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1 Introduction

In a series of recent papers [4, 6, 8, 9] discontinuous dynamical systems such as networks with
ideal diodes, mechanical systems with inelastic stops and feedback systems with relays have
been modeled by complementarity systems. In these systems mode changes are described by
a relation between nonnegative, complementary variables as depicted in Fig. 1(a). Here we
consider systems obtained by approximating this relation with a Lipschitzian characteristic
as shown in Fig. 1(b) or Fig. 1(c) and investigate the convergence of the solutions of the
approximating system to those of the ideal system as the Lipschitzian characteristic approaches
to (non-Lipschitzian) complementarity relation. Our main result stated as Theorem 2.3 below
shows that this kind of continuity of the behavior of the approximating systems holds for linear
passive complementarity systems for which existence and uniqueness of solutions have been
established in [2, 5]. Moreover, we give necessary and suÆcient conditions for a system to be
made passive by shifting its poles. It is shown that the same continuity result holds also for
systems passi�able by pole shifting.

Continuity of linear dynamical systems have been studied before in [3, 11]. The treatment
in the present paper is close to the framework of [11] in the sense that we also understand conti-
nuity as the convergence of the trajectories of the approximating systems to the trajectories of
the limit system. Replacing discontinuous characteristics by smooth ones is a common practice
in the simulation of discontinuous dynamical systems, see [1, 7] for instance. The results on
the continuity of smooth approximations derived in the present paper provides con�dence in
computations based on the smoothed versions of linear passive and passi�able complementarity
systems and allows to draw conclusions about the behavior of the smooth approximations by
studying the behavior of the idealized system.
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Figure 1:

2 Main results

Consider the linear complementarity system described by

_x = Ax+Bu (1a)

y = Cx+Du (1b)

0 � u ? y � 0: (1c)

Here x(t) 2 R
n , u(t) 2 R

m , y(t) 2 R
m , u ? y means uT y = 0 and the inequalities are

interpreted componentwise in (1c). We denote (1) by LCS(A;B;C;D). Notice that (1) can
be viewed as the interconnection of the linear, time invariant system �(A;B;C;D) de�ned
by (1a), (1b) with the static system satisfying the complementarity relation (1c). It can be
veri�ed that the overall system obtained by replacing the complementarity relation (1c) by the
piecewise linear Lipschitzian function in Fig. 1(b) or Fig. 1(c) can also be expressed in the
form

_x� = A�x
� +B�u

� (2a)

y� = C�x
� +D�u

� (2b)

0 � u� ? y� � 0 (2c)

where f(A�; B�; C�;D�)g converges to (A;B;C;D) as � tends to zero. So instead of considering
continuity of some speci�c approximation schemes we investigate continuity of the behavior of
general complementarity systems given by (2).

Next, we de�ne the concept of passivity which plays a fundamental role in our main result.

De�nition 2.1 [10] The linear, time invariant system �(A;B;C;D) given by (1a), (1b) is
passive (dissipative with respect to the supply rate u>y) if there exists a function V : Rn ! R+

(a storage function), such that

V (x(t0)) +

Z t1

t0

u>(t)y(t)dt � V (x(t1)) (3)

holds for all t1 � t0, and all L2-solutions (u; x; y) 2 L
m+n+m
2 (t0; t1) of �(A;B;C;D).

In [5] a precise solution concept is de�ned for linear passive complementarity systems where it is
shown that for any initial state x0 there exists a unique solution of the form (u; x; y) = wimp+wreg
where wimp = w0Æ is called the impulsive part with w0 2 R

m+n+m and wreg 2 L
m+n+m
2 (0; T )

is called the regular part. A solution w is called impulse free if the impulsive part of it is
identically zero. Throughout the paper the complementarity system (1) and its approximation
(2) are assumed to satisfy the following conditions.

2



Assumption 2.2

1. (A;B;C) is a minimal representation and B is of full column rank.
2. �(A�; B�; C�;D�) is passive for all suÆciently small �.
3. f(A�; B�; C�;D�)g converges to (A;B;C;D) as � tends to zero.

Now, we are ready to state our �rst main result which establishes the convergence of impulse
free solutions of the approximating system to the solutions of the limit system.

Theorem 2.3 Consider the linear complementarity systems (1) and (2) satisfying assump-

tions 2.2. Let T > 0 and x0 2 R
n be given such that the unique solution (u; x; y) of LCS(A;B;C;D)

on [0; T ] with the initial state x0 is impulse free. Let (u�; x�; y�) be the unique solution of (2)

on [0; T ] with the initial state x0. Then, fx
�g converges uniformly to x on [0; T ] and f(u�; y�)g

converges weakly to (u; y) in L2-sense as � tends to zero.

Note that (u; x; y) is a trajectory of LCS(A;B;C;D) if and only if e�t(u; x; y) is a trajectory
of LCS(A + �I;B;C;D). This observation motivates the problem of �nding a real number �
such that (A+ �I;B;C;D) is passive.

De�nition 2.4 (A;B;C;D) is said to be passi�able by pole shifting if there exists � 2 R such
that (A+ �I;B;C;D) is passive.

Necessary and suÆcient conditions for passi�ability by pole shifting are given in the following
theorem.

Theorem 2.5 Consider a matrix quadruple (A;B;C;D) satisfying item 1 of assumptions 2.2.

Let E be such that ker E = f0g and im E = ker (D + D>). Then (A;B;C;D) is passi�able

by pole shifting if and only if D is nonnegative de�nite and E>CBE is symmetric positive

de�nite.

The extension of Theorem 2.3 to systems passi�able by pole shifting is presented in the next
theorem.

Theorem 2.6 Consider the linear complementarity systems (1) and (2) satisfying assump-

tions 2.2. Suppose that the matrix quadruple (A;B;C;D) is passi�able by pole shifting. Let

T > 0 and x0 2 R
n be given such that the unique solution (u; x; y) of (1) on [0; T ] with the

initial state x0 is impulse free. Let (u�; x�; y�) be the unique solution of (2) on [0; T ] with the

initial state x0. Then, fx
�g converges uniformly to x on [0; T ] and f(u�; y�)g converges weakly

to (u; y) in L2-sense as � tends to zero.
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