ is called anadmissible
event times set if it is closed and countable, and 0∈ E .
To each admissible event times setE , we associate a
collection of intervals between eventsτE = {(t1, t2) ⊂
R+ | t1, t2 ∈ E ∪ {∞} and(t1, t2) ∩ E = ∅}.

Note that both left and right accumulations of event
times are allowed by the above definition.

Definition 6.2. An admissible event times setE is said
to beleft (right) Zeno free, if it does not contain any left
(right) accumulation points.

Note that a hybrid time trajectory as defined in subsec-
tion 3.1 does not allow left-accumulation points. The
event setE := {0}∪{ 1

n
| n ∈ N} and the corresponding

sequence of intervalsτE cannot be rewritten in terms
of a hybrid time trajectory. The hybrid time trajectory
corresponds to a well-ordered event set with respect to
the usual (increasing) ordering of the real line.

For general hybrid automata it is in principle im-
possible to define a solution concept beyond a right-
accumulation point of event times. In (Johanssonet
al., 1999a) one mentions three possibilities of extension
of Zeno executions: regularization (i.e. modifying the
original Zeno automaton by adding temporal or spa-
tial regularization parameters), averaging (averaging
the vector field close to the Zeno time) and Filippov
relaxation, which only applies in particular cases of
differential equations with discontinuous right-hand
sides. In principle, in the latter case we are dealing
with a situation in which the location (discrete state)
is determined fully by the continuous state. Actually,
this is also true for solution concepts with no explicit
mention of the discrete state or an application to classes
like discontinuous differential equations, complemen-
tarity systems, or multi-modal linear systems as one can
continue by taking the left-limit of the state – provided
it exists – and define a continuation from the left-limit
state (as if it was a new initial state). In this manner, a
‘natural relaxation’ is obtained.

Execution of hybrid automaton : E is left Zeno free.
No continuation is possible beyond right-accumulation
(besides regularization).

Filippov’s, Euler or Utkin’s : No restrictions onE .
Extended Carathéodory : E is left Zeno free. Con-

tinuation beyond right-accumulation point possible6

due to taking left-limit of state which can determine
new discrete state.

Forward solution : E is left Zeno free. Continuation
beyond right-accumulation point possible due to
taking left-limit of state which can determine the new
discrete state.

L2-solution : No restrictions onE .

6 In (Imura, 2001) a solution concept has been introduced based on
a different mode transition rule called the “switch-based rule,” which
differs from the usually applied “mode-based rule.” In this modified
version of the extended Carathédory notion of solutions continuation
beyond right-accumulation points is in principle not possible.



Hybrid solution : No restrictions onE .

For livelock the situation is similar as for continuation
beyond right-accumulation points. This means that for
Example 5.1 no local solution exists if taking limits of
the event states att = 0 is not included in the solution
concept. For solution concepts inferred from model
classes in which the discrete state is determined by the
continuous state, a local and even global solution can be
defined for the three balls example. Similar statements
hold for Example 5.2 for global solutions.

On the basis of the previous we can also state that
Example 5.3 (see (Pogromskyet al., 2001)) will have
one execution (for a hybrid automaton with three modes
(including the sliding mode)) , infinitely many Filippov
solutions, no extended Carathéodory solution, one for-
ward solution, infinitely manyL2-solutions and hybrid
solutions.

The above discussion also indicates that time-reversal
of executions, forward solutions, extended Carathéodory
solutions does not necessarily yield such solutions again
because of the well-ordered event times sets. Hence, the
method of reversing time as is often used for analysis
of smooth dynamical systems, is not possible without
switching to a different (more general) solution concept.

6.3 Simple variable structure system

Consider the rather simple system

ẋ =
{

1, x > 0
−1, x < 0

,

which is of the form (1). It can easily be seen, that this
system has infinitely many Filippov solutions (one can
leave the sliding mode at each time instant) starting
in the origin and satisfyinġx ∈ sgn(x). However,
it only has two extended Carathéodory solutions with
x(0) = 0, namelyx(t) = t andx(t) = −t .With respect
to Euler solutions it depends on how the differential
inclusion ẋ = F(t, x) is constructed. Especially, the
set-value ofF(t, 0) is crucial. E.g. ifF(t, 0) = {0}
for all t we only have one Euler solution (being zero)
and if F(t, 0) = {1} for all t we havex(t) = t as the
only Euler solution starting in the origin. If we take
F(t, 0) = [−1, 1] for all t then we have a similar
situation as for Filippov’s solutions. However, taking
time-varyingF(t, x) leads again to different situations
as can be verified easily.

The time-reversed system (with a choice made at the
switching surface byF(0) = {1}) (Clarkeet al., 1998,
Ex. 1.6(b)))

ẋ =
{−1, x > 0

1, x ≤ 0
has for initial statex(0) = 0 one Euler solution,
no extended Carathéodory, and one Filippov solution.
Note that extended Carathéodory solutions do not allow
“sliding modes.”

A final statement can be given on the difference between
Filippov’s convex and Utkin’s control equivalent solu-
tions, which can be shown to differ only by the dynamics
exhibited at the sliding mode (see (van der Schaft and
Schumacher, 1999, Ex. 3.2.1) for an example).Actually,
it can be shown (Filippov, 1988) that under certain
conditions the solution concepts by Filippov, Utkin and
Aizerman / Pyatnitskii coincide.

7. CONCLUSIONS

In this paper we compared several solution concepts,
which have been used for different hybrid model

classes. The explicit mention of modes and / or event
times and the kind of event times set that are allowed
formed the major differences between the notions. The
absence of accumulations of event times will cause
many of the mentioned solution concepts to coincide.
Also the kind of relaxations used (e.g. to go from a dif-
ferential equation to a differential inclusion) affects the
kind of solution trajectories obtained. The interaction
between the solution concepts and the well-posedness
issue has been pointed out. In a broad solution space
existence of trajectories is easier satisfied than in a small
one, for uniqueness the converse statement hold. One
might also try to show existence of trajectories in a small
class (e.g. forward solution) and show uniqueness in a
bigger one (e.g.L2- or Filippov solutions). In this way,
it is possible to obtain conditions that exclude particular
types of Zeno behaviour (in this case left-accumulation
points within the class of Filippov solutions) as is de-
sirable from an analysis point of view as demonstrated
by the two-tank system in the introduction.
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