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Abstract: This paper studies the open-loop stabilization problem for bimodal
systems with continuous vector field. It is based on the earlier work of the authors
on the controllability problem for the same class of systems. A full characterization
of stabilizability is established by presenting algebraic necessary and sufficient
conditions. It turns out that this system class inherits the relationship between
controllability and stabilizability of linear systems.
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1. INTRODUCTION

Controllability and stabilizability of a linear sys-
tem are two basic concepts which were born in
the early sixties. They have played a central role
in various problems throughout the history of
modern control theory. As such, these concepts
have been studied extensively. For instance, in the
context of finite-dimensional linear systems given
by

ẋ(t) = Ax(t) + Bu(t) (1)
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where x(t) ∈ Rn is the state and u(t) ∈ Rm is the
input at time t ∈ R, complete algebraic charac-
terizations of stabilizability and controllability are
well known. We say that the system (1) is control-
lable if any initial state can be steered to any final
state by choosing the input u appropriately. It is
said to be stabilizable if any initial state can be
asymptotically steered to the origin by choosing
the input u appropriately. The following theorem
summarizes some of the classical results on these
concepts (see e.g.(Hautus 1969) for the original
results or (Sontag 1998) for an overview).

Theorem 1.1. The linear system (1)



• is controllable if, and only if, rank
[
A− λI b

]
=

n for all complex numbers λ.
• is stabilizable if, and only if, rank

[
A− λI b

]
=

n for all complex numbers λ with nonnegative
real parts.

Also in the case of linear systems with constraints
on the control set (e.g. u(t) ∈ K, where K ⊂ Rm

is a closed convex cone) similar connections be-
tween controllability and stabilizability are known
(Brammer 1972, Smirnov 2000).

This paper focuses on the stabilizability problem
for bimodal piecewise linear systems of the form

ẋ(t) =

{
A1x(t) + b1u(t) if y(t) 6 0,

A2x(t) + b2u(t) if y(t) > 0
(2a)

y(t) = cT x(t) + du(t) (2b)

where A1, A2 ∈ Rn×n, b1, b2, c ∈ Rn, and d
is a scalar. The characterization of stability and
controllability of such a simple class of hybrid
systems is already very complex; in (Blondel and
Tsitsiklis 1999) it was shown that these problems
for a related class of discrete-time systems are
NP-hard and undecidable - meaning that there
is no algorithm to decide the controllability sta-
tus of a given system - respectively. In (Blondel
and Tsitsiklis 1999) it was advocated that classes
should be identified for which these questions are
solvable in an efficient way. In case the vector field
is continuous (over the switching plane) for (2),
algebraic necessary and sufficient conditions for
the controllability of this class of systems (and
various extensions) are provided by the authors in
(Camlibel et al. 2003, Camlibel et al. 2004, Cam-
libel et al. 2005, Camlibel 2005). The contribution
of the current paper is an algebraically verifiable
condition for stabilizability for the same class of
systems. Interestingly, this result shows that in
this class of systems controllability implies stabi-
lizability, as is also true for linear systems but not
in general for nonlinear systems.

In the linear case (Hautus 1969) and also in the
constrained linear case (Smirnov 2000), one can
even show that a linear and Lipschitz continuous,
respectively, state feedback can be found that does
the job. In the piecewise linear case this is still an
open issue, although several constructive results
for particular feedback structures (e.g. piecewise
linear state feedback) based on (control) Lya-
punov functions have been proposed in the litera-
ture (see e.g. (Hassibi and Boyd 1998)). However,
these results give no conclusion on a general level
on the stabilizability issue. Only when the design
turns out feasible, a stabilizing controller is found
and in this sense those papers only present par-
ticular instances of sufficient conditions, but not
necessary and sufficient cases as is done in this
paper.

Also in the case of switched linear systems sev-
eral results on controllability and stabilizability
have appeared, see e.g. (Xie and Wang 2003, Xie
and Wang 2005, Sun and Zheng 2001), which
construct in addition to a control signal also the
switching sequence to stabilize the system. How-
ever, since the switching sequence is constructed
as well, as opposed to given by a state space
partitioning in the piecewise linear case, the case
of switched linear systems is essentially different
from the case of piecewise linear systems, where a
particular switching mechanism is a priori given.
Moreover, a full connection between stabilizabil-
ity and controllability as indicated in this paper
for piecewise linear systems is not (yet) available
for switched linear systems. However, some par-
tial results are available as, for instance in (Xie
and Wang 2003), one proves that controllability
implies stabilizability for discrete-time switched
linear systems.

The paper is organized as follows. After providing
some of the notation used in this paper, the class
of systems that we consider and the main result
are presented in Section 2. In section 3 a quick
review is given of some ingredients from geometric
control theory that we need to give the proof of
the main results, which can be found in section 4.
In section 5 conclusions are given.

1.1 Notation

The set of real numbers is denoted by R, the n-
tuples of real numbers by Rn, complex numbers
by C, locally integrable functions by L1. The
transpose of a vector x (or matrix M) is denoted
by xT (MT ) and the conjugate transpose by
x∗ (M∗). For two matrices M1 ∈ Rm×p and
M2 ∈ Rn×p with the same number columns,
the operator col stacks the matrices in an (m +
n) × p matrix, i.e. col(M1,M2) = (MT

1 ,MT
2 )T .

All inequalities involving a vector are understood
componentwise. A square matrix is said to be
Hurwitz if the real parts of all its eigenvalues are
negative.

2. BIMODAL PIECEWISE LINEAR SYSTEMS

Consider the bimodal piecewise linear system (2)
that has a continuous vector field. To be precise,
we assume that the dynamics is continuous along
the hyperplane {(x, u) | cT x + du = 0}, i.e.

cT x + du = 0 ⇒ A1x + b1u = A2x + b2u. (3)

This means that

A1 −A2 = ecT (4a)
b1 − b2 = ed (4b)

for some vector e ∈ Rn.



As the right hand side of (2) is Lipschitz continu-
ous in the x variable, one can show that for each
initial state x0 ∈ Rn and locally-integrable input
u ∈ L1 there exists a unique absolutely continuous
function xx0,u satisfying (2) almost everywhere.

From a control theory point of view, one of the
very immediate issues is the controllability of the
system at hand. Following the classical literature,
we say that the system (2) is completely control-
lable if for any pair of states (x0, xf ) there exists
a locally-integrable input u such that the solution
xx0,u of (2) passes through xf , i.e. xx0,u(τ) = xf

for some τ > 0.

The following theorem on controllability of bi-
modal systems was proven in (Camlibel 2005).

Theorem 2.1. Suppose that the transfer function
d + cT (sI − A1)−1b1 is not identically zero. The
bimodal system (2) is controllable if, and only if,

(1) the pair (A1,
[
b1 e

]
) is controllable,

(2) the inequality system

µ > 0 (5)[
zT µ

] [
A1 − λI b1

cT d

]
= 0 (6)

[
zT µ

] [
e
1

]
6 0 (7)

admits no solution 0 6= col(z, µ) ∈ Rn+1 and
λ ∈ R.

An equally important concept of system theory is
stabilizability. We call the system (2) (open-loop)
stabilizable if for each initial state x0 there exists
a locally-integrable input u such that the state
trajectory satisfies limt→∞ xx0,u(t) = 0.

The following theorem is the main result of this
paper. It presents necessary and sufficient condi-
tions for a bimodal system to be stabilizable.

Theorem 2.2. Suppose that the transfer function
d + cT (sI − A1)−1b1 is not identically zero. The
bimodal system (2) is stabilizable if, and only if,

(1) the pair (A1,
[
b1 e

]
) is stabilizable,

(2) the inequality system

µ > 0 (8a)[
zT µ

] [
A1 − λI b1

cT d

]
= 0 (8b)

[
zT µ

] [
e
1

]
6 0 (8c)

admits no solution 0 6= col(z, µ) ∈ Rn+1 and
0 6 λ ∈ R.

Before proceeding to the proof, we need to intro-
duce some terminology.

3. A QUICK REVIEW OF BASIC
GEOMETRIC CONTROL THEORY

Consider the linear system Σ(A,B,C, D)

ẋ(t) = Ax(t) + Bu(t) (9a)
y(t) = Cx(t) + Du(t) (9b)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the
input, y(t) ∈ Rp is the output at time t ∈ R, and
the matrices A, B, C, D are of appropriate sizes.

We define the controllable subspace and unobserv-
able subspace as

〈A | im B〉 := im B + A im B + · · ·+ An−1 im B

and

〈ker C | A〉 := kerC∩A−1 ker C∩· · ·∩A1−n ker C,

respectively. It follows from these definitions that

〈A | im B〉 = 〈ker BT | AT 〉⊥ (10)

where W⊥ denotes the orthogonal space of W.

We say that a subspace V is output-nulling con-
trolled invariant if for some matrix K the inclu-
sions (A−BK)V ⊆ V and V ⊆ ker(C−DK) hold.
As the set of such subspaces is non-empty and
closed under subspace addition, it has a maximal
element V∗(Σ) (also written as V∗(A,B,C, D)).
Whenever the system Σ is clear from the context,
we simply write V∗. The notation K(V) stands
for the set {K | (A − BK)V ⊆ V and V ⊆
ker(C −DK)}. Moreover, we write K(A,B,C, D)
for K(V∗(A,B,C, D)).

One can compute V∗ as a limit of the subspaces

V0 = Rn (11a)

Vi = {x | Ax + Bu ∈ Vi−1 and
Cx + Du = 0 for some u}. (11b)

In fact, there exists an index i 6 n − 1 such that
V j = V∗ for all j > i.

Dually, we say that a subspace T is input-
containing conditioned invariant if for some ma-
trix L the inclusions (A−LC)T ⊆ T and im(B−
LD) ⊆ T hold. As the set of such subspaces
is non-empty and closed under subspace inter-
section, it has a minimal element T ∗(Σ) (also
written as T ∗(A,B,C, D)). Whenever the system
Σ is clear from the context, we simply write T ∗.
The notation L(T ) stands for the set {L | (A −
LC)T ⊆ T and im(B−LD) ⊆ T }. Moreover, we
write L(A,B, C, D) for L(T ∗(A,B, C, D)). Note
that

〈A | im B〉 ⊇ T ∗(A,B, C, D). (12)

We quote some standard facts from geometric
control theory in what follows. The first one
presents certain invariants under state feedbacks



and output injections. Besides the system Σ (9),
consider the linear system ΣK,L given by

ẋ = (A−BK − LC + LDK)x + (B − LD)v (13a)
y = (C −DK)x + Dv. (13b)

This system can be obtained from Σ (9) by
applying both state feedback u = −Kx + v and
output injection −Ly.

Proposition 3.1. Let K ∈ Rm×n and L ∈ Rn×p be
given. The following statements hold.

(1) 〈A | im B〉 = 〈A−BK | im B〉.
(2) 〈ker C | A〉 = 〈ker C | A− LC〉.
(3) V∗(ΣK,L) = V∗(Σ).
(4) T ∗(ΣK,L) = T ∗(Σ).

The next proposition relates the invertibility of
the transfer matrix to the controlled and condi-
tioned invariant subspaces.

Proposition 3.2. (cf. (Aling and Schumacher 1984)).
The transfer matrix D+C(sI−A)−1B is invertible
as a rational matrix if, and only if, V∗⊕T ∗ = X ,[
C D

]
is of full row rank, and col(B,D) is of full

column rank. Moreover, the inverse is polynomial
if, and only if, V∗ ∩ 〈A | im B〉 ⊆ 〈ker C | A〉 and
〈A | im B〉 ⊆ T ∗ + 〈ker C | A〉.

The following proposition presents sufficient con-
ditions for the absence of invariant zeros. It can
be proved by using (11).

Proposition 3.3. Consider the linear system (9)
with p = m. Suppose that V∗ = {0} and the matrix
col(B,D) is of full column rank. Then, the system
matrix [

A− λI B
C D

]
is nonsingular for all λ ∈ C.

4. PROOF OF THEOREM 2.2

‘only if ’: Suppose that the bimodal system (2) is
stabilizable.

We start by proving the first statement in Theo-
rem 2.2. Let the complex number λ with a nonneg-
ative real part and the complex vector z be such
that z∗A1 = λz∗, z∗b1 = 0, z∗e = 0. By left mul-
tiplying (2) by z∗, one gets z∗ẋ = λz∗x. Hence,
one gets z∗x(t) = exp(λt)z∗x(0) irrespective of
the choice of input signal. Due to stabilizability of
(2), for any initial state x(0) one can choose the
input u so that limt→∞ xx0,u(t) = 0. This means
that z must be zero, i.e. the pair (A1,

[
b1 e

]
) is

stabilizable.

We now prove the second statement in Theo-
rem 2.2. Suppose that col(z, µ) ∈ Rn+1 is a so-
lution to (8) for λ > 0 which means that

zT A1 = zT λ− µcT (14a)

zT b1 + µd = 0 (14b)

zT e + µ 6 0. (14c)

By left multiplying (2) by zT and using the above
relations and (4) we obtain

zT ẋ =

{
λ(zT x)− µy if y 6 0
λ(zT x)− (zT e + µ)y if y > 0

(15)

y = cT x + du (16)

which implies that

zT ẋ > λzT x (17)

The Bellman-Gronwall lemma (Desoer and Vidyasagar
1975, p. 252) implies that

zT x(t) > exp(λt)zT x(0) (18)

Since the bimodal system (2) is stabilizable,
zT x(0) must be zero. As x(0) is arbitrary, one
concludes that z = 0. Note that this implies via
(14) in turn that µcT = 0 and µd = 0. This yields
that µ = 0 due to invertibility of d + cT (sI −
A1)−1b1. This proves the second statement.

‘if ’: We begin with the following observations

V∗(A1, b1, c
T , d) = V∗(A2, b2, c

T , d) (19a)

T ∗(A1, b1, c
T , d) = T ∗(A2, b2, c

T , d) (19b)

K(A1, b1, c
T , d) = K(A2, b2, c

T , d) (19c)

L(A1, b1, c
T , d)− {e} = L(A2, b2, c

T , d) (19d)

where X − {e} = {y | y = x − e for some x ∈
X}. To see the first one, note that V∗ :=
V∗(A1, b1, c

T , d) is an output-nulling controlled
invariant subspace for the system Σ(A2, b2, c

T , d)
as

V∗ ⊆ ker(cT − dkT ) (20)

(A2 − b2k
T )V∗ (4)

= (A1 − ecT − b1k
T + edkT )V∗

(20)
= (A1 − b1k

T )V∗

⊆ V∗

for any kT ∈ K(A1, b1, c
T , d). Since V∗(A2, b2, c

T , d)
is the largest of such subspaces, one gets

V∗ = V∗(A1, b1, c
T , d) ⊆ V∗(A2, b2, c

T , d).

By symmetry, one arrives at (19a). The other
relations follow in a similar fashion.

Let V∗ and T ∗ denote V∗(A1, b1, c
T , d) and

T ∗(A1, b1, c
T , d), respectively. Let

kT ∈ K(A1, b1, c
T , d) = K(A2, b2, c

T , d).

Apply the feedback u = −kT x + v to the system
(2). Then, one gets



ẋ =

{
(A1 − b1k

T )x + b1v if y 6 0,

(A2 − b2k
T )x + b2v if y > 0.

(21a)

y = (cT − dkT )x + dv (21b)

Due to Proposition 3.1, the two subspaces V∗ and
T ∗ remain unchanged. Since d + cT (sI −A1)−1b1

is not identically zero and hence invertible as a
rational function, it follows from Proposition 3.2
that

(1) V∗ ⊕ T ∗ = Rn,
(2) col(b1, d) is of full column rank, and
(3)

[
cT d

]
is of full row rank.

Let `i ∈ L(Ai, bi, c
T , d), i = 1, 2, be such that

`1 − `2 = e. Note that Ai − bik
T − `i[cT − dkT ],

i = 1, 2 leave both V∗ and T ∗ invariant. Moreover,
the restrictions of the mappings Ai−bik

T−`i[cT−
dkT ] to the subspace V∗ coincide.

Therefore, A1−b1k
T − `i[cT −dkT ] must be block

diagonal in a basis that is adapted to the decom-
position V∗ ⊕ T ∗. If we further decompose the
space V∗ by using the real Jordan decomposition
(Lütkepohl 1996, p. 71)) of Ā := Ai − bik

T |V∗ to
separate the eigenspaces of the eigenvalues with
nonnegative and negative real parts one gets in
these new coordinates for i = 1, 2[

Ai − bik
T bi e l

cT − dkT d 0 0

]
q

A− 0 `i
1c

T
3 `i

1d e1 `i
1

0 A+ `i
2c

T
3 `i

2d e2 `i
2

0 0 Ai
3 bi

3 e3 `i
3

0 0 cT
3 d 0 0


(22)

where `1j−`2j = ej for j ∈ {1, 2, 3}, A1
3−A2

3 = e3c
T
3

due to (4a), b1
3 − b2

3 = e3d due to (4b), and the
numbers of the rows of the blocks at the right
hand side are, respectively, n1, n2, n3, and 1. Note
that

T ∗(Ai
3, b

i
3, c

T
3 , d) = Rn3 (23a)

V∗(Ai
3, b

i
3, c

T
3 , d) = {0}. (23b)

Note also that all eigenvalues of A− (A+) have
negative (nonnegative) real parts.

Suppose that the two conditions of Theorem 2.2
hold. Let[

Āi b̄i ē

c̄T d 0

]
=


A+ `i

2c
T
3 `i

2d e2

0 Ai
3 bi

3 e3

0 cT
3 d 0

 . (24)

Note that Ā1 − Ā2 = ēc̄T and b̄1 − b̄2 = ēd. We
claim that the bimodal system

˙̄x =

{
Ā1x̄ + b̄1u if c̄T x̄ + du 6 0,

Ā2x̄ + b̄2u if c̄T x̄ + du > 0
(25)

is controllable. To prove this, we want to invoke
Theorem 2.1.

Since A− is Hurwitz, the first condition of Theo-
rem 2.2 is equivalent to saying that the pair

(
[
A+ `12c

T
3

0 A1
3

]
,

[
`12d e2

b1
3 e3

]
) (26)

is stabilizable. Note that (A1
3, b

1
3) is controllable as

〈A1
3 | im b1

3〉
(12)

⊇ T ∗(A1
3, b

1
3, c

T
3 , d)

(23a)
= Rn3 .

Together with the fact that A+ has only eigen-
values with nonnegative real parts, this means
that the pair (26) is actually controllable. Con-
sequently, the bimodal system (25) satisfies the
first condition in Theorem 2.1.

Since A− is Hurwitz, the second condition of
Theorem 2.2 is equivalent to saying that the
inequality system

µ > 0 (27a)

[
zT
2 zT

3 µ
] A+ − λI `12c

T
3 `12d

0 A1
3 − λI b1

3

0 cT
3 d

 = 0 (27b)

[
zT
2 zT

3 µ
] e2

e3

1

 6 0 (27c)

admits no solution 0 6 λ ∈ R and 0 6=
col(z2, z3, µ) ∈ Rn2+n3+1. Since V∗(A1

3, b
1
3, c

T
3 , d) =

0 and col(b1
3, d) is of full column rank, it follows

from Proposition 3.3 that the system matrix[
A1

3 − λI b1
3

cT
3 d

]
is nonsingular for all complex numbers λ. This
implies, with the fact that A+ has no nonneg-
ative (real) eigenvalues, the inequality system
(27) admits no solution for any λ ∈ R and
0 6= col(z2, z3, µ) ∈ Rn2+n3+1. As a result, the
second condition in Theorem 2.1 is satisfied by
the bimodal system (25). Therefore, Theorem 2.1
implies that the system (25) is controllable. Let
x0 := col(x10, x20, x30) ∈ Rn1+n2+n3 be an ar-
bitrary initial state for the system (21) in the
coordinates given by (22). Since the system (25)
is controllable, x0 can be steered to a state x̄0 =
col(x̄10, 0, 0) in finite time t∗. Apply the zero input
after reaching this state. Since cT x̄0 = 0 and A− is
Hurwitz, we can conclude that the state trajectory
converges to the origin as t tends to infinity (note
that after time t∗ the state trajectory remains in
V∗ and thus the state-input trajectory is on the
switching plane given by cT x + du = 0). �

5. CONCLUDING REMARKS

The paper has presented necessary and sufficient
conditions for the stabilizability of bimodal piece-
wise linear systems with a continuous vector field.



To the best of the authors’ knowledge it is the
first time that a full algebraic characterization of
stabilizability for a class of piecewise linear sys-
tems appears in the literature. Interestingly, the
relationship between the well-known controllabil-
ity and stabilizability conditions for linear and for
input-constrained linear systems is recovered for
this class of hybrid systems as well.

The proofs for these results rely on geometric
control theory and controllability results for piece-
wise linear systems and input-constrained linear
systems. The structure present in the model class
enables the use of this well-known theory in the
context of piecewise linear systems. We believe
that this forms a basis for solving various system-
and control-theoretic problems like observability,
detectability, observer and controller design for
this class of systems. The investigation of these
problems is one of the major issues of our future
work.
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