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Abstract

Simulation of switching networks is a problem that has been studied extensively in circuit theory
[1,2,5,11,12,15,18,25]. Roughly speaking, there are two main approaches, namely event-tracking (see
e.g. [1,15]) and time-stepping methods (see [2,11,12,18] for electrical networks and [14,16,17,22,24] for
unilaterally constrained mechanical systems with friction phenomena). Having a hybrid systems point
of view (see for instance [21]), event-tracking methods are based on the idea of solving corresponding
DAEs of the current circuit topology (called ‘mode’ in the hybrid systems terminology), monitoring
possible changes of circuit topology (mode transition), and (if necessary) determining the exact time
(event time) instant of the change of topology and the next topology. Time-stepping methods differ from
this scheme by regarding the whole system as a collection of differential equations with constraints and
trying to approximate the solutions of these differential equations with constraints. As a consequnce of
this point of view, there is no need to locate exact event times. However, the convergence of the approx-
imations in a suitable sense has to be guaranteed. Since the methods seem to work well in practice, the
question of convergence is usually neglected in the literature. It is the objective of this paper to pro-
vide a rigorous basis for the use of time-stepping methods in the simulation of circuits with state events.

In [7] (see also [3]) the meaning of a transient true solution to the dynamical network model with ideal
diodes has already been established. Using techniques borrowed from the theory of linear complemen-
tarity systems (LCS) [8,9,13,19,20], existence and uniqueness of solutions have been proven under mild
conditions. Moreover, several regularity properties have been shown from which this paper will benefit.

The particular time-stepping method that we will study here is based on the well-known backward
Euler scheme and has been described, for instance, in [2,11,12] for electrical networks. Similar meth-
ods have been used in a mechanical context in [14,16,17,22,24]. The advantage of the method is
that it is straightforward to implement and many algorithms (e.g. Lemke’s algorithm [4], Katzenelson’s
algorithm [10] and others [12]) are available to solve the one-step problems consisting of linear comple-
mentarity problems (LCPs).

In [11] the use of a time-stepping method based on the backward Euler scheme (or higher order linear
multistep integration methods [6] like the trapezoidal rule) has already been proposed for the class of
linear complementarity systems, i.e., linear time-invariant dynamical systems coupled with ideal diode
characteristics (complementarity conditions). By an example, it will be shown that the method is not
suited for the general class of linear complementarity systems. This example indicates also, that al-
though the method has proven itself in practice, one should not indiscriminately apply it to general
discontinuous dynamical systems.
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Convergence problems of time-stepping methods for mechanical systems subject to unilateral constraints
or friction have been studied by Stewart [22,23]. He shows that for a broad class of nonlinear constrained
mechanical systems there always exists a subsequence of approximating time functions that converge to
a real solution of the mechanical model. However, the convergence of the complete sequence has not
been shown in [22,23]. The conditions used in [22,23] do not cover electrical networks containing ideal
diodes, which form the subject of this paper. Specifically, we will show that for the class of discontinuous
dynamical systems consisting of linear electrical passive circuits with ideal diodes the backward Euler
time-stepping method is consistent. To be specific, we prove that the whole sequence (and not only a
subsequence) of the approximating time functions converge to the real transient solution of the network
model, when the step size decreases to zero. Although the results are written down here for networks
containing ideal diodes (internally controlled switches) only, externally controlled switches can easily be
included without destroying the convergence proof. The results presented here form a justification of the
backward Euler time-stepping scheme in the field of switched electrical networks. Such a justification
seems required considering the problems that might occur due to changing configurations of the network,
the possibility of Dirac impulses and the discontinuities of the system’s variables.

References

[1] D. Bedrosian and J. Vlach. Time-domain analysis of networks with internally controlled switches.
IEEE Trans. Circuits and Systems-I, 39(3):199-212, 1992.

[2] W.M.G. van Bokhoven. Piecewise Linear Modelling and Analysis. Kluwer, Deventer, the Nether-
lands, 1981.

[3] M.K. Camlibel, W.P.M.H. Heemels, and J.M. Schumacher. The nature of solutions to linear pasive
complementarity systems. In Proc. of the 38th IEEE Conference on Decision and Conitrol, pages
3043-3048, Phoenix (USA), 1999.

[4] R.W. Cottle, J.-S. Pang, and R.E. Stone. The Linear Complementarity Problem. Academic Press,
Inc., Boston, 1992.

[5] J.T.J. van Eijndhoven. Solving the linear complementarity problem in circuit simulation. SIAM
Journal on Control and Optimization, 24(5):1050-1062, 1986.

[6] C.W. Gear. Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall,
Englewood Cliffs, New Jersey, 1971.

[7] W.P.M.H. Heemels, M.K. Camlibel, and J.M. Schumacher. Dynamical analysis of linear passive
networks with diodes. Part I: Well-posedness. Submitted to IEEE Transactions on Circuits and
Systems-1, 2000.

[8] W.P.M.H. Heemels, J.M. Schumacher, and S. Weiland. Linear complementarity systems. Technical
Report 97 I/01, Eindhoven University of Technology, Dept. of Electrical Engineering, Measurement
and Control Systems, Eindhoven, The Netherlands, 1997, Revised version to appear in SIAM
Journal on Applied Mathematics.

[9] W.P.M.H. Heemels, J.M. Schumacher, and S. Weiland. The rational complementarity problem.
Linear Algebra and its Applications, 294:93-135, 1999.

[10] J. Katzenelson. An algorithm for solving nonlinear resistor networks. Bell Syst. Tech. J., 44:1605-
1620, 1965.

[11] D.M.W. Leenaerts. On linear dynamic complementarity systems. IEEE Transactions on Circuits
and Systems-I, 46(8):1022-1026, 1999.

[12] D.M.W. Leenaerts and W.M.G. van Bokhoven. Piecewise Linear Modelling and Analysis. Kluwer
Academic Publishers, Dordrecht, The Netherlands, 1998.

[13] Y.J. Lootsma, A.J. van der Schaft, and M.K. Camlibel. Uniqueness of solutions of relay systems.
Automatica, 35(3):467-478, 1999.



[14] P. Lotstedt. Numerical simulation of time-dependent contact and friction problems in rigid body
mechanics. SIAM Journal on Scientific and Statistical Computing, 5:370-393, 1984.

[15] A. Massarini, U. Reggiani, and K. Kazimierczuk. Analysis of networks with ideal switches by state
equations. IEEE Trans. Circuits and Systems-I, 44(8):692-697, 1997.

[16] J.J. Moreau. Numerical aspects of the sweeping process. Comput. Methods Appl. Mech. Engry.,
177(3-4):329-349, 1999.

[17] L. Paoli and M. Schatzman. Schéma numérique pour un modele de vibrations avec contraintes
unilatérales et perte d’énergie aux impacts, en dimension finie. C.R. Acad. Sci. Paris Sér. I Math.,
317:211-215, 1993.

[18] I.W. Sandberg. Theorems on the computation of the transient response of nonlinear networks
containing transistors and diodes. Bell System Technical Journal, 49:1739-1776, 1970.

[19] A.J. van der Schaft and J.M. Schumacher. The complementary-slackness class of hybrid systems.
Mathematics of Control, Signals and Systems, 9:266-301, 1996.

[20] A.J. van der Schaft and J.M. Schumacher. Complementarity modelling of hybrid systems. IEEE
Transactions on Automatic Control, 43(4):483-490, 1998.

[21] A.J.van der Schaft and J.M. Schumacher. An Introduction to Hybrid Dynamical Systems. Springer-
Verlag, London, 2000.

[22] D.E. Stewart. Convergence of a time-stepping scheme for rigid body dynamics and resolution of
Painlevé’s problem. Archive for Rational Mechanics and Analysis, 145(3):215-260, 1998.

[23] D.E. Stewart. Time-stepping methods and the mathematics of rigid body dynamics. Chapter 1 of
Impact and Friction, A. Guran, J.A.C. Martins and A. Klarbring (eds.), Birkhduser, 1999.

[24] D.E. Stewart and J.C. Trinkle. An implicit time-stepping scheme for rigid body dynamics with
inelastic collisions and Coulomb friction. Int. Journal for Numerical Methods in Engineering,
39:2673-2691, 1996.

[25] J. Vlach, J.M. Wojciechowski, and A. Opal. Analysis of nonlinear networks with inconsistent initial
conditions. IEEE Transactions on Circuits and Systems-I, 42(4):195-200, 1995.



