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From Lipschitzian to non-Lipschitzian characteristics:
continuity of behaviors

M.K. Camlibel! M.K K. Cevik?

Abstract

Linear complementarity systems are used to model dis-
continuous dynamical systems such as networks with ideal
diodes and mechanical systems with unilateral constraints.
In these systems mode changes are modeled by a relation
between nonnegative, complementarity variables. We con-
sider approximating systems obtained by replacing this non-
Lipschitzian relation with a Lipschitzian function and inves-
tigate the convergence of the solutions of the approximat-
ing system to those of the ideal system as the Lipschitzian
characteristic approaches to the (non-Lipschitzian) comple-
mentarity relation. It is shown that this kind of convergence
holds for linear passive complementarity systems for which
solutions are known to exist and to be unique. Moreover,
this result is extended to systems that can be made passive
by pole shifting. )

1 Introduction

The well-posedness (in the sense of existence and unique-
ness of solutions) of a class of hybrid systems, namely com-
plementarity systems, has been the main theme of our pre-
vious work (see [1,2,5,7,10, 11] and also [6, 8] for related
work). Having networks with ideal diodes as the most typi-
cal examples (see for other examples [4]), the complemen-
tarity systems are of the form

& = f(z,u) (1a)
y = g(x,u) (1b)
0<uly>0 (1c)

where the inequalities are understood componentwise,
which implies together with the orthogonality relation that
u; = Qory; = 0 for all 2. Of course, one has to be
precise about what a solution of such a system means. In
[1,2,5,7,10, 11], solution concepts for several families of
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systems (1a)-(1b) (e.g. linear, Hamiltonian etc.) are devel-
oped and sufficient conditions for well-posedness are pre-
sented. Notice that the so-called complementarity condi-
tions (1c) as depicted in Figure 1 do not define a function
between u and y. However, a slight perturbation of the piece

Figure 1: Complementarity characteristic and one of its possible
approximations

with infinite slope allows to express u as a piecewise-linear
(and hence Lipschitz continuous) function of y. Naturally,
one might expect/desire that this approximated characteris-
tic generates trajectories ‘close’ to ones of complementar-
ity system (1). However, it is not hard to find examples
for which this property does not hold whenever the com-
plementarity system is ill-posed. The main objective of the
present paper is to prove the convergence of the trajecto-
ries generated by the Lipschitzian characteristics to those
generated by the (non-Lipschitzian) complementarity char-
acteristic for a class of well-posed complementarity systems
including linear passive ones. We will mainly focus on the
linear complementarity systems given by

& = Az + Bu (2a)
y=Cz+ Du (2b)
0<uly>0. (2¢)

It can be verified that the linear system (2a)-(2b) with the
approximated characteristic of Figure 1 is equivalent to the
complementarity system given by

¢ = Azt + Beu (3a)
y¢ = Cez® + D.us (3b)
0<u* Ly >0 o)

with (A¢, Be,C¢,D.) = (A,B,C,D + €l) in the sense
that there is a one-to-one correspondence between the tra-
jectories of the two systems. Keeping this equivalence in
mind, we will investigate the convergence of the trajectories
of general linear complementarity systems instead of some
specific approximation schemes. Later on, several approxi-
mation schemes including the one depicted in Figure 1 will
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be treated as special cases of our general setting. Continu-
ity of linear dynamical systems are addressed for instance
in [3, 13}. While continuity is defined via pointwise conver-
gence of trajectories in [13], [3] considers continuity in the
graph topology. What we understand as continuity is quite
close to the notion used in [13]. Our treatment heavily re-
lies on the concept of passivity. In particular, the infinite
zero structure imposed by passivity.

The organization of the paper is as follows. In the next sec-
tion, we recall several facts such as Carathéodory solution
of a differential equation, and the definition and character-
ization of the notion of passivity in order to be reasonably
self-contained. Section 3 is devoted to linear complemen-
tarity systems. After recalling the solution concept devel-
oped previously for such systems, we will present known
well-posedness results under the passivity assumption. In
section 4, these results will be extended to the class of sys-
tems that we call passifiable by pole shifting. This will be
followed by results on convergence in section 5. In sec-
tion 6 some examples will be treated as special cases of the
general framework of the previous section. By means of
an example, it will be illustrated that the trajectories of the
approximating systems are not convergent for the irregular
initial states. The paper will be closed by conclusions in
section 8 and an appendix containing the proofs.

2 Preliminaries
Consider the continuous-time, linear and time-invariant sys-
tem

z(t) = Az(t) + Bu(t)
y(t) = Cz(t) + Du(t)

(4a)
(4b)

where z(t) € R*, u(t) € R™, y(t) € R™ and A4, B, C,
and D are matrices with appropriate sizes. We denote (4)
by £(4, B,C, D).

A triple (u,z,y) € L™ (to,11) is said to be an Lp-
solution of (A, B, C, D) if it satisfies (4a) in the sense of
Carathéodory, i.e., for almost all ¢ € [tg, t1], (4b) holds and

z(t) = z(to) + /tt[Az(s) + Bu(s)]ds. &)

Next, we recall the definition of the passivity notion.
Definition 2.1 [12] The system (A, B,C, D) given by
(4) is said to be passive (dissipative with respect to the sup-

ply rate uTy) if there exists a function V : R* — R, (a
storage function), such that

V(e(to)) + /t YOy Ved)  ©

holds for all ¢y and ¢, with t; > ¢, and all £,-solutions
(ua T, y) € c;n+n+m (tO’ tl) of E(A, B7 C7 D)

We state a well-known result on passive systems which
characterizes passivity in terms of linear matrix inequalities.

Lemma 2.2 [12] Assume that (A, B, C) is minimal. Then
¥(A, B, C, D) is passive if and only if the matrix inequali-
ties ’

ATK+KA KB-CT

_ )T
K=K'">0and |"pr o " —(D+DT)]SO

have a solution. Moreover, V (z) = %mTK z is a quadratic
storage function if and only if K is a solution of the above
matrix inequalities.

In what follows, we introduce the following notation.

Notation 2.3 For a given matrix quadruple (4, B,C, D)
and K, K( 4 B) denotes the matrix

ATK+KA KB-CT
BTk -C -(D+D")|"

3 Linear complementarity systems
The main objects of study in the present paper are linear

complementarity systems, that is to say, linear systems with
complementarity conditions given by

&= Az + Bu (7a)
y=Czx+ Du (7b)
0<uly>0. (Tc)

We denote the linear complementarity system (7) by
LCS(A, B,C, D). Next, we shall define what is meant by
a solution of a linear complementarity system by clarifying
the meaning of the complementarity conditions in (7¢).

Definition 3.1 The triple (u,z,y) € L£3T"™(0,T) is a

solution of LCS(A, B, C, D) on [0, T'] with initial state zg
if the following conditions hold.

1. (u,z,y) is a Ly-solution of (A4, B,C, D) on [0, T}.

2. Foralmostall t € [0,T],0 < u(t) L y(t) > 0.

The initial state is said to be regular if there exists a solution

with this initial state and irregular otherwise.
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Throughout the paper, we will frequently use the folloWing
assumption.

Assumption 3.2 (A, B, C) is a minimal representation and
B is of full column rank.



The passivity of the system (A, B, C, D), together with
Assumption 3.2, guarantees the existence and unique-
ness of solutions (in the sense of Definition 3.1) to
LCS(A, B, C, D)as will be presented in the next theorem.
Before stating these results, we recall the notion of a dual
cone. For a given nonempty set S, we say that the set
{v|vTw > Oforallw € S} is the dual cone of S. It
is denoted by S*. In particular, the dual cone of the set
Sp ={v|v>0,Dv >0, andv"Dv = 0} plays an
important role in the above mentioned characterization.

Theorem 3.3 Consider a matrix quadruple (A, B,C, D)
satisfying Assumption 3.2. Suppose that (A, B,C, D) is
passive. Let T > 0 be given. Then, there exists a unique
solution of LCS(A, B, C, D) on [0, T] with initial state
ifand only if Cxy € S},

The proof can be found in [1, 5].

4 Passifiability by pole shifting

In this section, we will extend the well-posedness results
presented in Theorem 3.3 to a class of nonpassive sys-
tems. To do so, note that if (u,z,y) is a solution of
LCS(A, B,C, D) with some initial state then e (u, z,y)
is a solution of LCS(A4 + pI, B,C, D) with the same ini-
tial state and vice versa. Clearly, it may be possible to find
p such that the pole-shifted system (A + pI,B,C,D) is
passive even X(A4, B, C, D) is not passive. Hence, above
mentioned correspondence ensures us to apply Theorem 3.3
to systems which can be made passive by pole shifting. In
what follows, this class of systems will be introduced.

Definition 4.1 The quadruple (A4, B,C, D) is said to be
passifiable by pole shifting if there exists p € R such that
Y(A+ pI,B,C, D) is passive.

Next, we give necessary and sufficient conditions for passi-
fiability by pole shifting in the following theorem.

Theorem 4.2 Consider a matrix quadruple (A, B,C, D)
satisfying Assumption 3.2. Let E be such that ker E = {0}
andim E = ker (D + DT). Then (A, B,C, D) is passifi-
able by pole shifting if and only if D is nonnegative definite
and ET CBE is symmetric positive definite.

In the light of the discussion preceding Definition 4.1, we
can extend the well-posedness results presented in Theorem
3.3 to the class of passifiable systems.

Corollary 4.3 Theorem 3.3 still holds if ¥(A, B,C, D) is
passifiable by pole shifting rather than passive.

4375

5 Continuity of behaviors

In this section, we will present some continuity results for
linear complementarity systems. In this respect, only spe-
sific approximations are admissible.

Definition 5.1 The sequence {(A., B, C, D)} is said to
be an admissible approximation of (A, B, C, D) if the fol-
lowing conditions hold.

1. D, is positive definite for all sufficiently small e.

2. {(A, B.,C.,D,)} converges to (4,B,C,D) as ¢
tends to zero.

Note that the positive definiteness of D, implies passifia-
bility by pole shifting. Also note that approximating linear
complementarity systems have unique solution for all initial
states.

Now we can present the main result of this section.

Theorem 5.2 Consider a matrix quadruple (A, B,C, D)
satisfying Assumption 3.2. Suppose that ©(A, B,C, D)
is passifiable by pole shifting. Let T > 0 and a reg-
ular initial state of LCS(A, B,C, D) zo be given. Also
let {(Ae, B¢, Ce, D)} be an admissible approximation of
(A, B,C, D) and let (u¢, z¢,y¢) be the unique solution of
LCS(A¢, B¢, Ce, D,) on [0,T] with the initial state zo. If
{u¢} is bounded then {z¢} converges (strongly) to = and
{(u¢,y¢)} converges weakly to (u,y) in L-sense as € tends
to zero.

As illustrated in the following example, not all admissible
approximations produce bounded u-trajectories.

Example 5.3 Consider the linear complementarity system
LCS(A, B, C, D)given by

:i:1=u1

i:z = U2

B1=21

Y2 = T2
0<uly>0

and the approximating systems LCS(A,, B, C,, D, )given
by
] = uf
5 = ug
Y = 2§ — ex§ + eFuf
Us = —exf + 75 + cFug
0<uf Ly >0

It is.easy to see that the above approximations are
admissible.- The unique solution (uf,z¢,y¢) of



LCS(A,, B, C, D.) with the initial state 2 = [0 1]"
can be computed as

= ()

y = 0 o
1—€2+626_€ t

One can check that
—k+2

2

on a given interval [0,7].
bounded unless k£ < 2.

€ o=k
fJugl® = (1-e7T)

Consequently, {u¢} is not

6 Examples

We consider two types of approximation schemes in this
section. It will be shown that these two schemes are addmis-
sible approximations. Consider a quadruple (A4, B,C, D)
satisfying Assumption 3.2, and suppose that ¥(A, B,C, D)
is passive.

For the first scheme in Figure 6, it can be verified that
the overall system can be written as LCS(A,, B.,Ce, D.)
where (A, B.,C.,D.) = (A4,B,C,D + el). Since

.X(A,B,C, D) is passive, D, > 0 for all ¢ > 0. Besides, "~

{(Ae¢, Be, Ce, D)} converges to (4, B, C,.D) as ¢ tends to
zero. Therefore, {(A., B¢, Ce, D¢)} is an admissible ap-
proximation. For the second scheme, one can check that

Figure 2: Examples of characteristics that give admissible ap-
proximations

the overall system can be rewritten as LCS(Ae, B¢, Ce, D)
where A, = A — eB(I + eD)~'C, B, = B(I +eD)™1,
Ce = (1—-€*)(I+eD)~*C,and D, = (eI+D)(I+eD)~%.
It can be verified that D, > 0 for all ¢ > 0. Since
{(A¢, B, Ce, D)} converges to (A, B, C, D) as € tends to
zero, it follows that {( 4., B¢, C¢, D)} is an admissible ap-
proximation of (A4, B, C, D).

Then, Theorem 5.2 imply that the trajectories of these ap-

proximating systems converge to those of LCS(A4, B, C, D)
in both cases provided that u-trajectories are bounded.

7 Irregular initial states

So far, what has been done is to investigate the convergence
of the solutions, only those with a regular initial state of

the limit system, of approximating systems. Although the
limit system does not have solutions with the irregular ini-
tial states, the admissible approximations have. Then, it is
natural to raise the question if and in what sense the ap-
proximating solutions with irregular initial states converge.
By means of the following example, we will illustrate that
different approximations may yield different limits in this
case.

Example 7.1 Consider the LCS(A, B, C, D) given by

T = Uy + 2u9
To = 2uy + ug

h1=onn
Yo = T2
0<uly2>0,

the approximating systems LCS(A., B, C¢, D) given by

] = uf + 2u;
5 = 2uj + uj
yi =i +eug
Y3 = T5 +eus
0<u*Ly>0

.and LCS(A,, B,,C,, D,,) given by

:1:‘1‘ = u{‘ + 2u§

b = 2uf +ub

¥ =i + pui + 2uuy

yh =z + 2pul + pub
0<u* Ly*>0.

Evidently, both {(A., B, C., Do)} and
{(A4, By, Cy,D,)}  qualify as admissible approx-
imations of (A,B,C,D). Let (uf,z¢,y¢) and

(u#,z#,y*) denote the solutions of LCS(A4,, B, C, D)
and LCS(A,,B,,C,,D,) with the initial state

z = [-5 —1]T. It can be checked that both {u¢}
and {u*} are convergent in the distributional sense. Indeed,
th o7 a2 1] sand[2 07

ey converge to [3 -5 - 1] and [3 0] 4,
respectively. The fact that these approximations converge
to different limits naturally weakens the power of ideal
modeling in this context. In fact, it shows that the ideal
model cannot capture the fast dynamics of the actual
system.

8 Conclusions

We have considered linear complementarity systems de-
scribed by linear time invariant systems coupled to ideal
diode type complementarity characteristics. It is known
that these systems possess unique solutions if the underly-
ing linear system is passive. For these systems, it has been
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shown that the solutions of the system obtained by approx-
imating the complementarity characteristic by a smoother
Lipschitzian characteristic converge to the solution of the
complementarity system as the approximating characteris-
tics get closer to the complementarity one.

Motivated by the relation between the solutions of a lin-
ear complementarity system and its pole-shifted version, we
have introduced the notion of passifiability by pole shifting.
After establishing necessary and sufficient conditions under
which a given linear system can be made passive by pole
shifting, the same convergence result has been proved for
such systems.

Appendix: Proofs

To prove Theorem 4.2, we need the following technical
lemma.

Lemma 8.1 Let A, B € R™" and let A be of full row
rank. Then, there exists a symmetric positive definite matrix
X such that AX = B if and only if BAT is symmetric
positive definite.

Proof only if: Postmultiplying AX = B by AT, we get
AXAT =BAT.Since X = X7 >0,BAT = ABT > 0.

if: Note that A can be written as A = [I 0] V for some
nonsingular V' € R™". Postmultiplying both sides of
AX = B by VT and defining Y := VXVT, we get
[I 0]Y = BVT. Clearly, finding a solution to the lat-
ter equation with Y = Y7 > 0 is equivalent to finding a
solutionto AX = Bwith X = XT > 0. LetY and BV "
be partitioned as follows:

Yii Yo
Y =
[Y2 1 Yzz]

BVT =[B; By].

To satisfy [I 0]Y = BV, we can take Y1, = B and
Yin = B = BVT[I 0]" = BAT. Hence, by the hy-
pothesis Y); = YJ > 0. It remains to determine Y5; and
Y3y insuch away that Y = Y7 > 0. Choose Yz; = Yi}
and Yz = I + Y,5Y,7! V1. Then, it follows from

I A N
YRV I 0 Yo -YIV'Vie
I vV
0 I

that Y =Y7 >0. M

Proof of Theorem 4.2 jf: Since both E and B are of full
column rank, the equation £’ C = E' BT K has a sym-
metric positive definite solution K according to Lemma 8.1.
Define g = Apoz(K). Let F be such that ker F = {0}
and im F' = (im E)1. Note thatim F @ im F = R™.

Clearly, FTDF is nonnegative definite. Suppose that
vIFTDFv = 0, ie., (D + DT)Fv = 0. This means
that Fv € im E. It is easy to see that v = 0. Hence,
we can conclude that F'T DF is positive definite. Define
a= ﬁ/\m”(ATK +KA), = &-||KBF - CTF|| and
Y = —5zAmin(F (D + DT)F). Note that v < 0. Take
p < £ — o and note that [“+p s ] is nonpositive definite.

It can be verified that (A + pI, B, C, D) is passive with the
storage function V(z) = =7 Kz. Indeed,

-
[Tz
+22" (KB-CT)u-u"(D+D")u
=z (ATK + KA)z +2pz" Kz
+2z " (KB—C")Fu; —ufF"(D+D")Fuy

(ATK + KA)z + 2pz " Kz

whereuw = Eu,+Fuy. From the Rayleigh-Ritz (see e.g. {9,
Theorem 5.2.2.2]) and Cauchy-Schwarz inequalities, we get

u

[x] i k(491 B) m < Amas(ATK + K A)|jz)?

+ 20Amaz (K)|2||* + 2(KBF — CT Fllljusllll<|
~ Amin(FT(D + D7) F)llus|l?

<o) [oxe 2] 1] <o

Since K is positive definite and minimality of (A, B, C) im-
plies that (A + pI, B, C) is also minimal, we can conclude
that (A + pI, B, C, D) is passive due to Lemma 2.2,

only if: If (A, B,C, D) is passifiable by pole shifting then
there exist a p € Rand K = K' > 0 such that
K(4&" B) is nonpositive definite. It follows that D is
nonnegative definite and (KB — CT)E = 0. The latter to-
gether with the hypothesis that B is of full column rank im-
plies that ETCBE is symmetric positive definite because
ETCBE=E"B"KBE. R

Proof of Theorem 5.2 Without loss of generality, we can
assume that X(A, B, C, D) is passive due to the discussion
preceeding Definition 4.1. Since u€ is bounded for all suffi-
ciently small ¢, it has a weakly convergent subsequence, say
{u*}. Let u be the weak limit of this subsequence. Define
the operators

o (To)(t) =
o (Tw)(t) = f; eA<t=9) B.u(s) ds,
e (S.v)(t) = Dev(t).

f eAlt- s)Bv(s)ds,,

It can be verified that

e S is nonnegative definite for all sufficiently small €,



o 7T is a compact operator,
o {S,, ut} converges to Du,
o {C,, T, u* — CTuc*} converges to zero,

. {eA='z0} converges to e4'zg.
Therefore, [2, Theorem 6.9] implies that

e {z%} converges (strongly) to z where z = Tu,
o {y**} converges weakly to y := Cz + Du,
o (u,z,y) is a solution of LCS(A, B,C, D) on [0,T]

with the initial state xg. E

We already know from Theorem 3.3 that this solution is
unique. Then, it follows from [2, Lemma 6.1 item 2] that
not only a subsequence of {u¢} but {u¢} itself converges
weakly to u as € tends to zero.B
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