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Robust Event-Triggered MPC With Guaranteed
Asymptotic Bound and Average Sampling Rate

Florian David Brunner , W. P. M. H. Heemels , Fellow, IEEE, and Frank Allgöwer

Abstract—We propose a robust event-triggered model
predictive control (MPC) scheme for linear time-invariant
discrete-time systems subject to bounded additive stochas-
tic disturbances and hard constraints on the input and state.
For given probability distributions of the disturbances act-
ing on the system, we design event conditions such that
the average frequency of communication between the con-
troller and the actuator in the closed-loop system attains a
given value. We employ Tube MPC methods to guarantee ro-
bust constraint satisfaction and a robust asymptotic bound
on the system state. Moreover, we show that instead of a
given periodically updated Tube MPC scheme, an appropri-
ate event-triggered MPC scheme can be applied, with the
same guarantees on constraints and region of attraction,
but with a reduced number of average communications.

Index Terms—Asymptotic stability, communication net-
works, control systems, control system synthesis, cost
function, discrete-time systems, Lyapunov method, predic-
tive models, predictive control.

I. INTRODUCTION

N ETWORKED control systems are distributed control sys-
tems in which the communication between sensors, con-

trollers, and actuators takes place over a certain communication
network (see, for example, [1]). There are multiple reasons for
reducing the overall amount of communication in such a control
system. On one hand, communications may induce a nontrivial
cost in terms of energy, which is especially the case in wireless
communication. On the other hand, communications may take
place over a shared, bandwidth-limited communication network.
Reducing the bandwidth required by the controller releases re-
sources for other network tasks. One method that is suited to
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reduce the required communication is event-triggered control.
Instead of updating the control input of the plant at periodic
time instances, in event-triggered control new inputs are only
transmitted to the actuators if certain well-defined events occur
in the plant. Typically, these events are defined in terms of the
plant output or state leaving a certain set. For a recent overview
of event-triggered control, please refer [2].

If the plant is subject to hard constraints on the input and state,
model predictive control (MPC) has proven to be viable con-
trol method, see [3] for an overview of MPC. In event-triggered
MPC, an event is usually triggered if the plant state deviates by
a certain amount from the prediction of the state that was com-
puted in the MPC optimization problem at the last event (see,
for example, [4]–[11], and the references therein). For linear
systems, this approach has the advantage that the event condi-
tions are only dependent on the error dynamics, induced by the
disturbances, which are decoupled from the nominal system dy-
namics. This idea also plays a central role in the event-triggered
control schemes for unconstrained systems proposed in [12]–
[14], where a model of the nominal closed-loop system is in-
cluded in the actuators. One major difference between this paper
and the cited works above (except for [6], where time-varying
thresholds based on gains and Lipschitz constants of nonlinear
systems were employed) is that the thresholds used here are ex-
plicitly dependent on the time since the last sampling instance,
allowing a better tradeoff between the average sampling rate
and the asymptotic bound on the system state. Alternatively,
the MPC cost function may be used to define the event con-
ditions (see, for example, [6], [15]). These control schemes,
including the scheme proposed in this paper, require a whole
sequence of predicted inputs to be transmitted to the actuators
at a given event. For many communication protocols, the size
of communicated packets is fixed, such that it is more efficient
to transmit whole sequences of inputs only at infrequent times
than to transmit a single input at each point in time, although
the overall amount of transmitted information is the same (or
even higher), see [4] and [16] with reference to [17]. See also
[18], where an MPC scheme using packetized communication
is proposed. This control structure is illustrated inFig. 1, which
is the structure also assumed in [5].

For systems that are additionally subject to uncertainty or
disturbances, robust MPC methods must be applied. Here, we
consider bounded, additive disturbances, which can be effec-
tively and efficiently handled by a method known as Tube MPC
[19], [20]. In particular, the uncertainty in the prediction of the
future plant state due to disturbances is described by a sequence
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Fig. 1. Control structure with buffered actuator.

of sets (the so called “tube”), which are centered around the pre-
diction of a nominal system, see also [21] and [22]. The main
idea in Tube MPC is to assume that feedback is applied to the
plant at every time step, which allows us to limit the growth of
the uncertainty in the prediction, as the (future) feedback will
counteract the effect of the disturbances. Even if no feedback
is assumed, bounds on the system dynamics, for example, by
assuming the dynamics to be Lipschitz continuous, may be used
to obtain the tubes (see, for example, [23]). This technique was
also employed in robust event-triggered MPC (see, for example,
[6], [9], [10]).

In this paper, based on the Tube MPC approach presented
in [19], we propose a robust event-triggered MPC scheme where
the main novelty is the following insight. If a disturbance of sig-
nificantly lower than worst case magnitude affects the system
at a given time step, then the deviation of the plant trajectory
from the predicted trajectory will not be greater than what was
previously predicted as a worst case, even if no feedback is ap-
plied at the given time step. We design a robust event-triggered
controller that does not update the inputs of the plant in the very
event of such less-than-worst-case disturbances, saving commu-
nication, and possibly computational power, in the process. This
method allows any periodically updated Tube MPC scheme to be
used for designing an event-triggered MPC scheme while retain-
ing the guarantees of its periodically updated counterpart con-
cerning robust constraint satisfaction, region of attraction, and
asymptotic bound, with a reduced average amount of communi-
cation between the controller and the actuators. Additionally, we
present a method of artificially increasing the assumed bound on
the disturbances in order to further reduce the communication in
the system, leading to a linear scaling of the uncertainty sets in-
volved in the MPC scheme, similar to what was proposed in [22]
for a periodically triggered setting. In particular, we show how,
based on the knowledge of the distribution of the disturbances,
event conditions can be designed such that the time between
events is a random variable with a predefined, arbitrary prob-
ability distribution with finite and discrete support. Here, we
use a Markov-like property of the event-triggered scheme that
limits the computational effort involved with computing the ap-
propriate thresholds: the trigger behavior of the scheme does not
depend on the state of the system before the last event instance.

Our scheme shares some similarities with [5], which also
considers event-triggered MPC of linear discrete-time system
subject to bounded disturbances. The major differences are
the stochastic viewpoint in this paper and the guarantees on
the average amount of communication that are not given in
[5]. Furthermore, we provide a tighter estimate of the worst
case asymptotic bound on the system state. In order to achieve

this tighter bound, we have to modify the standard analysis of
recursive feasibility and stability available in Tube MPC, and
in particular in [19], as the uncertainty present in the prediction
now stems from two sources: the additive disturbances on the
one hand, and the permitted deviation of the real trajectory from
the predicted trajectory due to the event-triggered scheme on
the other hand. Contrary to [5], we do not simply model this
deviation as an additional, independent, additive disturbance,
allowing us to show that for a certain choice of parameters, it is
possible to achieve the same asymptotic bound as a periodically
updated Tube MPC scheme. Another event-triggered scheme
with guaranteed average communication rate was presented in
[24], which was shown to achieve a strictly better performance
than a periodically updated scheme with the same communica-
tion rate. Therein, stochastic (unbounded) disturbances but no
constraints were considered.

This paper is based on the preliminary work presented in
[25]. Here, we provide proofs for the statements made in [25]
and also provide an additional threshold design method that al-
lows a better tradeoff between the average sampling rate and the
guaranteed asymptotic bound. We also present more detailed
numerical examples here. Some techniques that appear in this
paper were also used in the recent work [26] by the authors,
in which self-triggered robust MPC is considered. The main
difference between self-triggered and event-triggered MPC is
that in event-triggered MPC the state is measured at each time
instant, potentially allowing the controller to react to distur-
bances. In self-triggered MPC on the other hand, the plant is
controlled in a true open-loop fashion between communication
instances, leading to larger and differently shaped uncertainty
sets in the predictions. Furthermore, the cost function is self-
triggered MPC that has to be designed carefully in accordance
with the set that is to be stabilized, leading to a considerably
more involved optimization problem.

The remainder of this paper is structured in the follow-
ing way. Section II contains notes on notation and several
preliminary results. The formal problem statement is given
in Section III. The robust event-triggered MPC scheme is
presented in Section IV and its relevant properties are described
in Section V. The design of the event conditions based on
the probability density function describing the disturbances
is explained in Section VI. Section VII contains numerical
examples illustrating our results and Section VIII concludes
this paper with an outlook on open questions.

II. NOTATION AND PRELIMINARIES

Notation: Let N denote the set of nonnegative integers. For
q, s ∈ N, let N[q ,s] denote the set {r ∈ N | q ≤ r ≤ s}. For a
given real number a ∈ R, we use R>a and R≥a to denote the
set of real numbers greater than a, or greater than or equal
to a, respectively. For symmetric matrices S = S� ∈ Rn×n ,
we use S > 0 and S ≥ 0 to denote the fact that S is posi-
tive definite and positive semidefinite, respectively. Given sets
X ,Y ⊆ Rn , a scalar α, and matrices A ∈ Rm×n , B ∈ Rn×m ,
we define αX := {αx |x ∈ X}, AX := {Ax |x ∈ X}, and
B−1X := {x ∈ Rn |Bx ∈ X}. The Minkowski set addition
is defined by X ⊕ Y := {x + y |x ∈ X , y ∈ Y}. Given a
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vector x ∈ Rn , we define X ⊕ x := x ⊕X := {x} ⊕ X .
The Pontryagin set difference is defined by X � Y := {z ∈
Rn | z ⊕ Y ⊆ X}, see [27] and [28]. Given a sequence of
sets Xi for i ∈ N[a,b] with a, b ∈ N, we define

⊕b
i=a Xi =

Xa ⊕Xa+1 ⊕ · · · ⊕ Xb . By convention, the empty sum is equal
to {0}. Similarly, for any vectors vi ∈ Rn , i ∈ N, we define
∑b

i=a vi = 0 for any a, b ∈ N if a > b. We call a compact, con-
vex set containing the origin a C-set. A C-set containing the
origin in its (nonempty) interior is called a PC-set. A function
α : R≥0 → R≥0 belongs to class K if it is continuous, strictly
increasing and α(0) = 0. If additionally α(s) → ∞ as s → ∞,
α is said to belong to class K∞. The Euclidean norm of a vector
v ∈ Rn is denoted by |v|, the infinity norm by ‖v‖∞. Given any
compact set Y ⊆ Rn , the distance between v and Y is defined
by |v|Y := mins∈Y |v − s|. The Lebesgue measure of Y is de-
noted by vol(Y). The empty set is denoted by ∅. Define finally
the Euclidean unit ball by B := {x ∈ Rn | |x| ≤ 1}.

Definition 1: Consider a dynamical system of the form
(x�

t+1 , z
�
t+1)

� = f(xt, zt , wt), t ∈ N, f : Rn × Rp ×W →
Rn with a compact set W ⊆ Rn , and z0 = g(x0) for a function
g : Rn → Rp . A set Y ⊆ Rn is robustly asymptotically stable
with region of attraction X̂ ⊆ Rn for this system, if there ex-
ists a class K-function α, such that |xt |Y ≤ α(|x0 |Y), t ∈ N,
and limt→∞ |xt |Y = 0, for all x0 ∈ X̂ , and all wt ∈ W , t ∈ N,
compare [29].

Definition 2: Given a dynamical system described by
xt+1 = Axt + wt with xt ∈ Rn , wt ∈ W , t ∈ N, where W ⊆
Rn is a C-set and A is a Schur matrix, the minimal robust
positively invariant set is the nonempty compact set Y� ⊆
Rn satisfying AY� ⊕W ⊆ Y� , which is contained in every
compact set Ȳ ⊆ Rn satisfying AȲ ⊕W ⊆ Ȳ , see also [28]
and [30].

The following lemma summarizes several properties of the
Minkowski set addition and the Pontryagin set difference used
in this paper.

Lemma 1: Let X ,Y,Z ⊆ Rn be compact convex sets.
Let further A ∈ Rm×n . Then it holds that X ⊕ Y = Y ⊕
X , X � (Y ⊕ Z) = (X � Y) �Z , (X ⊕ Y) � Y = X , (X �
Y) ⊕ Y ⊆ X , A(X ⊕ Y) = AX ⊕ AY , and (X ∩ Y) ⊕Z ⊆
(X ⊕ Z) ∩ (Y ⊕ Z).

�
The proofs for these statements can be found in [28] and [31].

III. PROBLEM SETUP

We consider linear discrete-time systems of the form

xt+1 = Axt + But + wt (1)

where xt ∈ Rn is the state and ut ∈ Rm is the control input at
time t ∈ N. The matrix pair (A,B) is assumed to be stabilizable.
The disturbance wt is assumed to be time-varying, unknown,
and to satisfy wt ∈ W ⊆ Rn , t ∈ N, whereW is a known C-set.
Furthermore, the probability distribution of the disturbance wt

is assumed to be known. In particular, we assume wt to be inde-
pendently and identically distributed for all t ∈ N according to
the bounded probability density function pw : Rn → R≥0 with
a support that is bounded by W . Furthermore, hard constraints,
xt ∈ X , ut ∈ U , t ∈ N, on the input and state are given, where

X ⊆ Rn and U ⊆ Rm are C-sets. We assume that the state xt

is available to the event-triggered controller (at the sensor side)
as a measurement at any time step t ∈ N, which is consistent
with a setup where the controller is directly integrated in the
sensor of the plant. The communication network for which we
would like to reduce the number of transmissions is situated
between the controller and the actuator, as illustrated in Fig. 1.
In particular, we assume that the actuator does not have direct
access to the system state and has to receive this information via
this communication network.

In order to save communication, the input ut will be deter-
mined by an event-triggered controller of the form

ut = κ(xtj
, t − tj ), t ∈ N[tj ,tj + 1 −1] (2a)

tj+1 = inf{t ∈ N≥tj +1 |xt /∈ E(xtj
, t − tj )} (2b)

where j ∈ N and t0 = 0. That is, the control values are only
updated at the event instances tj based on the state xtj

. The
event instances are determined based on the event conditions
xt /∈ E(xtj

, t − tj ). At the time instances between tj and tj+1
the input ut is open loop, that is, not depending explicitly on
the current state xt . This makes it possible to transmit a whole
sequence utj

, utj +1 , . . . , utj +N −1 for an N ∈ N≥1 to the ac-
tuator in one packet at time tj . Of this sequence, only the first
tj+1 − tj inputs are applied to the system, as the next packet
arrives at time tj+1 . This setup makes it necessary to guarantee
tj+1 − tj ≤ N for all j ∈ N.

Our goal is to design the controller κ : Rn × N → Rm and
the set-valued function E : Rn × N → 2Rn

for the closed-loop
system consisting of (1) and (2) such that

1) the constraints xt ∈ X , ut ∈ U , t ∈ N, are robustly sat-
isfied;

2) a C-set Y ⊆ Rn is robustly asymptotically stable; and
3) the expected value of the interevent times satisfies

E[tj+1 − tj ] = Δ̄ for a given Δ̄ ≥ 1.
We expect a tradeoff between Δ̄ and the size of the set Y ,

with the tradeoff depending on the probability distribution pw .
Remark 1: In many applications, it is more natural to have an

event-triggered element in the communication channel between
the sensor and the actuator, or having the controller cosituated
with the actuator, in contrast to the setup presented here, where
the event-triggered element is placed between the controller and
the actuator. However, if a packet-based communication scheme
is employed and the controller is contained in the actuator, it
is in principle possible to send a predicted sequence of system
states from the actuator back to the sensor at each time the
control actions are updated due to an event at the sensor side
(which causes the current system state to be transmitted from
the sensor to the actuator). Such an alternative setup is depicted
in Fig. 2, where it is still assumed that the actuator has to receive
state information via the communication network. The results
in this paper can be applied to the alternative setup without
restrictions, at the price of more communications in the system
due to the required back-channel from the actuator to the sensors.
Compare [4], where just such a setup was proposed. �

Remark 2: The assumption of the disturbance being inde-
pendently and identically distributed may not be satisfied for
applications where the source of the disturbance is known. In
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Fig. 2. Control structure with event triggering in the sensor-to-controller
path.

this case, it would be more appropriate to assume the disturbance
to be generated by an exosystem and to include an estimator of
the state of this exosystem in the control scheme. The setup
considered in [12] goes in this direction. Such an approach re-
quires output-feedback methods to be applied, which is beyond
the scope of this paper. �

IV. EVENT-TRIGGERED TUBE MPC

We propose a solution to the problem stated in Section III
based on Tube MPC. That is, the functions κ and E are deter-
mined by the solution of a finite horizon optimal control prob-
lem which is to be solved online at the event instants tj , j ∈ N.
The constraints in the optimization problem are tightened in
order to guarantee robust constraint satisfaction. In particular,
we employ the method proposed in [19] to compute the tight-
ened constraint sets. If necessary, we artificially increase the
assumed bound on the disturbances in the computations in or-
der to take into account the additional uncertainty introduced by
the event-triggered implementation of the controller.

The control scheme is based on an auxiliary feedback law
defined by the matrix K ∈ Rm×n , which is assumed to be the
desired feedback for the plant if constraints are ignored. The
following assumption is required to hold.

Assumption 1: The matrix A + BK is Schur stable. �

A. Setup of the MPC Scheme

The finite horizon optimal control problem is defined as fol-
lows for an xt ∈ Rn with t ∈ N. The decision variable of the
optimization problem is

d = ((x0|t , . . . , xN |t), (u0|t , . . . , uN −1|t)) ∈ DN (3)

where DN = Rn × · · · × Rn × Rm × · · · × Rm and N ∈
N≥1 is the prediction horizon. The constraints

x0|t = xt (4a)

∀i ∈ N[0,N −1], xi+1|t = Axi|t + Bui|t (4b)

∀i ∈ N[0,N −1], xi|t ∈ Xi (4c)

∀i ∈ N[0,N −1], ui|t ∈ Ui (4d)

xN |t ∈ Xf (4e)

are imposed on d, where the variables xi|t represent a pre-
dicted trajectory for the undisturbed system generated by the
inputs ui|t according to (4b). The sets Xi and Ui , i ∈ N[0,N −1] ,
are tightened constraint sets, depending on the step i in the pre-
diction. The set Xf is a terminal set. Define the set of all feasible

decision variables for a given point xt ∈ Rn by

DN (xt) = {d ∈ DN | (4a) to (4e)}. (5)

The tightened constraint sets Xi and Ui are defined by

Xi := X � Fi , i ∈ N[0,N −1] (6a)

Ui := U � KFi , i ∈ N[0,N −1] (6b)

where the setsFi ⊆ Rn , i ∈ N, are chosen in order to capture
the worst case uncertainty in the prediction, taking into account
that feedback is only present if an event occurs. The terminal set
Xf , as well as the setsFi , i ∈ N, will be defined in Section IV-B.

The cost function for the finite horizon optimal control prob-
lem is based on the desired feedback u = Kx and penalizes
the difference between the computed ui|t and the desired value
Kxi|t . In particular, it is defined for all t ∈ N and all d ∈ DN by

JN (d) =
N −1∑

i=0

�(ui|t − Kxi|t) (7)

for a stage cost function � : Rm → R≥0 .
The finite horizon optimal control problem to be solved in

order to obtain κ and E in (2) is defined for all t ∈ N and all
xt ∈ Rn by

J0
N (xt) = min

d∈DN (xt )
JN (d) (8a)

d�(xt) = arg min
d∈DN (xt )

JN (d) (8b)

Remark 3: In the case of nonunique minimizers, it is as-
sumed that d�(xt) is an arbitrary minimizer to the optimization
problem. �

The set where the optimization problem in (8) is feasible
is defined by X̂N := {x ∈ Rn | DN (x) �= ∅}. Given any
d�(xtj

) = ((x�
0|tj

, . . . , x�
N |tj

), (u�
0|tj

, . . . , u�
N −1|tj

)), where tj
is assumed to be an event instant, the event conditions are de-
fined by E(xtj

, t − tj ) := x�
t−tj |tj

⊕ Tt−tj
, for given closed sets

Ti ⊆ Rn , i ∈ N[1,N ] , and t ∈ N[tj +1,tj +N ] . That is, an event is
triggered if the actual trajectory deviates too much from the pre-
dicted trajectory of the undisturbed system. For simplicity, we
define TN := ∅, such that an event is guaranteed to be triggered
within the prediction horizon. Furthermore, we defineT0 = {0}.
The control law is defined by κ(xtj

, t − tj ) = u�
t−tj |tj

for t ∈
N[tj ,tj +N −1] . That is, the finite horizon optimal input is applied
in an open-loop fashion to the plant until the next event occurs
and the next optimal control problem is solved. The closed-loop
system under the event-triggered controller is given by

xt+1 = Axt + Bu�
t−tj |tj

+ wt, t ∈ N[tj ,tj + 1 −1] (9a)

tj+1 = min{t ∈ N≥tj +1 |xt /∈ x�
t−tj |tj

⊕ Tt−tj
} (9b)

with wt ∈ W , j, t ∈ N, t0 = 0, and x0 ∈ Rn . Note that
the closed-loop system in (9) matches the dynamical sys-
tem considered in Definition 1 with zt = (x�

ti
, t − ti)� and

g : x0 �→ (x�
0 , 0)�.

B. Assumptions on the constraints

In the following, assumptions on the sets involved in the
definition of the triggering conditions and the optimal control
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problem will be given that ensure robust constraint satisfaction
and robust stability properties for the closed-loop system (9).
The sets Fi , i ∈ N, used to describe the uncertainty in the
prediction are defined by

Fi :=
i−1⊕

j=0

(A + BK)jW̄ (10)

where the set W̄ ⊆ Rn is an artificial overapproximation of the
set W of disturbances acting on the system, that is, W ⊆ W̄ ,
chosen in a way such that the event-triggered behavior of the
closed-loop system is taken into account. Compare [19], where
the setsFi are defined with W̄ = W . In particular, the following
assumption is made on the sets Ti and W̄ . Different methods for
choosing these sets will be discussed in Section VI.

Assumption 2: Let H0 := {0} and

Hi+1 := A(Hi ∩ Ti) ⊕W (11)

for i ∈ N[0,N ] . It holds that

Hi ⊆ Fi , i ∈ N[0,N ]. (12)

�
Remark 4:
1) Assumption 2 is not restrictive: if there exists an upper

bound on the threshold sets containing the origin, that
is ({0} ∪ Ti) ⊆ T̄ for all i ∈ N[0,N ] , then it holds that
Hi ⊆ AT̄ ⊕W for all i ∈ N[0,N ] . Hence, using 0 ∈ W ,
the inclusion in (12)—and therefore Assumption 2—is
satisfied with W̄ = AT̄ ⊕W . In general, however, this
choice of W̄ may be conservative.

2) From (10), it follows that F0 = {0}. With T0 = {0}, we
have thatH1 = W , such that with (12) for i = 1 it follows
that W ⊆ W̄ , implying that 0 ∈ Fi for i ∈ N. Further-
more, it holds that

(A + BK)jFi ⊕Fj = Fi+j (13)

for i, j ∈ N, see also [27]. �
3) Note that we use a single sequence of sets Fi , i ∈ N[0,N ] ,

to capture all possible future states under event-triggered
feedback here. In order to obtain a tighter bound on the
uncertainty in the prediction, a different sequence of sets
could be used for every different assumed sequence of
interevent times within the prediction horizon. As the
sequence of future interevent times is unknown, the con-
straints in the MPC problem would have to be enforced
for every possible one of these sequences, leading to an
exponential growth of complexity in the prediction hori-
zon N . �

The following assumption on the terminal set Xf ⊆ Rn ,
equivalent to the choice of the terminal set in [19], is required
to hold.

Assumption 3: It holds that

Xf ⊆ X � FN (14a)

KXf ⊆ U � KFN (14b)

(A + BK)Xf ⊕ (A + BK)N W̄ ⊆ Xf . (14c)

�

Lemma 2: It holds that

(A + BK)kXf ⊆ X � FN +k (15a)

K(A + BK)kXf ⊆ U � KFN +k (15b)

(A + BK)kXf ⊕ (A + BK)N Fk ⊆ Xf (15c)

for all k ∈ N. �
The proof is given in the appendix.

V. MAIN PROPERTIES OF THE MPC SCHEME

In this section, the most important properties of the pro-
posed event-triggered MPC scheme are presented, that is, well-
definedness of the controller, robust constraint satisfaction, and
asymptotic stability of a compact set for the closed-loop system.

A. Recursive Feasibility and Robust Constraint
Satisfaction

The following lemma ensures that system (9) is well defined
in the sense that if the optimization problem in (8), defining
the controller and the event conditions, is feasible at initializa-
tion, then it remains feasible for all event instants (recursive
feasibility).

Lemma 3: Let any t ∈ N, any xt ∈ Rn , and any d =
((x0|t , . . . , xN |t), (u0|t , . . . , uN −1|t)) ∈ DN (xt) be given. Let
further xt+s+1 = Axt+s + Bus|t + wt+s with wt+s ∈ W for
all s ∈ N[0,i−1] , where

t + i = min{j ∈ N≥t+1 |xj /∈ xj−t|t ⊕ Tj}. (16)

Then there exists a d̃ ∈ DN (xt+i). �
Proof: Let t + i satisfy (16) for an i ∈ N[1,N ] . Then, it

holds that xt+j+1 − xj+1|t = A(xt+j − xj |t) + wt+j for all
j ∈ N[0,i−1] . As T0 = {0} and no event was triggered at the
time points t + j for j ∈ N[1,i−1] , it holds that xt+j − xj |t ∈ Tj

for all j ∈ N[0,i−1] . By (11) and (12), using induction, it follows
that

xt+j − xj |t ∈ Hj ⊆ Fj (17)

for all j ∈ N[0,i] . The remainder of the proof can be
obtained by extending the results in [19], as sketched
in the following. Consider the decision variable d̃ :=
((x0|t+i , . . . , xN |t+i), (u0|t+i , . . . , uN −1|t+i)), where

xj |t+i := (A + BK)j (xt+i − xi|t) + xj+i|t

j ∈ N[0,N ] (18a)

uj |t+i := K(A + BK)j (xt+i − xi|t) + uj+i|t

j ∈ N[0,N −1] (18b)

xj+i|t := (A + BK)j+i−N xN |t , j ∈ N[N −i+1,N ] (18c)

uj+i|t := K(A + BK)j+i−N xN |t , j ∈ N[N −i,N−1] (18d)

which is obtained by applying a feedback on the error between
the actual state xt+i and the predicted state xi|t [see (18a) and
(18b)], and by extending the predicted trajectory at time t by a
linear feedback [see (18c) and (18d)].

Using (13), (17), and Lemma 2, it readily follows that d̃ ∈
DN (xt+i). �
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The following theorem guarantees the satisfaction of the con-
straints in the closed-loop system.

Theorem 1: For all x0 ∈ X̂N and any realization of the dis-
turbances wt ∈ W , t ∈ N, it holds that xt ∈ X and κ(xtj

, t −
tj ) ∈ U for all t ∈ N[tj ,tj + 1 −1] , j ∈ N, for the closed-loop
system (9). �

Proof: By Lemma 3, the closed-loop system is well defined.
This implies that for all t ∈ N[tj ,tj + 1 −1] , j ∈ N, it holds that
κ(xtj

, t − tj ) = ut−tj |t for a ut−tj |t ∈ U � KFt−tj
⊆ U , see

(4d) and (6b), where the latter inclusion follows from the fact that
0 ∈ Fi , see also Remark 4 2). Hence, the input constraints are
satisfied for all times in the closed-loop system. Furthermore, by
(17), it holds that xt ∈ x�

t−tj |tj
⊕Ft−tj

for all t ∈ N[tj ,tj + 1 −1] ,
j ∈ N, with x�

t−tj |tj
⊕Ft−tj

⊆ X , see (4c) and (6a), such that
xt ∈ X for all t ∈ N. Hence, also the state constraint is satisfied
for all times in the closed-loop system. �

B. Closed-Loop Stability Guarantees

In addition to the stage cost function � used in (7), the stability
proof presented below relies on functions Vf : Rn → R and
q : Rn → R satisfying the following assumptions.

Assumption 4: The function � is continuous and positive
semidefinite and the functions Vf and q are continuous, positive
definite, and radially unbounded. Furthermore, for all x ∈ Rn

and all v ∈ Rm , it holds that

Vf ((A + BK)x + Bv) ≤ Vf (x) − q(x) + �(v). (19)

�
From Assumption 4, it follows that there exist K∞-functions

α1 and α2 , such that for all x ∈ Rn and all v ∈ Rm it holds that

q(x) ≥ α1(|x|) (20)

Vf (x) ≤ α2(|x|) (21)

and
�(v) ≥ α1(|Bv|). (22)

Remark 5: Assumption 4 requires Vf to be an ISS-Lyapunov
function for the system described by xt+1 = (A + BK)xt +
Bvt , where vt ∈ Rm is the input at time t. See also [32], where
an ISS-control Lyapunov function is used as a terminal cost. �

In Appendix IX, we show how Assumption 4 can be satisfied
in the case of quadratic and piecewise linear functions.

Lemma 4: For all i ∈ N, all x ∈ Rn , and all vj ∈ Rm , j ∈
N[0,i−1] , it holds that

Vf

⎛

⎝(A + BK)ix +
i−1∑

j=0

(A + BK)i−1−jBvj

⎞

⎠

≤ Vf (x) −
i−1∑

j=0

q

(

(A + BK)j x +
j−1∑

k=0

(A + BK)j−1−kBvk

)

+
i−1∑

j=0

�(vj ). (23)

�
Proof: It follows from (19) in Assumption 4 by induction.
Next, several properties of the optimal cost function will be

stated, which ensure that it can be used in the construction of

a Lyapunov function for the closed-loop system. The following
lemma ensures a decrease of the optimal cost function along
trajectories of the closed-loop system (9).

Lemma 5: Let any t ∈ N, any xt ∈ Rn , and any d =
((x0|t , . . . , xN |t), (u0|t , . . . , uN −1|t)) ∈ DN (xt) be given. Let
further xt+s+1 = Axt+s + Bus|t + wt+s with wt+s ∈ W for
all s ∈ N[0,i−1] , where

t + i = min{j ∈ N≥t+1 |xj /∈ xj−t|t ⊕ Tj}. (24)

Then, there exists a d̃ ∈ DN (xt+i) with

JN (d̃) ≤ JN (d) −
i−1∑

j=0

�(uj |t − Kxj |t). (25)

�
Proof: It follows readily that d̃ as defined in the proof of

Lemma 3 satisfies the requirements. �
Let Y ⊆ Rn denote the minimal robust positively invariant

set for the dynamics xt+1 = (A + BK)xt + wt with wt ∈ W̄ ,
t ∈ N. In the following, it will be shown that the setY is robustly
asymptotically stable for the closed-loop system (9). Define the
set

X̄N := {x ∈ Rn | (A + BK)N x ∈ Xf , (A + BK)j x ∈ Xj

K(A + BK)j x ∈ Uj , j ∈ N[0,N −1]} (26)

which is the set of all states for which the optimization problem
in (8) admits a feasible solution resulting from the application of
the linear feedback u = Kx at each predicted time step. Define
further for any x ∈ X̂N

V 0
N (x) := J0

N (x) + min
y∈Y

Vf (x − y). (27)

Remark 6: The function Vf is only used for the analysis of
the closed-loop system but is not a part of the MPC optimization
problem (where JN (d) is minimized). Note that adding Vf to
this optimization problem in (8) does not change the set of
minimizers, as the additional term does not depend on d. �

The following lemmas provide bounds on the function V 0
N .

Lemma 6: There exists a Γ ∈ R>0 such that for all x ∈ X̂N ,
it holds that V 0

N (x) ≤ Γ. Furthermore, if there exists an ε ∈ R>0
such that Y ⊕ εB ⊆ X̄N , then there exists a K∞-function α3
such that V 0

N (x) ≤ α3(|x|Y) for all x ∈ X̂N . �
Proof: The first part of the statement follows from the con-

tinuity of the functions � and Vf , and the boundedness of X and
U . The second part can be shown by modifying the proof of [33,
Th. III.2]. In particular, note that J0

N (x) = 0 for all x ∈ X̄N . It
follows that

V 0
N (x) = min

y∈Y
Vf (x − y) ≤ min

y∈Y
α2(|x − y|)

= α2

(

min
y∈Y

|x − y|
)

= α2(|x|Y) (28)

for all x ∈ X̄N . Hence, if there exists an ε ∈ R>0 such that
Y ⊕ εB ⊆ X̄N , then |x|Y ≤ ε implies x ∈ X̄N and therefore
V 0

N (x) ≤ α2(|x|Y). Together with the first part of the statement,
this implies V 0

N (x) ≤ α3(|x|Y) for all x ∈ X̂N , where α3(s) :=
max{1,Γ/α2(ε)}α2(s) for all s ∈ R≥0 . �
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Lemma 7: For all x0 ∈ X̂N and any realization of the distur-
bances wt ∈ W , t ∈ N, it holds that

V 0
N (xtj + 1 ) ≤ V 0

N (xtj
) −

tj + 1 −1∑

t=tj

α1(|xt |Y) (29)

for all j ∈ N for the closed-loop system (9). �
The proof is given in the appendix.
We are now ready to state our main stability theorem.
Theorem 2: For all x0 ∈ X̂N and any realization of the dis-

turbances wt ∈ W , t ∈ N, it holds that limt→∞ |xt |Y = 0 for
the closed-loop system (9). Furthermore, if there exists an ε > 0
such that Y ⊕ εB ⊆ X̄N , then the set Y is robustly asymptoti-
cally stable for the closed-loop system (9). �

Proof: For any x0 ∈ X̂N and any t ∈ N, it holds that

t−1∑

i=0

α1(|xi |Y) ≤
t−1∑

j=0

tj + 1 −1∑

i=tj

α1(|xi |Y)

Lemma 7
≤

t−1∑

j=0

V 0
N (xtj

) − V 0
N (xtj + 1 )

= V 0
N (x0) − V 0

N (xtt
) ≤ V 0

N (x0). (30)

By Lemma 6, it holds that V 0
N (x0) is bounded such that, as t was

arbitrary in the derivation above, it holds that
∑∞

i=0 α1(|xi |Y) ≤
V 0

N (x0). As α1 is aK∞-function, it follows that limt→∞ |xt |Y =
0. Furthermore, it follows that α1(|xt |Y) ≤ V 0

N (x0), t ∈ N,
such that if Y ⊕ εB ⊆ X̄N for an ε ∈ R>0 , by Lemma 6 it holds
that |xt |Y ≤ α−1

1 (α3(|x0 |Y)), t ∈ N, implying that the set Y is
robustly asymptotically stable. �

C. Event-Triggered Implementation of Standard Tube
MPC

In this section, we describe how the parameters of the scheme
may be chosen if the main objective is a large region of attraction
X̂N and a small asymptotic bound Y for the closed-loop system.

In particular, let the threshold sets be defined by1

Ti = A−1(Fi+1 �W) (31)

for i ∈ N[1,N −1] .
Lemma 8: With Ti as defined in (31) for i ∈ N[1,N −1] ,

Assumption 2 is satisfied. �
Proof: For i = 0, the condition in (12) is trivially satisfied.

Assume now that Hi is defined as in Assumption 2 for all i ∈
N[0,N ] . Let further Ti = A−1(Fi+1 �W) for all i ∈ N[1,N −1]
and note that W ⊆ W̄ . It follows that

Hi = A(Hi−1 ∩ Ti−1) ⊕W
⊆ ATi−1 ⊕W

= AA−1(Fi �W) ⊕W
⊆ (Fi �W) ⊕W ⊆ Fi (32)

for i ∈ N[1,N ] . �

1Note that there is no need to assume that A is nonsingular here.

Under these restrictions, the asymptotic bound is minimized
for the choice W̄ = W . In this way, the resulting event-triggered
MPC scheme requires the same tightening of constraints, and
guarantees the same worst case asymptotic bound, as the all-
time triggered scheme in [19]. This also implies that any peri-
odically triggered Tube MPC scheme (not necessarily updating
the inputs at every time point t) can be improved in terms of
the average required communication in this way by using an
appropriate event-triggered MPC scheme in its place. In the
event-triggered scheme, whenever the periodically updated (all-
time) scheme would normally schedule an update, an event
condition along the lines of (31) would be checked beforehand.
The actual amount of reduction in communication depends on
the particular probability density function pw .

VI. PROBABILISTIC GUARANTEES

In this section, we propose techniques to choose the parame-
ters W̄ and Ti based on knowledge about the probability density
function pw .

A. Event-Triggered Implementation With Assigned
Probability Distribution of the Interevent Times

In this section, we provide a means to design the sets
T0 , T1 , . . . , TN −1 and the set W̄ , such that the probabilities
for the time between event instants attain desired values in the
closed-loop system and Assumption 2 are satisfied. Consider the
probability that an event is triggered at time point t + i given
that the last event occurred at time point t

P (xt+i /∈ xi|t ⊕ Ti , xt+j ∈ xj |t ⊕ Tj , j ∈ N[1,i−1]). (33)

It holds that xt+j − xj |t =
∑j−1

s=0 Aswt+j−1−s for j ∈ N[1,i] .
Furthermore, the disturbances are assumed to be distributed
identically and independently, such that the probability in (33)
is independent of xt and t and is given by

Pi :=P

(
i−1∑

s=0

Aswi−1−s /∈ Ti ,

j−1∑

s=0

Aswj−1−s ∈ Tj , j ∈ N[1,i−1]

)

(34)

where the disturbances wj , j ∈ N[0,i−1] , are generated accord-
ing to the probability density function pw . As TN = ∅, and
hence an event is guaranteed to occur for an i ∈ N[1,N ] , it holds
that

N∑

i=1

Pi = 1, Pi ≥ 0, i ∈ N[1,N ]. (35)

As pw was assumed to be bounded, it is possible to assign any
values to Pi in (34) that satisfy (35), by appropriately choos-
ing the sets Ti . In turn, choosing the probabilities Pi allows
the assignment of the average interevent time. It is also possi-
ble to guarantee a minimum interevent time imin ∈ N[1,N ] by
choosing Pi = 0 for i ∈ N[1,im in −1] .

We propose the following simple method of choosing the
sets T0 , T1 , . . . , TN −1 . Let T ⊆ Rn be any PC-set and define
Ti = ρiT for ρi ∈ R≥0 and i ∈ N[1,N −1] . With this definition,
it holds that ρr ≤ ρs ⇔ Tr ⊆ Ts for all r, s ∈ N[1,N −1] .
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Lemma 9: Let T ⊆ Rn be a PC-set and let

Pi(ρ1 , . . . , ρi−1 , ρi)

:= P

(
i−1∑

s=0

Aswi−1−s /∈ρiT ,

j−1∑

s=0

Aswj−1−s ∈ρjT , j∈N[1,i−1]

)

(36)

for all ρj ∈ R≥0 for j ∈ N[1,i] , i ∈ N[1,N −1] . For ρj , j ∈
N[1,i−1] fixed, it holds that Pi is a continuous and monoton-
ically nonincreasing function of ρi . Furthermore, it holds that
Pi(ρ1 , . . . , ρi−1 , 0) = 1 −

∑i−1
j=1 Pi and Pi(ρ1 , . . . , ρi−1 , ρi) =

0 for ρi sufficiently large. �
The proof is given in the appendix.
Lemma 9 ensures that for any given desired Pi , an appropriate

selection of (ρ1 , ρ2 , . . . , ρi) exists. Note that if the scalars ρj are
given for j ∈ N[1,i−1] , then Pi is a function of ρi only. Hence,
for desired values of Pi and given set T , the values of ρi may
be computed sequentially, starting with ρ1 . The expected value
of the interevent time is given by E[tj+1 − tj ] =

∑N
i=1 iPi for

any given j ∈ N. Hence, by choosing Pi , (and, in turn, Ti)
accordingly, any desired value E[tj+1 − tj ] = Δ̄ for Δ̄ ∈ [1, N ]
may be achieved.

Remark 7: By [34, Th. 1], it follows that the average event
frequency converges to 1/Δ̄ for the closed-loop system as time
increases in the sense that limt→∞

1
t E(max{j ∈ N | tj ≤ t}) =

1/Δ̄. �
If the sets T0 , T1 , . . . , TN −1 are known, the enlarged distur-

bance set W̄ may be determined by defining W̄ := ρ̄W for a
ρ̄ ∈ R≥1 such that Assumption 2 is satisfied. In this case, it
holds that Y = ρ̄Y� , where Y� is the minimal robust positively
invariant set for the case W̄ = W , which follows immediately
from [30, eq. (3)]. Similarly, with this choice, the uncertainty
sets Fi appearing in the MPC scheme result from the uncer-
tainty sets appearing in standard Tube MPC by a scaling with
ρ̄. Hence, this approach shares some similarities with the peri-
odically triggered robust MPC approach in [22].

B. Event-Triggered Implementation With Assigned
Expected Value of the Interevent Times

If only the expected value of the interevent E[tj+1 − tj ], but
not the specific probabilities Pi are of interest, the following
method of choosing Ti allows a better tradeoff between the
average sampling rate and the size of the asymptotic bound.
For this, we parameterize the assumed disturbance bound by
Ŵ = ρ̂W , ρ̂ ∈ R≥0 , and choose Ti analogously to (31), that is

Ti(ρ̂) := A−1

((
i⊕

j=0

(A + BK)j ρ̂W
)

�W
)

(37)

for i ∈ N[1,N −1] . The following statement establishes condi-
tions under which E[tj+1 − tj ] is a continuous and mono-
tonically nonincreasing function of ρ̂, which ensures that an
appropriate ρ̂ exists guaranteeing E[tj+1 − tj ] = Δ̄ for a given
Δ̄ ∈ N[1,N ] .

Lemma 10: Let Δ̂ : R≥0 → R≥0 denote the function map-
ping ρ̂ in (37) to the expected value E[tj+1 − tj ] of the time
between events. Assume that W is a polyhedron and that A is

TABLE I
DISTRIBUTION OF INTEREVENT TIMES FOR AN EVENT-TRIGGERED

IMPLEMENTATION OF A TUBE MPC SCHEME

Interevent time Frequency

1 77.96%
2 12.82%
3 4.63%
4 1.95%
5 1.12%
6 0.68%
7 0.34%
8 0.22%
9 0.11%
10 0.19%

nonsingular. Then, it holds that Δ̂ is monotonically nondecreas-
ing and continuous. Furthermore, it holds that Δ̂(0) = 1 and
Δ̂(ρ̂) = N for ρ̂ sufficiently large. �

The proof is given in the appendix.
Finally, in order to satisfy Assumption 2, we choose W̄ = ρ̄W

with ρ̄ = max{1, ρ̂} such that Y = ρ̄Y� as in Section VI-A.
Remark 8: Note that if the system description in (1) is ob-

tained by discretizing a continuous-time linear system by a
sample-and-hold method, then A will always be nonsingular.

�

VII. NUMERICAL EXAMPLES

In this section, we provide three examples showing the reduc-
tion of necessary communication with the proposed scheme.

A. Event-Triggered Implementation of a Given Tube
MPC Scheme

Let the system be given by

xt+1 =
[

1.1 0.2
0 1.2

]

xt +
[

0
1

]

ut + wt (38)

where wt is independently uniformly distributed on W =
[−1, 1]2 for t ∈ N. The feedback matrix K has been chosen
LQ-optimal with the weighting matrices Q =

[ 1 0
0 1

]
and R = 1.

In the first example, we investigated the closed-loop behavior for
sets Ti , i ∈ N[1,N −1] , constructed as proposed in Section V-C.
Consequently, we defined W̄ = W .

1) Asymptotic Behavior: In a first step, we only inves-
tigated the sampling frequency in the control scheme. Note that
the triggering behavior only depends on the realization of the
disturbance sequence, such that neither the initial condition x0 ,
nor the constraints, nor the stage cost function � have an in-
fluence on the number of communications in the closed-loop
system. A simulation of Tsim = 105 steps yielded the distri-
bution of time steps between events displayed in Table I. The
average time between events was 1.42, which amounts to a 29%
reduction in communication compared to a control scheme up-
dated at every point in time. Note that the region of attraction
and worst-case asymptotic bound on the system state are exactly
the same for the all-time scheme in [19] and the event-triggered
scheme presented here. The reason for this is that the uncertainty
induced by not using the actual state information to update the



5702 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 11, NOVEMBER 2017

input at every point in time is not modeled as an additional
disturbance bounded by the thresholds sets (as, for example,
done in [5]). Instead, we exploit the fact that this uncertainty
is already included in the uncertainty description used in stan-
dard Tube MPC, by virtue of the particular choice of thresholds
in Section V-C. Hence, we do not require additional constraint
tightening.

Consider further the performance index Jperf :=
1/Tsim

∑T s im −1
t=0 x�

t Qxt + u�
t Rut . For this example, where we

initialized the system state at x0 = (0, 0)�, the performance
index for the closed-loop system with an MPC update at every
time step was Jpt

perf = 5.69. The performance index for the
event-triggered scheme was J et

perf = 5.79, which amounts to
a 1.73% increase when compared to the scheme with updates
at every point in time. We explain the worsening of the
performance by noting that although the worst case bound
on the uncertainty is the same as in an all-time scheme, its
probability distribution is deformed such that it becomes more
likely that the system state is localized closer to the boundary
of the asymptotic bound in the event-triggered case. The reason
for this is the existence of time spans of (unstable, in this
example) open-loop control. The sequence of disturbances
in the simulation of both control schemes was chosen to be
identical.

2) Transient Behavior: In order to investigate the tran-
sient behavior of the closed-loop system, we consider now the
constraints X = [−30, 30]2 and U = [−10, 10]. The terminal
set Xf was computed as the maximal set satisfying Assump-
tion 3, using the algorithm in [27]. As proposed in [19], the stage
function � was chosen as � : v �→ v�Lv with L = R + B�PB,
where P is the stabilizing solution of the discrete-time algebraic
Riccati equation with the weighting matrices R and Q.

We simulated the resulting closed-loop system for 300 ran-
dom initial conditions in [−30, 30]2 , where initial conditions
in Xf and initial conditions for which the MPC problem was
infeasible were rejected and resampled. For each initial condi-
tion, we simulated the closed-loop system both with the peri-
odically triggered controller and the event-triggered controller,
for 10 random realizations of the disturbance sequence and
Tsim = 10 steps. These disturbance realizations were resam-
pled for each initial condition, but kept the same for the sim-
ulation with the periodically triggered and the event-triggered
controller. The performance index for the periodically triggered
controller, averaged over all simulations, was Jpt

perf = 364.12.
The average performance index for the event-triggered scheme
was J et

perf = 366.04, which amounts to a 0.5% increase when
compared to the scheme with updates at every point in time.
The average time between events was 1.31. In Fig. 3, ex-
emplary state trajectories of the closed-loop systems are de-
picted together with the terminal set and the sampled ini-
tial conditions. The associated input trajectories are displayed
in Fig. 4.

B. Event-Triggered Tube MPC With Assigned
Distribution of Interevent Times

In the second example, we implemented the scheme as
proposed in Section VI-A. Consider the same setup as in the

Fig. 3. Random initial conditions used for the simulations (blue
crosses) and resulting state trajectories for x0 = (−27.19, 18, 74)�, (ma-
genta and solid: periodically triggered scheme, green and dashed: event-
triggered scheme). The terminal set is depicted in gray. As the setup is
symmetric, only the top half of the state constraint set is depicted.

Fig. 4. Resulting input trajectories for x0 = (−27.19, 18, 74)�, (ma-
genta and solid: periodically triggered scheme, green and dashed: event-
triggered scheme).

first example. We chose T = [−1, 1]2 and used a stochastic
approximation approach as proposed in [35] to determine
iteratively, starting with i = 1, appropriate values for ρi

such that the probabilities Pi attained their desired values.
These values were chosen to P1 = P5 = 0.1, P2 = P4 = 0.2,
P3 = 0.4, and P6 = P7 = · · · = P10 = 0, which imply a
desired average of 3 time steps between event instants and, thus,
an average reduction in communication by 66.7% compared
to a control scheme updated at every point in time. The appli-
cation of stochastic approximation resulted in ρ1 = 0.9485,
ρ2 = 1.3766, ρ3 = 0.9774, and ρ4 = 0.7736. The remaining
ρi for i ∈ N[5,10] were set to 0. In order to validate the results,
we evaluated the probabilities associated with these ρi by
a Monte-Carlo simulation, resulting in the 95% confidence
intervals P1 ∈ [0.0979, 0.1016], P2 ∈ [0.1970, 0.2019],
P3 ∈ [0.3961, 0.4022], P4 ∈ [0.1850, 0.1898], and
P5 ∈ [0.1077, 0.1116]. The value of ρ̄ was computed to
ρ̄ = 2.0318, which is at the same time the factor describing the
increase in the guaranteed asymptotic bound on the system state
and the increase in necessary constraint tightening (resulting
also in a change of the terminal set Xf ). The region of attraction
depends on the constraints on the state and input, which were
not considered in these examples. Note that a tightening of
constraints does not necessarily lead to a reduction of the region
of attraction. A simulation of 105 steps yielded the distribution
of time steps between events displayed in Table II.

The average time between events was 3.0149, which amounts
to a 66.8% reduction in communication. For this example,
where we again initialized the system state at x0 = (0, 0)�,
we obtained Jpt

perf = 5.75 and J et
perf = 7.83, which amounts to

a 36% increase of the performance index for the event-triggered
scheme when compared to a scheme with updates at every point
in time.
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TABLE II
DISTRIBUTION OF INTEREVENT TIMES FOR AN EVENT-TRIGGERED TUBE

MPC SCHEME WITH ASSIGNED TRIGGER PROBABILITIES

Interevent time Frequency

1 10.04%
2 19.82%
3 39.92%
4 19.01%
5 11.20%

TABLE III
DISTRIBUTION OF INTEREVENT TIMES FOR AN EVENT-TRIGGERED TUBE

MPC SCHEME WITH ASSIGNED AVERAGE SAMPLING RATE

Interevent time Frequency

1 41.18%
2 17.62%
3 10.91%
4 7.86%
5 6.18%
6 4.32%
7 3.15%
8 2.51%
9 1.80%
10 4.45%

C. Event-Triggered Tube MPC With Assigned Average
Interevent Time

In the third example, we implemented the scheme as proposed
in Section VI-B. Consider again the setup as in the first example.
Similarly to the second example, we used a stochastic approxi-
mation approach to find a ρ̂ corresponding to the definition of the
threshold sets in (37), such that the average intersampling time
is approximately 3. This resulted in ρ̄ = ρ̂ = 1.3655, which is
significantly smaller than the value of ρ̄ in the previous exam-
ple (2.0318). An a posteriori Monte-Carlo simulation yielded a
95% confidence interval for the average time between events of
[2.9761, 3.0077].

A simulation of 105 steps yielded the distribution of time
steps between events displayed in Table III. The average time
between events was 3.0032. For this example, where we again
initialized the system state at x0 = (0, 0)�, we obtained Jpt

perf =
5.71 and J et

perf = 6.92, which amounts to a 21% increase of
the performance index for the event-triggered scheme when
compared to a scheme with updates at every point in time, again
a significant improvement over the results in the second example
(where the increase in the performance index was 36%).

D. Discussion

Similar to other event-triggered schemes (see, e.g., [13]), the
reduction in communication for the scheme presented here is
expected to be especially large for sporadically occurring dis-
turbances, that is, for probability density functions pw , which
are concentrated around the origin and imply a large difference
between the average and the worst case disturbance magnitude.

However, as shown in the examples, even for uniform distur-
bances a significant reduction can be achieved. As feedback is
present at fewer time instances in the event-triggered scheme
than in an all-time scheme, the threshold design proposed in
Section V-C trades a reduction in communication for worsening
of the closed-loop performance, as seen in the first example.

Note that the closed-loop behavior of the event-triggered
scheme depends very much on the assumed bound on the dis-
turbances. If, in an all-time scheme, the actual disturbance mag-
nitude is lower than expected, this is reflected in the asymptotic
bound on the closed-loop system state being also lower. In an
event-triggered scheme on the other hand, the asymptotic bound
might still be the one for the assumed worst case disturbance
magnitude, even if the actual disturbances are smaller. As an
interpretation, while an all-time triggered scheme exploits less-
than-worst-case disturbances by bringing the state closer to the
origin, the event-triggered scheme exploits such disturbances
by reducing the communication rate.

VIII. CONCLUSIONS AND OUTLOOK

We have presented a robust event-triggered MPC scheme
based on Tube MPC methods. It was shown that the required
amount of communication in the control system can be reduced
without sacrificing the guarantees offered by a periodically up-
dated Tube MPC scheme. Further reduction of the required com-
munication and assignment of a desired expected value of the
time between events is possible by allowing a larger guaranteed
asymptotic bound on the system state and tightening the con-
straints in the prediction. In this way, the event-triggered scheme
can be tuned to get a desired tradeoff between the number of
communications and the closed-loop control properties.

The results in this paper rely on the fact that the disturbances
are independent and that the expected value of the time between
events only depends on the disturbances occurring in exactly
this time span. These assumptions are not necessarily satisfied
in the case of output feedback or disturbances generated by a
(randomly disturbed) exosystem, both of which are subject to
future research. Another point requiring further investigation is
input-to-state stability for event-triggered schemes of the kind
presented in this paper. Furthermore, properties of the under-
lying communication network, such as quantization, delay, and
packet loss, should be taken into account in future considera-
tions. Finally, a future research direction will be the application
of Stochastic MPC techniques (see [36] for a recent overview
of the subject) to the problem of event-triggered stabilization;
these methods allow knowledge of the stochastic properties of
the disturbance to be taken into account in order to relax robust
constraints toward chance constraints and to consider the ex-
pected value of the infinite horizon performance index as a cost
function.

APPENDIX A
CONSTRUCTION OF THE FUNCTION Vf

Assume first that the function � is quadratic, that is, given
by �(v) = v�Lv with L = L� ≥ 0. Furthermore, considering
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(22), assume that there exists a matrix M = M� > 0 such that
L ≥ B�MB. By Assumption 1, there exist matrices S = S� >
0 and Q = Q� > 0 such that (A + BK)�S(A + BK) = S −
Q. It follows that for all x ∈ Rn and all v ∈ Rm , it holds that

η ((A + BK)x + Bv)� S ((A + BK)x + Bv)

= ηx�(A + BK)�S(A + BK)x

+ η2x�(A + BK)�SBv + ηv�B�SBv

= ηx�Sx − ηx�Qx

− η

(
Q√
2
x −

√
2(A + BK)�SBv

)�
Q−1

×
(

Q√
2
x −

√
2(A + BK)�SBv

)

+
η

2
x�Qx

+ ηv�
(
2B�S(A + BK)Q−1(A + BK)�SB + B�SB

)
v

≤ ηx�Sx − η

2
x�Qx + v�Lv (39)

if η ∈ R>0 and L − η(2B�S(A + BK)Q−1(A +
BK)�SB + B�SB) ≥ 0. The latter inequality holds if
M − η(2S(A + BK)Q−1(A + BK)�S + S) ≥ 0, such that,
as M > 0, it is always possible to find an η ∈ R>0 such that
these inequalities are satisfied. Hence, Assumption 4 is satisfied
with Vf (x) = ηx�Sx, and q(x) = η

2 x�Qx, where η, S, and Q
satisfy the requirements above.

Second, assume that � is piecewise linear and given by �(v) =
‖Lv‖∞ for a matrix L ∈ Rp×n with some p ∈ N, and that there
exists an a� ∈ R>0 such that ‖Lv‖∞ ≥ a�‖Bv‖∞ for all v ∈
Rm . By Assumption 1, there exists a matrix S ∈ Rr×n such
that ‖S(A + BK)x‖∞ ≤ ‖Sx‖∞ − ‖x‖∞ for x ∈ Rn (see, for
example, [37] and [38]). It follows that for all x ∈ Rn and all
v ∈ Rm , it holds that

η‖S((A + BK)x + Bv)‖∞
≤ η‖S(A + BK)x‖∞ + η‖SBv‖∞
≤ η‖Sx‖∞ − η‖x‖∞ + η‖SBv‖∞
≤ η‖Sx‖∞ − η‖x‖∞ + η‖S‖∞‖Bv‖∞
≤ η‖Sx‖∞ − η‖x‖∞ + ‖Lv‖∞ (40)

if η ∈ R>0 and η‖S‖∞ ≤ a� . Hence, Assumption 4 is satis-
fied with Vf (x) = η‖Sx‖∞, and q(x) = η‖x‖∞, where η and S
satisfy the requirements above.

APPENDIX B
PROOF OF LEMMA 2

Proof: The statement follows by induction using Lemma 1,
(13), and Assumption 3. The induction base is provided by
Assumption 3 and F0 = {0}. Assume now that (15c) holds for

some k ∈ N. It follows that

(A + BK)k+1Xf ⊕ (A + BK)N Fk+1

(13)
= (A + BK)k+1Xf ⊕ (A + BK)N

(
(A + BK)Fk ⊕ W̄

)

= (A + BK)

⎛

⎜
⎝(A + BK)kXf ⊕ (A + BK)N Fk
︸ ︷︷ ︸

⊆Xf by induction assumption (15c)

⎞

⎟
⎠

⊕ (A + BK)N W̄ (41)

Assumption 3
⊆ Xf

thereby completing the induction step proving (15c) for all k ∈
N. Furthermore, using this result, it holds that

(A + BK)kXf ⊕FN +k

(13)
= (A + BK)kXf ⊕ (A + BK)N Fk ⊕FN

(15c)
⊆ Xf ⊕FN

(14a)
⊆ X

and

K(A + BK)kXf ⊕ KFN +k

(13)
= K(A + BK)kXf ⊕ K(A + BK)N Fk ⊕ KFN

(15c)
⊆ KXf ⊕ KFN

(14b)
⊆ U .

APPENDIX C
PROOF OF LEMMA 7

Proof: Let any x0 ∈ X̂N , any realization of the distur-
bances wt ∈ W , t ∈ N, and any j ∈ N be given. Let further
d�

tj
(xtj

) = ((x�
0|tj

, . . . , x�
N |tj

), (u�
0|tj

, . . . , u�
N −1|tj

)). Then, by
(17), it holds that xt = x�

t−tj |tj
+ ft for some ft ∈ Ft−tj

for all t ∈ N[tj ,tj + 1 ] . With vt−tj
:= u�

t−tj |tj
− Kx�

t−tj |tj
, t ∈

N[tj ,tj + 1 −1] , it holds that

V 0
N (xtj + 1 )

Lemma 5
≤ J0

N (xtj
)−

tj + 1 −tj −1∑

i=0

�(vi)

+min
y∈Y

Vf (x�
tj + 1 −tj |tj

+ftj + 1 − y)

≤ J0
N (xtj

) −
tj + 1 −tj −1∑

i=0

�(vi) + Vf (x�
tj + 1 −tj |tj

+ ftj + 1 −ỹtj + 1 )

(42)

where ỹt := (A + BK)t−tj ytj
+ ft , t ∈ N[tj ,tj + 1 ] , and

ytj
∈ Y such that Vf (xtj

− ytj
) = miny∈Y Vf (xtj

− y). By
(10) and the assumption ofY being robust positively invariant, it
holds that ỹt ∈ Y , t ∈ N[tj ,tj + 1 ] , which is used to obtain the last
inequality in (42). Furthermore, noting that x�

t−tj |tj
=

(A + BK)t−tj xtj
+
∑t−tj −1

j=0 (A + BK)t−tj −1−jBvj ,
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t ∈ N[tj ,tj + 1 ] , it follows that

V 0
N (xtj + 1 ) ≤ J0

N (xtj
) +Vf

(

(A + BK)tj + 1 −tj (xtj
−ytj

)

+
tj + 1 −tj −1∑

j=0

(A + BK)tj + 1 −tj −1−jBvj

)

−
tj + 1 −tj −1∑

i=0

�(vi)

Lemma 4
≤ J0

N (xtj
) −

tj + 1 −tj −1∑

i=0

q

(

(A + BK)i(xtj
−ytj

)

+
i−1∑

k=0

(A + BK)i−1−kBvk

)

+ Vf (xtj
−ytj

)

= V 0
N (xtj

)−
tj + 1 −1∑

t=tj

q(x�
t−tj |tj

−(A + BK)t−tj ytj
)

= V 0
N (xtj

)−
tj + 1 −1∑

t=tj

q(xt − ỹt)

≤ V 0
N (xtj

)−
tj + 1 −1∑

t=tj

min
ȳ t ∈Y

q(xt − ȳt)

(20)
≤ V 0

N (xtj
)−

tj + 1 −1∑

t=tj

α1(|xt |Y). (43)

APPENDIX D
PROOF OF LEMMA 9

Proof: Define P̄0 := 1 and

P̄i(ρ1 , . . . , ρi−1 , ρi)

:=P

(
i−1∑

s=0

Aswi−1−s ∈ρiT ,

j−1∑

s=0

Aswj−1−s ∈ρjT , j∈N[1,i−1]

)

(44)

for all ρj ∈ R≥0 , j ∈ N[1,i] , and i ∈ N[1,N −1] . Define
P̄N (ρ1 , . . . , ρN ) = 0 for all ρj ∈ R≥0 , j ∈ N[1,N ] , where
the unused variable ρN has been added for simplicity of
exposition. Note that it holds that Pi(ρ1 , . . . , ρi−1 , ρi) =
P̄i−1(ρ1 , . . . , ρi−1) − P̄i(ρ1 , . . . , ρi), ρj ∈ R≥0 , j ∈ N[1,i] , and
i ∈ N[1,N ] . Here, we make use of the fact that TN = ∅, such that
an event is triggered N time steps after the last event if no event
has been triggered for N − 1 time steps. Define the (invertible)
change of variables vj−1 :=

∑j−1
s=0 Aswj−1−s for j ∈ N[1,i] . In

fact, there exists a nonsingular matrix T ∈ Rin×in such that v =
Tw where w := (w�

0 , . . . , w�
i−1)

� and v := (v�
0 , . . . , v�i−1)

�.
Let the (joint) probability density function of w be given by pw .
Then, the (joint) probability density function of v is given by
pv with pv(v) = |det(T−1)|pw (T−1v) for all v ∈ Rin (see,
for example, [39]).

It follows that

P̄i(ρ1 , . . . , ρi−1 , ρi)

=
∫

{w∈Ri n |
∑ i−1

s = 0 As wi−1−s ∈ρi T ,
∑ j −1

s = 0 As wj −1−s ∈ρj T ,j∈N[ 1 , i−1 ] }
pw (w) dw

=
∫

{v∈Ri n |vi−1 ∈ρi T ,vj ∈ρj T ,j∈N[ 1 , i−2 ] }
pv(v) dv

=
∫

ρi T ×ρi−1 T ×···×ρ1 T

pv(v) dv, (45)

where we use dw and dv to denote in-dimensional volume
differentials. In the following, let ρi,1 , ρi,2 ∈ R≥0 be arbi-
trary with ρi,1 ≤ ρi,2 . It holds that ρi,1T ⊆ ρi,2T , such that
P̄i(ρ1 , . . . , ρi−1 , ρi,1) ≤ P̄i(ρ1 , . . . , ρi−1 , ρi,2), which proves
the monotonicity of Pi in ρi . Furthermore, it holds that

P̄i(ρ1 , . . . , ρi−1 , ρi,2)

=
∫

ρi , 1 T ×ρi−1 T ×···×ρ1 T
pv(v) dv

+
∫

(ρi , 2 T \ρi , 1 T )×ρi−1 T ×···×ρ1 T
pv(v) dv

≤
∫

ρi , 1 T ×ρi−1 T ×···×ρ1 T
pv(v) dv

+ sup
v∈Ri n

pv(v) vol((ρ2,iT \ ρi,1T ) × ρi−1T × · · · × ρ1T ).

(46)

It follows that

|P̄i(ρ1 , . . . , ρi−1 , ρi,2) − P̄i(ρ1 , . . . , ρi−1 , ρi,1)|
≤ sup

v∈Ri n

pv(v) vol((ρi,2T \ ρi,1T ) × ρi−1T × · · · × ρ1T ).

(47)

Furthermore, it holds that

vol((ρi,2T \ ρi,1T ) × ρi−1T × · · · × ρ1T )

= vol((ρi,2T \ ρi,1T ) vol(ρi−1T ) · · · vol(ρ1T )

= (vol(ρi,2T ) − vol(ρi,1T )) vol(ρi−1T ) · · · vol(ρ1T )

= (ρn
i,2 − ρn

i,1) vol(T )i
i−1∏

j=1

ρn
j . (48)

We now investigate the continuity of P̄i in the last argu-
ment at an arbitrary point (ρ1 , . . . , ρi) ∈ Ri

≥0 . We consider
two cases. In the first case, let ρi,1 = ρi be fixed and let
ρi ≤ ρi,2 . From (47) and (48), it follows that for every δ > 0,
there exists an ε > 0 such that ρi ≤ ρi,2 < ρi + ε implies that
|P̄i(ρ1 , . . . , ρi−1 , ρi,2) − P̄i(ρ1 , . . . , ρi−1 , ρi)| < δ.

In the second case, let ρi,2 = ρi be fixed and let 0 ≤ ρi,1 ≤ ρi .
From (47) and (48), it follows that for every δ > 0, there
exists an ε > 0 such that max{0, ρi − ε} ≤ ρi,1 ≤ ρi implies
that |P̄i(ρ1 , . . . , ρi−1 , ρi) − P̄i(ρ1 , . . . , ρi−1 , ρi,1)| < δ. Hence,
P̄i , and thus Pi , are continuous in their last argument at
(ρ1 , . . . , ρi), and, as this point was arbitrary, the functions
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are continuous on their domains in the last argument. Fi-
nally, as pw is a bounded function, it follows from (44)
that P̄i(ρ1 , . . . , ρi−1 , 0) = 0, implying Pi(ρ1 , . . . , ρi−1 , 0) =
P̄i−1(ρ1 , . . . , ρi−1) = 1 −

∑i−1
j=1 Pj (ρ1 , . . . , ρj−1), which fol-

lows from the definition of P̄i−1 ; furthermore, as pw has a
bounded support, there exists a ρi , sufficiently large, such
that P̄i(ρ1 , . . . , ρi−1 , ρi) = P̄i−1(ρ1 , . . . , ρi−1) in (44), imply-
ing Pi(ρ1 , . . . , ρi−1 , ρi) = 0. �

APPENDIX E
PROOF OF LEMMA 10

Before we prove Lemma 10, we need to establish several
auxiliary results.

Lemma 11: Let F ⊆ Rn be a bounded polyhedron con-
taining the origin defined by F := {x ∈ Rn |Hix ≤ hi, i ∈
N[1,rF ]} with Hi ∈ R1×n and hi ∈ R for i ∈ N[1,rF ] . As-
sume that the interior of F is nonempty. Let W ⊆ Rn be a
polyhedron defined by W := co{w1 , . . . , wrW

} with wj ∈ Rn ,
j ∈ N[1,rW ] . Let A ∈ Rn×n be nonsingular. Define the set-
valued function T : R≥0 → 2Rn

with T (ρ) := A−1(ρF �W)
for all ρ ∈ R≥0 . Define finally the function f : R≥0 → R≥0 by
f(ρ) := vol(T (ρ)) for all ρ ∈ R≥0 . It holds that f is continuous
and monotonically nondecreasing. �

Proof: Using [28, Th. 2.2] (with reference to [40]), it holds
that

T (ρ) =
{

x ∈ Rn

∣
∣
∣
∣
HiAx ≤ ρhi − maxj∈N[ 1 , r W ] Hiwj ,

i ∈ N[1,rF ]

}

.

(49)
As the origin was assumed to be contained in F , it follows that
hi ≥ 0 for all i ∈ N[1,rF ] . Hence, (49) implies that T (ρ1) ⊆
T (ρ2) for all ρ1 , ρ2 ∈ R≥0 with ρ1 ≤ ρ2 . This already proves
that f is monotonically nondecreasing. Consider now the case
that T (ρ) is empty for all ρ. Then, it holds that f(ρ) = 0 for
all ρ ∈ R≥0 and the proof is complete. In the following, assume
that there exists a ρ̄ ∈ R≥0 such that T (ρ̄) is nonempty. The
graph of T is given by

gph(T ) = {(x, ρ) ∈ Rn × R≥0 |x ∈ T (ρ)}

=
{

(x, ρ) ∈ Rn × R≥0

∣
∣
∣
∣

HiAx ≤ ρhi − maxj∈N[ 1 , r W ] Hiwj , i ∈ N[1,rF ]

}

.

(50)

It holds that the graph of T is closed such that by [41, Th. 5.7],
T is outer semicontinuous on R≥0 . Define

ρ� = min{ρ ∈ R≥0 | ∃x ∈ T (ρ)}
= min{ρ ∈ [0, ρ̄] | ∃x ∈ T (ρ)}
= min

ρ∈R,x∈Rn
(1, 0, . . . , 0) · (ρ, x�)� (51)

s. t.

0 ≤ ρ ≤ ρ̄
HiAx ≤ ρhi − maxj∈N[ 1 , r W ] Hiwj , i ∈ N[1,rF ].

This optimization problem is a linear program, which is feasible
by assumption and whose objective function is bounded by
construction. Hence, it is ensured that a solution exists and ρ� is

well defined. Furthermore, the graph of T is convex, such that
by [41, Th. 5.9] T is inner semicontinuous on R>ρ� . Hence, T
is continuous on R>ρ� . As T (ρ) = ∅ for ρ ∈ [0, ρ�), it follows
that f(ρ) = 0 for ρ ∈ [0, ρ�). Assume now that f(ρ�) > 0. It
follows that the interior of T (ρ�) is nonempty and there exist
an x ∈ Rn and an η ∈ R>0 such that {x} ⊕ ηB ⊆ T (ρ�). Let
further μ ∈ R>0 such that μW ⊆ AB. Such a γ exists as A is
nonsingular. Hence,

x ∈ A−1(ρ�F �W) � ηB

= A−1(ρ�F � (W ⊕ ηAB))

⊆ A−1(ρ�F � (W ⊕ ημW))

= A−1(ρ�F � (1 + ημ)W). (52)

It follows that

1
1 + ημ

x ∈ A−1
(

1
1 + ημ

ρ�F �W
)

= T
(

1
1 + ημ

ρ�

)

(53)

which implies that T (ρ) �= ∅ for a ρ < ρ� , contradicting the
definition of ρ� in (51). Hence, it holds that f(ρ�) = 0, and thus
f(ρ) = 0 for all ρ ∈ [0, ρ� ].

To prove continuity of f , we will first establish right-
continuity, then left-continuity. As T is outer semicontinu-
ous for all ρ ∈ R≥0 and compact-valued, by [41, Proposition
5.12], it holds that for all ρ′ ∈ R≥0 and all ε̄ ∈ R>0 , there ex-
ists a δ̄ ∈ R>0 such that for all ρ ∈ [ρ′, ρ′ + δ̄) it holds that
T (ρ) ⊆ T (ρ′) ⊕ ε̄B. By the Steiner–Minkowski formula (see,
for example, [40]), for all ρ′ ∈ R≥0 there exists a continu-
ous function p : R≥0 → R≥0 with p(0) = 0 such that for all
ε̄ ∈ R>0

vol(T (ρ′) ⊕ ε̄B) = vol(T (ρ′)) + p(ε̄)

= f(ρ′) + p(ε̄). (54)

Hence, for all ρ′ ∈ R≥0 and all ε̄ ∈ R>0 , there exists a δ ∈ R>0
such that for all ρ ∈ [ρ′, ρ′ + δ) it holds that f(ρ′) ≤ f(ρ) ≤
f(ρ′) + p(ε̄). As p is continuous, it follows that for all ρ′ ∈ R≥0
and all ε ∈ R>0 , there exists a δ ∈ R>0 such that for all ρ ∈
[ρ′, ρ′ + δ) it holds that |f(ρ) − f(ρ′)| ≤ ε, proving that f is
right-continuous.

Next, we will show that f is left-continuous. For all ρ′ ∈ R≥0
where f(ρ′) = 0, it also holds that f(ρ) = 0 for ρ ∈ [0, ρ′],
such that f is left-continuous at ρ′. Assume in the following that
ρ′ ∈ R≥0 and f(ρ′) > 0. This implies that ρ′ > ρ� as f(ρ�) =
0. Hence, T is inner semicontinuous at ρ′ such that by [41,
Proposition 5.12] for all ε̄ ∈ R>0 there exists a δ̄ ∈ R>0 such
that for all ρ ∈ [ρ′ − δ̄, ρ′) it holds that T (ρ′) ⊆ T (ρ) ⊕ ε̄B.
Furthermore, as f(ρ′) > 0, the interior of T (ρ′) is nonempty
such that there exist an x′ ∈ Rn and an η′ ∈ R>0 such that
x′ ⊕ η′B ⊆ T (ρ′). Hence, T (ρ′) ⊆ T (ρ) ⊕ ε̄B implies

T (ρ′) ⊆ T (ρ) ⊕ ε̄

η′ (T (ρ′) ⊕ {−x′}). (55)
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If ε̄ ∈ (0, η′), it follows that

(

1 − ε̄

η′

)

T (ρ′) ⊆ T (ρ) ⊕ ε̄

η′ {−x′} (56)

and, hence, f(ρ) ≥ (1 − ε̄
η ′ )nf(ρ′). As (1 − ε̄

η ′ )n is continuous
in ε̄ and becomes 1 for ε̄ = 0, it follows that for all ε ∈ R>0
there exists a δ ∈ R>0 such that for all ρ ∈ [ρ′ − δ, ρ′) it holds
that |f(ρ) − f(ρ′)| ≤ ε, proving that f is left-continuous at ρ′.
With the results above, it follows that f is left-continuous at
every ρ′ ∈ R≥0 and, hence, continuous on R≥0 .

Lemma 12: It holds that ρ̂1 ≤ ρ̂2 ⇒ Ti(ρ̂1) ⊆ Ti(ρ̂2), i ∈
N[1,N −1] for all ρ̂1 , ρ̂2 ∈ R≥0 . �

Proof: Let ρ̂1 , ρ̂2 ∈ R≥0 with ρ̂1 ≤ ρ̂2 . It holds that

Ti(ρ̂1) = A−1

((
i⊕

j=0

(A + BK)j ρ̂1W
)

�W
)

0∈W
⊆ A−1

((
i⊕

j=0

(A + BK)j

× (ρ̂1W ⊕ (ρ̂2 − ρ̂1)W)

)

�W
)

= A−1

((
i⊕

j=0

(A + BK)j ρ̂2W
)

�W
)

= Ti(ρ̂2) (57)

for all i ∈ N[1,N −1] .
Lemma 13: The functions P̄i : R≥0 → R≥0 defined by

P̄i(ρ̂) = P

(
i−1∑

s=0

Aswi−1−s ∈ Ti(ρ̂),

j−1∑

s=0

Aswj−1−s ∈ Tj (ρ̂), j ∈ N[1,i−1]

)

(58)

for i ∈ N[1,N −1] and all ρ̂ ∈ R≥0 are continuous. �
Proof: First notice that

Ti(ρ̂) = A−1

(

ρ̂Fi+1 �W
)

(59)

for i ∈ N[1,N −1] and, as pw was assumed to be bounded, it
holds that the interior of W and, hence, also the interior of
Fi for i ∈ N is nonempty. Define the (invertible) change of
variables vj−1 :=

∑j−1
s=0 Aswj−1−s for j ∈ N[1,i] . Define fur-

ther w := (w�
0 , . . . , w�

i−1)
� and v := (v�

0 , . . . , v�i−1)
� and let

the (joint) probability density function of w be given by pw .
As before in the proof of Lemma 9, there exists an invert-
ible matrix T ∈ Rin×in such that v = Tw. Hence, the (joint)
probability density function of v is given by pv with pv(v) =
|det(T−1)|pw (T−1v) for all v ∈ Rin . Let ρ̂1 , ρ̂2 ∈ R≥0 with

ρ̂1 ≤ ρ̂2 arbitrary. It holds that

P̄i(ρ̂2) =
∫

Ti (ρ̂2 )×···×T1 (ρ̂2 )

pv(v) dv

=
∫

Ti (ρ̂1 )×···×T1 (ρ̂1 )

pv(v) dv

+
∫

(Ti (ρ̂2 )×···×T1 (ρ̂2 ))\(Ti (ρ̂1 )×···×T1 (ρ̂1 ))

pv(v) dv

= P̄i(ρ̂1) +
∫

(Ti (ρ̂2 )×···×T1 (ρ̂2 ))\(Ti (ρ̂1 )×···×T1 (ρ̂1 ))

pv(v) dv

≤ P̄i(ρ̂1)+

sup
v∈Ri n

pv(v) vol
(
(Ti(ρ̂2) × · · · × T1(ρ̂2))\

(Ti(ρ̂1) × · · · × T1(ρ̂1))
)

= P̄i(ρ̂1) + g(ρ̂1 , ρ̂2) (60)

with g : R2
≥0 → R, g : (ρ̂1 , ρ̂2) �→ supv∈Ri n pv(v)(

∏i
j=1

vol(Tj (ρ̂2)) −
∏i

j=1 vol(Tj (ρ̂1))), which is, by Lemma 11 and
noting that W is a bounded polyhedron and A nonsingular, a
continuous function. Moreover, it holds that g(ρ̂, ρ̂) = 0 for
any ρ̂ ∈ R≥0 . It follows that

P̄i(ρ̂1)
Lemma 12

≤ P̄i(ρ̂2) ≤ P̄i(ρ̂1) + g(ρ̂1 , ρ̂2) (61)

and thus

P̄i(ρ̂2) − g(ρ̂1 , ρ̂2) ≤ P̄i(ρ̂1) ≤ P̄i(ρ̂2) (62)

for any ρ̂1 , ρ̂2 ∈ R≥0 with ρ̂1 ≤ ρ̂2 . Hence, P̄i are continuous
functions.

Proof: We are now ready to prove Lemma 10. Let Pi :
R≥0 → R≥0 , i ∈ N[1,N ] denote the function mapping ρ̂ to the
probability that an event occurs at i time steps after the last
event, given by

Pi(ρ̂) = P

(
i−1∑

s=0

Aswi−1−s /∈ Ti(ρ̂),

j−1∑

s=0

Aswj−1−s ∈ Tj (ρ̂), j ∈ N[1,i−1]

)

(63)

for all ρ̂ ∈ R≥0 . Recall the definition of P̄i as in Lemma 13.
With P̄0(ρ̂) := 1 and P̄N (ρ̂) := 0 for all ρ̂ ∈ R≥0 , it holds that
Pi(ρ̂) = P̄i−1(ρ̂) − P̄i(ρ̂) for all i ∈ N[1,N ] , where we make
use of the fact that TN = ∅, such that an event is triggered N
time steps after the last event, if no event has been triggered for
N − 1 time steps. Hence, by Lemma 13, the functions Pi are
continuous. Furthermore, it holds that

Δ̂(ρ̂) =
N∑

j=1

jPj (ρ̂) (64)
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for all ρ̂ ∈ R≥0 , such that Δ̂ is also continuous. Consider further
that the functions P̄i as defined in Lemma 13 and P̄N (ρ̂) := 0,
ρ̂ ∈ R≥0 , denote the functions mapping ρ̂ to the probability that
no event occurred for i time steps after the last event. It holds
that

P̄i(ρ̂) = P

(
j−1∑

s=0

Aswj−1−s ∈ Tj (ρ̂), j ∈ N[1,i]

)

(65)

for all i ∈ N[1,N ] . Let now ρ̂1 , ρ̂2 ∈ R≥0 and ρ̂1 ≤ ρ̂2 . From
Lemma 12 and (65), it follows that P̄i(ρ̂1) ≤ P̄i(ρ̂2), for i ∈
N[0,N ] , such that

Δ̂(ρ̂1) =
N∑

j=1

jPj (ρ̂j )

=
N∑

j=1

j(P̄j−1(ρ̂1) − P̄j (ρ̂1))

= P̄0 +
N −1∑

j=1

P̄j (ρ̂1)

= 1 +
N −1∑

j=1

P̄j (ρ̂1) ≤ 1 +
N −1∑

j=1

P̄j (ρ̂2) = Δ̂(ρ̂2) (66)

showing that the function Δ̂ is monotonically nondecreasing.
Finally, as the interior ofW was assumed nonempty, it holds that
Ti(0) = ∅ for all i ∈ N[1,N −1] implying P1(0) = 1 in (63) and,

hence, Δ̂(0) = 1; furthermore, as the support of pw is bounded,
it follows that Pi(ρ̂) = 0 for i ∈ N[1,N −1] and PN (ρ̂) = 1 for

sufficiently large ρ̂, leading to Δ̂(ρ̂) = N . �
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triggered MPC for constrained linear systems: A tube-based approach,”
Automatica, vol. 72, pp. 73–83, 2016.

[27] I. Kolmanovsky and E. G. Gilbert, “Maximal output admissible sets for
discrete-time systems with disturbance inputs,” in Proc. Amer. Control
Conf., Seattle, WA, USA, 1995, pp. 1995–1999.

[28] I. Kolmanovsky and E. G. Gilbert, “Theory and computation of disturbance
invariant sets for discrete-time linear systems,” Math. Probl. Eng., vol. 4,
no. 4, pp. 317–367, 1998.

[29] J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory and
Design. Madison, WI, USA: Nob Hill, 2009.
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