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a b s t r a c t

We propose novel aperiodic control schemes for additively perturbed discrete-time linear systems based
on the evaluation of set-membership conditions related to disturbance reachable sets. The goal is to
reduce the rate of communication between the sensor and the actuator, while guaranteeing that a certain
set in the state space is asymptotically stabilized. In particular, we prescribe this set to be the minimal
robust positively invariant set under a given feedback law updated at every time, multiplied by a factor
that acts as a tuning parameter. This way, we achieve a trade-off between the communication rate and the
worst-case asymptotic bound on the system state in the closed-loop system. We employ a novel stability
concept that captures howmuch the systemdynamics are explicitly dependent on past system states. This
allows us to quantitatively compare the stability properties guaranteed by an all-time updated (static)
feedback controller with those guaranteed by a (dynamic) aperiodic controller. We use the proposed
framework to design both event-triggered and self-triggered controllers under the assumption of state
feedback or output feedback.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In the study of networked control systems, the transmission of
information between the different components such as sensors,
controllers, and actuators is taken into account explicitly. If there is
a (high) cost on communications, then it is reasonable to attempt
a trade-off between the average communication rate and other
control-related performance criteria for the closed-loop system.
The cost on communication might result from the energy demand
involved with transmitting information (especially if the network
is wireless) or from a bandwidth limit, if the network has to be
shared between different agents.
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Two paradigms that have proven to be effective in this context
are event-triggered control and self-triggered control. In the for-
mer, the state or output of the plant is measured periodically or
continuously and information is transmitted over the network only
if a certain event condition is met, such as the output deviating
from the previously transmitted value beyond a given threshold;
in self-triggered control, measurements are only taken at cer-
tain sampling instants, where at each sampling instant the next
one is determined – online – based on given information at that
time, compare Fig. 1. Event-triggered control has the advantage
of being able to react immediately to unforeseen plant behavior,
possibly due to disturbances, while in self-triggered control, the
input to the plant is strictly open-loop between sampling instants.
On the other hand, self-triggered control allows the sensors and
the communication system to be completely shut off between
sampling instants, allowing additional energy to be saved. Both
paradigms generate aperiodic transmission behavior depending on
the evolution of the system state. It has been shown quantitatively
(Antunes & Heemels, 2014; Åström & Bernhardsson, 2002) that
such aperiodic control schemes allow a better performance trade-
off than schemes based on purely periodic sampling. See also
Anta and Tabuada (2010), Cardoso de Castro (2012), Cassandras
(2014), Gommans and Heemels (2015), Heemels, Johansson, and
Tabuada (2012), and the references therein, for a discussion of
event-triggered and self-triggered control.

In this paper,we consider the event-triggered and self-triggered
control of linear discrete-time systems subject to bounded additive
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Fig. 1. Two aperiodic scheduling paradigms considered in the paper.

Fig. 2. Networked control system with a communication channel between the
sensor and the controller.

disturbances, in a networked setting as depicted in Fig. 2. We
assume that the actuators and the sensors of the plant are not
collocated, thereby necessitating a networked control setup. The
control objective is to stabilize a compact set in the state-space
which is the minimal robust positively invariant set, multiplied by
a constant factor, for the closed-loop dynamics under a given linear
feedback that is updated at every time. This constantmultiplicative
factor acts as a tuning parameter, and, in some examples, can be
chosen equal to 1 while still allowing a significant reduction in
the communication rate, as we will see. In this way, we specify
the performance of the closed-loop system – which we define
here as the size of the guaranteed asymptotic bound on the state
– in terms of the performance guaranteed by a controller that
requires communication at every time step. We propose trigger
conditions that are based on reachable-set considerations for linear
systems with bounded disturbances, taking into account the past
evolution of the system state up to a given horizon. In particular,
the trigger conditions ensure that at each time the system state
is contained in the disturbance forward reachable set (multiplied
by the tuning factor) for the closed-loop system under feedback
updated at every time, initialized at the system state at some
time in the aforementioned horizon. Extending the horizon relaxes
the trigger conditions, allowing a greater reduction in the com-
munication rate. Hence, the proposed aperiodic control schemes
constitute dynamic feedback controllers, as the input at a given
time depends, explicitly through the trigger conditions, on system
states at past times. In order to quantitatively compare the stability
properties of such controllers with static feedback controllers, we
employ a novel stability concept, which takes this dependence into
account without requiring to extend the state-space under consid-
eration. In this way, dynamic or static controllers with different
dimensions defining the closed-loop system state can be compared
quantitatively. A similar method for the analysis of the stability of
aperiodically sampled systems is to model the closed-loop system
as a time-delay system, see, for example, Hetel et al. (2017, Section
4.1) and the references therein.

Previous results on aperiodic control based on set-theoretic
properties of dynamical systems can, for example, be found in
Boisseau, Martinez, Raharijaona, Durand, and Marchand (2017),

Grüne et al. (2010), Heemels, Sandee, and Van Den Bosch (2008)
and Lunze and Lehmann (2010), where event-triggered controllers
based on fixed trigger sets around the origin or the evolution of a
nominal systems are employed; set-theoretic approaches are used
to compute an asymptotic bound on the system state or to design
the trigger sets such that a given bound is achieved. A similar
approach is pursued in Kögel and Findeisen (2014), using forward
reachable sets in order to guarantee state constraint satisfaction
in a self-triggered context. Similar approaches to both event-
triggered and self-triggered control are also featured in Nghiem
(2012), additionallymaking use of backwards reachability sets and
time-varying sets for event-triggered control. In Sijs, Lazar, and
Heemels (2010), set-valued bounds on the estimation errors are
obtained from an event-triggered observer and combined with a
robust predictive control algorithm. Approaches using concepts
such as input-to-state stability, (ultimate) boundedness, and Lp
stability, among others, can, for example, be found in Mazo, Anta,
and Tabuada (2010), Rabi and Johansson (2008), Tabuada (2007),
Tiberi, Fischione, Johansson, and Di Benedetto (2013) and Wang
and Lemmon (2009).

Themajor difference in our approach is to replace single trigger
conditions (which in the existing approaches is most often defined
by the state of the system being contained in a certain set around
the origin or a nominal system state) by a set of (non-)trigger
conditions, of which only one has to be fulfilled in order for the
mechanism not to trigger a communication event. Moreover, the
conditionswe specify are explicitly based on the state of the system
at past time instants within a specified horizon, instead of only
on the state at the last trigger instant or even being defined by
constant sets (as, for example, in Boisseau et al., 2017; Grüne
et al., 2010; Heemels et al., 2008; Lunze & Lehmann, 2010). The
combination of these two novelties enlarges, at each given time
instant, the set of possible system states that do not trigger a com-
munication event, thereby potentially allowing a greater reduction
in the average communication rate. Finally, we tie the length of
the backwards horizon used to generate the trigger conditions
to a quantifiable stability property, enabling a trade-off between
desired closed-loop system properties and communication rate in
the controller design.

The remainder of the paper is structured in the following way.
This introductory section concludes with some remarks on nota-
tion. The problem setup and the assumed structure of the aperiodic
controllers are presented in Section 2. In Section 3, the novel
aperiodic controllers based on reachable sets are presented. An
extension to the output-feedback case is presented in Section 4.
Section 5 contains some notes on implementation and complexity,
links the framework to earlier aperiodic control schemes, and
highlights certain peculiarities of self-triggered control. An aca-
demic example illustrating the results is presented in Section 6 and
Section 8 concludes the paper. If not indicated otherwise, proofs
for statements are given in the Appendix. The present paper is
based on the preliminary works in Brunner and Allgöwer (2016)
and Brunner, Heemels, and Allgöwer (2016). Here, we generalize
the trigger conditions therein and extend the framework to the
output-feedback case.

Notation: The set of non-negative integers is denoted by N. For
a ∈ N, N≥a denotes the set of integers larger than or equal to
a. The set of nonnegative real numbers is denoted by R≥0. For
a vector x ∈ Rn, |x| denotes the maximum norm. For a vector
x ∈ Rn and a compact set Y ⊆ Rn, |x|Y denotes the distance
miny∈Y |x − y| of x from Y . A function α : R≥0 → R≥0 is of class
K if it is continuous, strictly increasing and it holds that α(0) = 0.
A function β : R≥0 × N → R≥0 is of class KL if it is of class K
in its first argument for any fixed value of its second argument,
is a decreasing function in its second argument for any value of
its first argument, and β(r, s) → 0 as s → ∞ for any r ∈ R≥0.
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We use 0 and I to denote the zero matrix and the identity matrix,
respectively, where the dimensions are defined by context. For a
set X ⊆ Rn, matrices A ∈ Rm×n, B ∈ Rn×m, and a scalar c ∈ R,
we define AX = {Ax | x ∈ X }, B−1X = {x ∈ Rm

| Bx ∈ X }, and
cX = {cx | x ∈ X }. For sets X ,Y ⊆ Rn, the Minkowski sum is
denoted by X ⊕ Y = {x + y | x ∈ X , y ∈ Y} and the Pontryagin
difference by X ⊖ Y = {x ∈ Rn

| {x} ⊕ Y ⊆ X }. For a sequence
(Xi)i∈N with Xi ⊆ Rn, we additionally define

⨁j
k=iXk = {

∑j
k=ixk |

xk ∈ Xk k ∈ {i, i + 1, . . . , j}} for i ∈ N and j ∈ N ∪ {∞}. The empty
sum (i > j) is equal to {0} ⊆ Rn, by convention.

2. Problem setup and preliminaries

2.1. System description and control objective

We consider disturbed linear discrete-time systems

xt+1 = Axt + But + wt , (1)

where xt ∈ Rn, ut ∈ Rm, wt ∈ W ⊆ Rn are the state, the input,
and the disturbance, respectively, at time t ∈ N. We make the
assumption that xt is available as ameasurement at each timepoint
t ∈ N, which we will relax when treating the output-feedback
case in Section 4. Further, we assume that the disturbance wt is
unknown at time t , but that the set W is a known compact and
convex set containing the origin. Finally, we assume that a matrix
K ∈ Rm×n is given such that A+BK is Schur (that is, the eigenvalues
of A + BK are contained in the interior of the complex unit disc).

Our goal is to design networked controllers – as depicted in
Fig. 2 – for system (1) that robustly stabilize a compact subset of
the state space while requiring as little communication between
the sensor and the actuator as possible.

In the remainder of the section, we formalize the stability con-
cept employed in this paper and make some structural assump-
tions on the controllers to be designed.

2.2. Stability concept

For a given dynamical system, the standard definition of uni-
form global asymptotic stability of the origin requires that for any
given ϵ > 0, there exists a δ > 0 such that if the norm of the
system state at any given point t0 in time is bounded by δ, then
the norm of the system state at any later time t > t0 is bounded
by ϵ. Further, for any initial condition the state must converge
to the origin — the convergence rate being independent of the
time of initialization. However, in the aperiodic control schemes
considered in the subsequent sections, the input to the system at
a given time t0 does not only depend on the current system state,
but also, explicitly, on the system state at earlier times. One would
expect the system behavior to becomemore predictable if the time
span in which such past states could influence the future system
behavior was shorter. The following stability definition includes
the allowed maximal length of this time span as the parameter θ .

Definition 1 (θ-UGAS). Consider a dynamical system p mapping
an initial condition and a sequence of disturbances to a sequence of
states, that is, p : Rn

× (W)N → (Rn)N, (x0, (ws)s∈N) ↦→ (xs)s∈N. Let
further Y be a compact subset ofRn. We call Y θ-uniformly globally
asymptotically stable (θ-UGAS) for p, where θ ∈ N≥1 ∪{∞}, if there
exists a KL-function β such that for every (x0, (ws)s∈N) ∈ Rn

×

(W)N, every t0 ∈ N, and every t ∈ N≥t0 , (xs)s∈N = p(x0, (ws)s∈N)
satisfies |xt |Y ≤ maxτ∈{0,1,...,min{t0,θ−1}}β(|xt0−τ |Y , t − t0 + τ ).

A few comments are in order regarding this definition.

(i) For θ = 1, Definition 1 coincides with the standard con-
cept of uniform global asymptotic stability, that is, |xt |Y ≤

β(|xt0 |Y , t − t0) for all xt0 ∈ Rn, t ∈ N≥t0 (compare, for
example, Hahn (1967, Chapter V), where β is the product of
a K-function and a strictly decreasing function).

(ii) If the dynamical system is described by a time-invariant
difference equation of the form xt+1 = f (xt ), then the
stability property of Definition 1 is equivalent for all θ ∈

N≥1 ∪ {∞} and, hence, also to the standard definition of
(uniform) global asymptotic stability for such systems, due
to point (i).

(iii) For any θ ∈ N≥1 ∪ {∞}, θ-UGAS implies limt→∞|xt |Y = 0,
by the choice of t0 = 0, that is, the setY is globally attractive
and therefore provides an asymptotic bound for the system
state.

(iv) Asymptotic stability of a subset of the state-space is closely
related to the concept of ultimate boundedness, see for
example Definition 4.6 in Khalil (2002). Note, however, that
first, attractivity of a set does not imply its stability, and
that second, ultimate boundedness implies convergence of
the system state to a certain set in finite time whereas
asymptotic stability only implies asymptotic convergence.

(v) For systems subject to additive disturbances, a commonly
employed stability concept is that of input-to-state stability
(ISS). An important difference between ISS and θ-UGAS is
the gain provided in the ISS definition between the ℓ∞

normof the disturbance sequence (wt )t∈N and an asymptotic
bound on the system state. Further, ISS implies that if the
disturbances sequence converges to zero, so does the system
state. Both properties are absent in the definition of θ-UGAS,
whichmakes it an overallweaker system theoretic property.
Note, however, that θ-UGAS being a weaker property im-
plies that it is also easier to satisfy, which – potentially –
allows communication to be suspended at a larger number
of time instants.

(vi) For fixed θ , and the assumption that xρ = x0 for ρ ∈

{−θ + 1, . . . ,−1}, (or if x−θ+1, . . . , x−1 are not relevant
for the system evolution1), Definition 1 is equivalent to the
stability concept for time-delay systemswith delay θ −1, or
more generally, the stability concept for systems described
by functional difference equations, where the condition
for uniform global asymptotic stability, in terms of a KL-
function β̂ , reads |xt |Y ≤ β̂(supτ∈{0,...,θ−1}|xt0−τ |Y , t − t0),
compare Liz and Ferreiro (2002), and also Hahn (1967, Sec-
tion 44) for a continuous-time counterpart. Formally, we
have the following result.

Lemma 2. Let θ ∈ N≥1 ∪ {∞} and consider a dynamical system q
mapping an initial condition sequence and a sequence of disturbances
to a sequence of states, that is, q : (Rn)θ × (W)N → (Rn)N,
((x−θ+1, x−θ+2, . . . , x−1, x0), (ws)s∈N) ↦→ (xs)s∈N. Let further Y be a
compact subset of Rn. If there exists a KL-function β such that for all
((x−θ+1, x−θ+2, . . . , x−1, x0), (ws)s∈N) ∈ (Rn)θ ×(W)N, every t0 ∈ N,
and every t ∈ N≥t0 , every (xs)s∈N = q((x−θ+1, x−θ+2, . . . , x−1, x0),
(ws)s∈N) satisfies

|xt |Y ≤ max
τ∈{0,1,...,min{t0,θ−1}}

β(|xt0−τ |Y , t − t0 + τ ) (2)

then there exists aKL-function β̂ such that for all ((x−θ+1, x−θ+2, . . . ,
x−1, x0), (ws)s∈N) ∈ (Rn)θ × (W)N, every t0 ∈ N, and every t ∈ N≥t0 ,
every (xs)s∈N = q((x−θ+1, x−θ+2, . . . , x−1, x0), (ws)s∈N) satisfies

|xt |Y ≤ β̂

(
sup

τ∈{0,...,θ−1}
|xt0−τ |Y , t − t0

)
. (3)

1 For the dynamical systems considered in Definition 1, this is in fact the case.
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If xρ = x0 for ρ ∈ {−(θ − 1), . . . ,−1}, that is, the truncation of τ

at t0 in (2) is irrelevant, then the converse also holds.

In the Appendix, we provide a counterexample for the case where
x−1 ̸= x0, or, more precisely, where the influence of x−1 on |xt |
never disappears, not even for arbitrarily large t . In particular, we
show that there exists a system for which the origin is uniformly
globally asymptotically stable in the time-delay sense, but is not θ-
UGAS for any θ . This, together with Lemma 2, implies that θ-UGAS
is a stronger stability notion than stability in the time-delay sense
for dynamical systems q as considered in 2.

For dynamical systems p as in Definition 1, we can state the
following result, which follows directly from Lemma 2.

Corollary 3. For a dynamical system p : Rn
× (W)N →

(Rn)N, (x0, (ws)s∈N) ↦→ (xs)s∈N, a compact set Y is θ-UGAS if and
only if it is uniformly globally asymptotically stable in the time-
delay sense with delay θ − 1, that is, if and only if there exists a
KL-function β such that for every (x0, (ws)s∈N) ∈ Rn

× (W)N, every
t0 ∈ N, and every t ∈ N≥t0 , (xs)s∈N = p(x0, (ws)s∈N) satisfies
|xt |Y ≤ maxτ∈{0,1,...,min{t0,θ−1}}β(|xt0−τ |Y , t − t0 + τ ), there exists
a KL-function β̂ such that for every (x0, (ws)s∈N) ∈ Rn

× (W)N,
every t0 ∈ N, and every t ∈ N≥t0 , (xs)s∈N = p(x0, (ws)s∈N) satisfies
|xt |Y ≤ β(maxτ∈{0,1,...,min{t0,θ−1}}|xt0−τ |Y , t − t0).

Finally, we emphasize that the case θ = ∞ is of actual relevance; it
arises if the input to the system at any time may depend explicitly
on the state x0 at initialization. As we will see, θ = ∞ will
come up in the controllers proposed in the paper as a case where
communications are saved especially.

2.3. Event-triggered and self-triggered control

We are interested in controlling (1) over a communication
network as depicted in Fig. 2. In order to reduce the number
of transmissions over the network, we employ controllers that
require communication from the sensor to the actuator/controller
only at the transmission instants ti, i ∈ N. These times satisfy
ti ∈ N∪{∞} and ti ≥ tj +1 for all i, j ∈ Nwith i > j (∞ is included
in order to capture the case that no transmissions occur after a
finite time tmax, where we use the convention that ∞ + 1 = ∞

and ∞ ≥ ∞). We require that in the time span {ti, . . . , ti+1 − 1},
the input ut to the system is a function of the state xti at time ti
and the time t − ti since the last transmission only. In this paper,
event-triggered and self-triggered controllers are distinguished by
the way the sequence (ti)i∈N is generated.

We consider event-triggered controllers of the form

ut = κ(t − ti, xti ), if t ∈ {ti, . . . , ti+1 − 1} (4a)
t0 = 0 (4b)

ti+1 = inf{t ∈ N≥ti+1 | δt (ti, x0, x1, . . ., xt ) = 1} (4c)

with the event-generating functions δt : N×R(t+1)n
→ {0, 1}, t ∈ N,

and self-triggered controllers of the form

ut = κ(t − ti, xti ), if t ∈ {ti, . . . , ti+1 − 1} (5a)
t0 = 0 (5b)

ti+1 = si(t0, t1 . . . , ti, xt0 , xt1 . . . , xti ) (5c)

with the scheduling functions si : Ni+1
× R(i+1)n

→ N, i ∈ N. With
these definitions, it is clear that:

• For t ∈ {ti, . . . , ti+1 − 1}, the input ut is a function of xti
only, and, hence, no communication is required between the
sensor and the actuator at these times.

• The event-triggered controller determines the transmission
instants by constantly monitoring the system state xt and
generating an event at time t if xt meets certain criteria,
which are expressed by the event-generating functions δt .

• The self-triggered controller determines the transmission
instants by computing ti+1 at time ti as a function of (among
others) xti .

• The self-triggered controller does not require measure
ments of xt for t ∈ {ti + 1, . . . , ti+1 − 1}. Hence, the sensor
system as well as the communication system may be shut
down for these time points (as neither measurements or
communications are required), potentially saving additional
energy.

Note that for the event-triggered controller, the sensor system
needs to be active at all times as the trigger mechanism needs to
evaluate δt . Furthermore, at least the communication system at the
actuator side needs to remain active as new informationmay arrive
at any time.

We assume the function κ : N × Rn
→ Rm to be given and

to satisfy κ(0, x) = Kx for all x ∈ Rn. Particular cases in this
framework are to-zero controllers, where

κ(τ , x) =

{
Kx, τ = 0, x ∈ Rn

0, otherwise, (6a)

to-hold controllers

κ(τ , x) = Kx, τ ∈ N, x ∈ Rn, (6b)

and model-based controllers (Garcia & Antsaklis, 2013; Heemels &
Donkers, 2013; Lunze & Lehmann, 2010)

κ(τ , x) = K (A + BK )τ x, τ ∈ N, x ∈ Rn, (6c)

see also Gommans and Heemels (2015), Heemels et al. (2012) and
Schenato (2009).

Remark 4. (i) The assumption that κ(0, x) = Kx ensures that
the input in the closed-loop system coincides with the all-time
updated feedback ut = Kxt at the transmission times. We will
exploit this property in order to establish stability in the closed-
loop systems. (ii) In the self-triggered setup, one may consider
to change the control input additionally depending on the time
until the next scheduled transmission instant. Further, the schemes
presented here can easily be modified such that the assumption
κ(0, x) = Kx is only necessary if ti+1 = ti + 1 in the self-triggered
case. For simplicity of exposition and in order to treat event-
triggered and self-triggered controllers in the same framework,
we stick to the slightly more restrictive setup above. Note that
the optimal choice of a schedule-dependent feedback is an open
question.

In the following section, we consider the design of the event-
generating functions δt , t ∈ N, and the scheduling functions si,
i ∈ N, such that a certain compact set Y ⊆ Rn is θ-UGAS for the
dynamical systems which generate the closed-loop state sequence
(xt )t∈N, where Y and θ are design parameters.

3. Guaranteeing stability via set-membership constraints

In this section, we propose a means to guarantee that a certain
set is θ-UGAS by exploiting reachability results. It is a well-known
fact that the system

xt+1 = (A + BK )xt + wt (7)

with wt ∈ W satisfies

xt ∈ {(A + BK )t−t0xt0} ⊕ Ft−t0 (8)

for all t ∈ N and all t0 ∈ {0, 1, . . . , t}, where

Fi :=

i−1⨁
j=0

(A + BK )jW (9)
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for all i ∈ N ∪ {∞}. Further, the compact and convex set F∞ is
1-UGAS for the system (7). Finally, it holds that

(A + BK )iFj ⊕ Fi = Fi+j (10)

for i ∈ N and j ∈ N ∪ {∞}, with the convention ∞ + i = ∞.
These statements are discussed in Artstein and Raković (2008),
Kolmanovsky and Gilbert (1995, 1998) and Raković (2007).

The following result allows to formulate sufficient conditions
for the stability properties of the closed-loop system in terms of
set-membership constraints.

Theorem 5. Consider a dynamical system p : Rn
× (W)N →

(Rn)N, (x0, (ws)s∈N) ↦→ (xs)s∈N. Let there exist a γ ∈ [1, ∞) and
a θ ∈ N≥1 ∪ {∞} such that for every (x0, (ws)s∈N) ∈ Rn

× (W)N,
(xs)s∈N = p(x0, (ws)s∈N) and every t ∈ N,

∃τ ∈ {1, . . . ,min{θ, t + 1}}, such that
xt+1 ∈ {(A + BK )τ xt+1−τ } ⊕ γFτ . (11)

Then the set γF∞ is θ-UGAS for p.

Note that wemake no assumptions on the structure or description
of the dynamical system p in question. Next, we present event-
triggered and self-triggered controllers that guarantee that for t ∈

N the set-membership condition (11) indeed holds. The controllers
contain implicit set-membership conditions that guarantee the
stability properties of the closed-loop system. In Section 5we show
how these conditions reduce to checking whether a finite number
of points is included in certain given polytopes, thereby showing
their straight-forward implementation.

Note that the variables θ ∈ N≥1 ∪ {∞} and γ ∈ [1, ∞)
are design parameters of the control schemes. Here, γ is used
to parameterize the set Y which is stabilized by the controller
according to Definition 1.

3.1. Set-based event-triggered control

Define for t ∈ N≥1 the function δt in (4a) by

δt (ti, x0, x1, . . . , xt )

=

⎧⎪⎨⎪⎩
0, if ∃τ ∈ {1, . . . ,min{θ, t + 1}}, such that

∀w0|t ∈ W,

x1|t ∈ {(A + BK )τ xt+1−τ } ⊕ γFτ

1, otherwise,

(12)

where x1|t := Axt +Bκ(t−ti, xti )+w0|t plays the role of a prediction
of the state at time t + 1 under the assumption that the input
κ(t− ti, xti ) is applied and the disturbancew0|t acts on the system.2

Theorem 6. Let p be the dynamical system generating (xs)s∈N for the
closed loop consisting of (1) and (4a), where δt , t ∈ N≥1, is defined as
in (12). Then, the set γF∞ is θ-UGAS for p.

3.2. Set-based self-triggered control

Define for i ∈ N the function si in (4a) by

si(t0, . . . , ti, xt0 , . . . , xti )

= sup
{
t ∈ N≥ti+1

⏐⏐⏐⏐ ∀l ∈ {1, . . ., t − ti}

∃τl ∈ {1, . . . ,min{θ, ti + l}}, such that
∀(wtj−ti|ti , . . . , w0|ti , w1|ti , . . . , wl−1|ti )

2 With wk|t we denote a hypothetical disturbance, employed in the evaluation of
a trigger condition at time t andwhich is assumed to act on the system at time t+k.

∈ W × · · · × W,

xl|ti ∈ {(A + BK )τlxl−τl|ti} ⊕ γFτl

}
, (13)

where xk+1|ti := Axk|ti +Bκ(k−ti, xti )+wk|ti for all k ∈ {0, . . . , l−1},
xk+1|ti := Axk|ti + Bκ(k − tj, xtj ) + wk|ti for all k ∈ {tj − ti, . . . , ti +
l− τl − tj} with j such that ti + l− τl ∈ {tj, . . . , tj+1 − 1}, x0|ti := xti
and xtj−ti|ti := xtj . (For simplicity, we omit the dependence of j
on τl in the notation). Similar to the event-triggered case, wk|ti ,
k ∈ {tj − ti, . . . , l − 1}, are assumed disturbances acting on the
system and xk|ti plays the role of a predicted future state (for k ∈

N≥1); however, as we assumed that measurements of the state are
only available at transmission times, also states in the past need to
be ‘‘predicted’’, starting from an earlier transmission time tj. This
becomes necessary if the time point ti + l − τl used as a reference
lies in the past, that is, tj < ti. Note that we only use the bounds
wk|ti ∈ W for the disturbances in the scheduling functions si, both
in the future and in the past. For the past disturbances, in the time
span {tj, . . . , ti −1}, one could obtain tighter bounds by evaluating
the (known) states xtj and xti . For example, if ti = tj + 1, then it
holds that wtj = xti − Axtj − Butj , that is, wtj is known exactly. For
simplicity, we do not make use of this additional information here.

Theorem 7. Let p be the dynamical system generating (xs)s∈N for the
closed-loop system consisting of (1) and (5), where si, i ∈ N, is defined
as in (13). Then, the set γF∞ is θ-UGAS for p.

Proof. The statement follows similarly as the proof of Theorem 6,
noting that xti+1 = (A + BK )xti + wti ∈ {(A + BK )xti} ⊕ γF1 in any
case. □

Remark 8. (i) The rate of convergence, linked to the function β

in the definition of θ-UGAS, depends only on the matrix A + BK ,
compare the proof of Theorem 5, and is independent of both θ and
γ . (ii) The results in this section apply independently of the chosen
κ generating the input to the system, as long as the assumption
κ(0, x) = Kx holds. In particular, the results hold for all the
examples of κ in (6). (iii) Both the event-generating function in
(12) and the scheduling function in (13) require knowledge of the
way the input applied to the system is computed. One method to
implement this is to include a copy of the controller (in the form
of κ) in the trigger mechanism in Fig. 2. Alternatively, the inputs ut
for t ∈ {ti, . . . , ti+1 − 1} may be computed at time ti at the sensor
side and transmitted (in one packet) at time ti to the actuator,
such that the controller does not have to be implemented at the
actuator side in any form, compare Lješnjanin, Quevedo, and Nešić
(2014) and the references therein for similar architectures. Note
that this is possible as, by assumption, the inputs in the time span
{ti, . . . , ti+1 − 1} are a function of xti (for the event-triggered case,
onewould need to additionally enforce an a prioriboundon ti+1−ti,
as ti+1 is not known at time ti). As a third alternative, this input
sequence might also be computed, at time ti, at the controller side
(after receiving xti from the sensor) and then transmitted back to
the trigger mechanism.

4. Output feedback

In this section, we show how the results obtained so far can
be extended to the case that xt is not directly available as a mea-
surement. We restrict ourselves here to the event-triggered case.
However, similar results can be obtained for self-triggered control.
Consider the system

xt+1 = Axt + But + wt (14a)
yt = Ctxt + vt , (14b)
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where, in addition to the definitions in Section 2, it holds that
yt ∈ Nq and vt ∈ V ⊆ Rq for t ∈ N, V being a convex and
compact set that contains the origin. Additionally, we assume that
there exists a matrix L ∈ Rn×q such that A + LCA is Schur. Hence,
the dynamic output-feedback controller

x̂t+1 = Ax̂t + But − L(yt+1 − C(Ax̂t + But )) (15a)
ut = Kx̂t (15b)

stabilizes system (14). In particular, it holds that[
xt
x̂t

]
∈

{
Ãt−t0

[
xt0
x̂t0

]}
⊕ Ht−t0 (16)

for the closed-loop systemconsisting of (14) and (15), and all t ∈ N,
t0 ∈ {0, . . . , t}. Here,

Ã :=

[
A BK

−LCA A + LCA + BK

]
(17)

and, for i ∈ N ∪ {∞} (compare Chisci & Zappa, 2002),

Hi :=

i−1⨁
j=0

Ãj
[

I 0
−LC −L

]
(W × V). (18)

The results of Section 3 could be applied directly to the stabilization
of the joint dynamics consisting of the system (14) and the observer
(15a) if the joint state (xt , x̂t ) was available as a measurement. As
this is obviously not the case, we make the assumption that set-
valued estimates in the form of sets Xt ⊆ R(t+1)n are available,
where (x0, . . . , xt ) ∈ Xt for all t ∈ N. In Section 5.3, we provide
an example of such an estimator.

4.1. Output-feedback event-triggered control

The event-triggered output-feedback controller takes the
form

ut = κ(t − ti, x̂ti ), if t ∈ {ti, . . . , ti+1 − 1} (19a)
t0 = 0 (19b)

ti+1 = inf{t ∈ {ti + 1, . . .} |

δt (ti, x̂0, . . . , x̂t ,Xt ) = 1} (19c)

with

δt (ti, x̂0, . . . , x̂t ,Xt )

=

⎧⎪⎨⎪⎩
0 if ∃τ ∈ {1, . . . ,min{θ, t + 1}}, such that

∀w0|t ∈ W, ∀v1|t ∈ V, ∀(x′

0, . . . , x
′

t ) ∈ Xt ,

(x1|t , x̂1|t ) ∈ {Ãτ (x′

t+1−τ , x̂t+1−τ )} ⊕ γHτ

1 otherwise,

(20)

where3[
x1|t
x̂1|t

]
=

[
A 0

−LCA A + LCA

][
x′

t
x̂t

]
+

[
B
B

]
κ(t − ti, x̂ti ) +

[
I 0

−LC −L

][
w0|t
v1|t

]
. (21)

Theorem 9. Let p be the dynamical system generating ((xs, x̂s))s∈N
for the closed loop consisting of (14), (15a), (19), and (20). Then, the
set γH∞ is θ-UGAS for p.

The proof follows analogously to the state-feedback case by noting
that the scheme guarantees that for all t ∈ N there exists a τ ∈

{1, . . . ,min{θ, t + 1}} such that (xt+1, x̂t+1) ∈ {Ãt+1−τ (xt+1−τ ,

x̂t+1−τ )} ⊕ γHτ .

3 Note that we use (x1|t , x̂1|t ) and
[ x1|t
x̂1|t

]
interchangeably.

Remark 10. We emphasize here that the quality of the state
estimates, that is, the size of the sets Xt , is not important in
order to guarantee stability, as long as it is guaranteed that the
true system states are contained in Xt . However, larger (that is,
more conservative) estimates Xt make it more likely that the set-
membership tests in the trigger conditions fail, resulting in shorter
inter-transmission times ti+1 − ti, and, presumably, in a higher
average communication rate.

5. Implementation and simplifications

In this section, we describe how the proposed aperiodic con-
trollers may be implemented and what type of computations have
to be performed in order to evaluate the trigger conditions. In
Section 5.2.1, we highlight some properties ofmodel-based control
and link our framework to earlier aperiodic schemes.

5.1. Bounded computation time

In order to implement the proposed algorithms, it is necessary
to ensure that the maximum number of cases to be checked in
the various trigger conditions is bounded. For the self-triggered
setup, this requires a bound on the inter-transmission time ti+1−ti,
which may have to be artificially enforced by replacing, in the case
of state-feedback control, the expression sup

{
t ∈ N≥ti+1

⏐⏐ . . .} in
(13) with sup

{
t ∈ {ti + 1, ti + 2, . . ., ti + M}

⏐⏐ . . .} for some fixed
M ∈ N. Note that this does not change the stability guarantees of
the closed-loop system; compare similar discussions in Barradas
Berglind, Gommans, and Heemels (2012, Section 4).

The additional question arises how the case θ = ∞ is to be
handled. First note that checking the trigger conditions only for a
subset of {1, . . . ,min{t + 1, θ}} (and triggering if the set member-
ship can never be ensured), still guarantees stability. Further, from
the proof of Theorem5,we see that the proposed trigger conditions
ensure xt+1 ∈ {(A + BK )t+1x0} ⊕ γFt+1 for all t ∈ N. Hence, if
θ = ∞, we can always reduce the trigger conditions to checking
only the case τ = t + 1. Note, however, that this might lead to
conservatism if information about the disturbances in the time-
interval {0, . . . , ti − 1} is neglected, compare Section 3.2.

5.2. Set membership conditions in state-feedback case

We first consider the state-feedback case, where the trigger
conditions reduce to checking whether a finite number of vectors
are contained in convex sets.

For the event-triggered setup, the condition ∀w0|t ∈ W , x1|t ∈

{(A + BK )τ xt+1−τ } ⊕ γFτ in (12) is equivalent to

Axt + Bκ(t − ti, xti ) − (A + BK )τ xt+1−τ

∈ γFτ ⊖ W, (22)

where the left hand side can be computed from quantities known
at time t . The set on the right hand side can be computed4 offline
when θ is finite. Hence, the event-generating function in (12) can
equivalently (and more explicitly) written as

δt (ti, x0, x1, . . . , xt )

=

⎧⎪⎨⎪⎩
0, if ∃τ ∈ {1, . . . ,min{θ, t + 1}}, such that

Axt + Bκ(t − ti, xti ) − (A + BK )τ xt+1−τ

∈ γFτ ⊖ W,

1, otherwise.

(23)

4 At least for the case of polytopic W reasonably efficient numerical methods
exist.
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For the self-triggered setup, consider first the case ti + l − τl ≥ ti,
which implies

xl|ti = Aτlxl−τl|ti +

ti+l−1∑
k=ti+l−τl

Ati+l−1−k(Bκ(k − ti, xti ) + wk−ti|ti ) (24)

and

xl−τl|ti = Al−τlxti +
ti+l−τl−1∑

k=ti

Ati+l−τl−1−k(Bκ(k − ti, xti ) + wk−ti|ti ). (25)

The set-membership condition in (13), in this case, is therefore
equivalent to

(Aτl − (A + BK )τl )

({
Al−τlxti

+

ti+l−τl−1∑
k=ti

Ati+l−τl−1−kBκ(k − ti, xti )
}

⊕ Gl−τl

)

⊕

⎧⎨⎩
ti+l−1∑

k=ti+l−τl

Ati+l−1−kBκ(k − ti, xti )

⎫⎬⎭⊕ Gτl ⊆ γFτl (26)

where Gi =
⨁i−1

j=0A
jW for i ∈ N. This set-inclusion condition can be

equivalently expressed as a set-membership condition regarding
the set γFτl ⊖

(
(Aτl − (A + BK )τl )Gl−τl ⊕ Gτl

)
, analogous to (22) in

the event-triggered setup.
Consider now the case ti + l − τl < ti. Here, we simplify the

derivations by disregarding information that can be inferred for
the bound on past disturbances from the knowledge of both xtj and
xtj+1 , where j < i and ti + l− τl ∈ {tj, . . . , tj+1 −1}. Hence, we use

xl|ti = Alxti +
ti+l−1∑
k=ti

Ati+l−1−k(Bκ(k − ti, xti ) + wk−ti|ti ) (27)

and

xl−τl|ti =Ati+l−τl−tjxtj +
ti+l−1−τl∑

k=tj

Ati+l−τl−1−k(Bκ(k − tj, xtj )+wk−ti|ti ),

(28)

while assuming wk−ti|ti ∈ W for k ∈ {tj, . . . , t − 1}. This leads to
the condition{
Alxti +

ti+l−1∑
k=ti

Ati+l−1−kBκ(k − ti, xti )

− (A + BK )τl
(
Ati+l−τl−tjxtj +

ti+l−τl−1∑
k=tj

Ati+l−τl−1−kBκ(k − tj, xtj )
)}

⊕ (−(A + BK )τl )Gti+l−τl−tj ⊕ Gl ⊆ γFτl . (29)

In summary, the scheduling function in (13) becomes

si(t0, . . . , ti, xt0 , . . . , xti )

= sup
{
t ∈ N≥ti+1

⏐⏐⏐⏐ ∀l ∈ {1, . . ., t − ti},

∃τl ∈ {1, . . . ,min{θ, l}}, such that

(Aτl − (A + BK )τl )

(
Al−τlxti

+

ti+l−τl−1∑
k=ti

Ati+l−τl−1−kBκ(k − ti, xti )

)

+

ti+l−1∑
k=ti+l−τl

Ati+l−1−kBκ(k − ti, xti )

∈ γFτl ⊖
(
(Aτl − (A + BK )τl )Gl−τl ⊕ Gτl

)
,

or ∃τl ∈ {min{θ, l + 1}, . . .,min{θ, ti + l}},
such that

Alxti +
ti+l−1∑
k=ti

Ati+l−1−kBκ(k − ti, xti )

− (A + BK )τl
(
Ati+l−τl−tjxtj

+

ti+l−τl−1∑
k=tj

Ati+l−τl−1−kBκ(k − tj, xtj )
)

∈ γFτl ⊖
(
(−(A + BK )τl )Gti+l−τl−tj ⊕ Gl

)
,

where j is such that ti + l − τl ∈ {tj, . . . , tj+1 − 1}
}
. (30)

Hence, similar to the event-triggered setup, the scheduling func-
tions si can be evaluated by checking a finite number of set-
memberships,where thepoints in question canbe easily computed
online and the sets in question can be computed offline.

5.2.1. The special case of model-based control
In this subsection, we take a closer look at some special cases of

the framework presented in this paper; in particular, we assume in
the following that κ is chosen model-based as in (6c).

Consider first the event-triggered case and the additional re-
striction that τ = t + 1 − ti (requiring enforced triggering at t
if otherwise ti+1 − ti > θ ). Then, the condition in (22) becomes

xt − (A + BK )t−tixti ∈ A−1(γFt+1−ti ⊖ W), (31)

which is a threshold-based trigger condition on the error between
the state at time t and the state of a simulated undisturbed closed-
loop system, initialized at the last transmission instant ti, compare
Brunner, Heemels, and Allgöwer (2015) and Lunze and Lehmann
(2010).

This demonstrates that our trigger conditions provide a gener-
alization of certain existing event-triggered schemes, as the above
mentioned restriction on τ is, in general, not required in our
approach. In other words, our trigger conditions provide a greater
opportunity of not communicating at a given time.

Consider now the self-triggered case. For κ being chosenmodel-
based, the inclusion in (26) reduces to (Aτl −(A+BK )τl )Gl−τl ⊕Gτl ⊆

γFτl , that is, it becomes independent of xti . This implies that the
self-triggered scheme results in periodic triggering, independent
of the initial state or disturbances, in the case of κ chosen model-
based and τl restricted by ti + l − τl ≥ ti.

On the other hand, for model-based κ , (29) becomes

(A + BK )l(xti − (A + BK )ti−tjxtj )

∈ γFτl ⊖
(
(−(A + BK )τl )Gti+l−τl−tj ⊕ Gl

)
.

Hence, a smaller deviation between xti and (A + BK )ti−tjxtj , related
to smaller disturbances in the interval {tj, . . . , ti−1},makes itmore
likely that the setmembership holds and a larger value of ti+1−ti is
realized. Further, the trigger behavior does not necessarily become
periodic (which will, in fact, be shown in the example section).
This discussion shows that in order to exploit ‘‘benign’’ past distur-
bance realizations in (model-based) self-triggered control, the past
evolution of the system has to be taken into account. Otherwise,
the conditions in (26) only evaluate worst-case future disturbance
realizations, which are independent of the current system state.
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5.2.2. Complexity of involved sets
While all sets appearing in this section so far can be computed5

offline if θ and, in the self-triggered case, additionally ti+1 − ti,
are bounded, their complexity might grow to undesirable levels. It
is, however, always possible to replace the right hand side in (22)
with a subset thereof, without destroying the stability guarantees
of the closed-loop systems. The same holds analogously for the set-
membership conditions in the self-triggered setup. If these inner
approximations are of simple shapes, such as boxes or ellipsoids,
the effort involved with evaluating the trigger conditions remains
low. Further, we want to point out that due to 0 ∈ W , it holds that
Fi ⊆ Fj for i ≤ j. Hence, one may replace Fτ with Fτ̄ for τ ≥ τ̄

and a fixed τ̄ in the implementation. Considering that Fi
i→∞
→ F∞

anyway, a reasonably small τ̄ might be chosenwithout introducing
too much conservatism.

5.3. Set membership conditions in output-feedback case

In the output-feedback case, we have to take into account the
unknown system state xt . In the event-triggered setup, measure-
ments are available at every time, such that the estimation error
xt − x̂t remains bounded. In fact, if bounds on the estimation error
at time 0 are known a priori, it is possible to compute a compact
set E ⊆ Rn satisfying xt ∈ {x̂t} ⊕ E for all t ∈ N, compare Chisci
and Zappa (2002). Then, the set Xt takes the form ({x̂0} ⊕ E) ×

· · · × ({x̂t} ⊕ E). Therefore, the set-membership constraints in the
event-generating function (20) can be obtained in a similar fashion
as those in Section 5.2; in particular, for τ ∈ N≥2, we arrive at the
condition

∀x′

t+1−τ ∈ {x̂t+1−τ } ⊕ E, ∀x′

t ∈ {x̂t} ⊕ E,{[
A 0

−LCA A + LCA

][
x′

t
x̂t

]
+

[
B
B

]
κ(t − ti, x̂ti )

}
⊕

[
I 0

−LC −L

]
(W × V) ⊆

{
Ãτ

[
x′

t+1−τ

x̂t+1−τ

]}
⊕ γHτ , (32)

which is equivalent to the set-membership condition[
I
I

] (
Ax̂t + Bκ(t − ti, x̂ti ) − (A + BK )τ x̂t+1−τ

)
∈ γHτ ⊖

([
I 0

−LC −L

]
(W × V)

⊕

[
A 0

−LCA A + LCA

]
(E × {0}) ⊕ (−Ãτ )(E × {0})

)
. (33)

The left-hand side of this set-membership is, as in the state-
feedback case, easily computable from known quantities at time
t; the right-hand side is a set that only depends on τ and can be
computed offline.

For τ = 1 we can derive the less conservative condition[
I
I

] (
Ax̂t + Bκ(t − ti, x̂ti ) − (A + BK )x̂t+1−τ

)
∈ γH1 ⊖

([
I 0

−LC −L

]
(W × V)

⊕

([
A 0

−LCA A + LCA

]
− Ã

)
(E × {0})

)
, (34)

equivalent to (using xt+1−τ = xt ),[
I
I

] (
Ax̂t + Bκ(t − ti, x̂ti ) − (A + BK )x̂t+1−τ

)
∈ (γ − 1)H1. (35)

5 At least in the case of polytopic W .

Fig. 3. Closed-loop trajectories under event-triggered control (‘‘to-zero’’-type) for
γ = 1.5, θ = 1 (dashed, magenta) and θ = ∞ (solid, blue). An approximation of
γF∞ is depicted in orange.

6. Numerical example

Consider the system

xt+1 =

[
1.0 0.3
0.0 1.0

]
xt +

[
0.045
0.300

]
ut + wt , (36)

obtained by discretizing a continuous double-integrator with a
step size of 0.3, and where wt ∈ W = [−1, 1] × [−1, 1]. The
feedback gain K was computed to be LQ-optimal for the weighting
matrices Q =

[
1 0
0 1

]
and R = 1, that is, K = [−0.77 − 1.46].

We applied the controllers proposed in Section 3 for different
choices of the parameters γ and θ , for all three controller types
in (6). We chose x0 = (100, 100)⊺ and simulated each parameter
pairing for 10 random realizations of the disturbance sequence,
where wt was sampled independently and uniformly on W for all
t ∈ {0, . . . , Tsim−1} and the simulation horizon Tsim was chosen to
1000. To limit the computational complexity, we restricted ti+1−ti
in the self-triggered case to 20 and also replaced Fτ with F20 for
τ ∈ N≥20 in the threshold definitions. In the evaluation of the
scheduling function (13) we allowed both ti + l − τl ≥ ti and
ti + l − τl < ti.

The resulting average communication rates (where a rate of 1
implies communication at every time) are reported in Tables 1
and 2. For the choice γ = 1 and θ = 1, no communications
can be saved. This is not surprising, as, considering only event-
triggered control, the right hand side of (22) is {0} for γ = 1 and
τ = 1, such that almost surely an event is generated at every
given time (with the disturbances being uniformly distributed).
However, the increase of either of the two parameters γ and
θ allows a significant reduction of the average communication
rate, for the price of worsening the stability guarantees (increased
size of γF∞ for larger γ ) and increasing the computational effort
(more cases have to be checked in the trigger conditions for larger
θ ).

In order to illustrate the effect of the parameter θ on the stability
properties of the closed-loop system, consider the state trajectories
depicted in Fig. 3, resulting from the same disturbance realization
(uniformly distributed on W), but with different values for θ (we
chose γ = 1.5 here). Consistent with Definition 1, for the θ = 1
the state trajectory does not leave γF∞ once it has entered the set.
For θ = ∞, however, γF∞ is not positively invariant (which still
is consistent with Definition 1).

Finally, we illustrate the points made on model-based self-
triggered control in Section 5.2.1. For this, we simulated the closed-
loop systems under self-triggered control both for an arbitrary
selection of τl ∈ {1, . . . ,min{θ, ti + l}} and for τl = l fixed. Here,
we restricted the maximum time between transmission instants
to ti+1 − ti ≤ θ − 1, such that for both closed-loop systems
the set γF∞ is guaranteed to be θ-UGAS. In particular, we chose
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Table 1
Average communication rates in the closed loop with event-triggered control and uniformly distributed white-noise disturbances.

θ to-zero control θ to-hold control θ model-based control

γ γ γ

1 1.25 1.5 2 2.5 3 1 1.25 1.5 2 2.5 3 1 1.25 1.5 2 2.5 3

1 1.00 0.56 0.33 0.15 0.10 0.08 1 1.00 0.51 0.28 0.19 0.18 0.19 1 1.00 0.47 0.21 0.09 0.06 0.05
2 0.48 0.26 0.17 0.11 0.07 0.06 2 0.47 0.25 0.20 0.19 0.20 0.20 2 0.44 0.19 0.11 0.07 0.04 0.04
5 0.20 0.14 0.10 0.07 0.05 0.05 5 0.22 0.20 0.20 0.21 0.21 0.21 5 0.14 0.08 0.06 0.04 0.03 0.03
10 0.15 0.10 0.08 0.06 0.04 0.04 10 0.21 0.21 0.21 0.22 0.22 0.22 10 0.09 0.06 0.05 0.03 0.03 0.02
∞ 0.12 0.09 0.07 0.05 0.04 0.03 ∞ 0.21 0.21 0.22 0.22 0.22 0.22 ∞ 0.07 0.05 0.04 0.03 0.02 0.02

Table 2
Average communication rates in the closed loop with self-triggered control and uniformly distributed white-noise disturbances.

θ to-zero control θ to-hold control θ model-based control

γ γ γ

1 1.25 1.5 2 2.5 3 1 1.25 1.5 2 2.5 3 1 1.25 1.5 2 2.5 3

1 1.00 1.00 1.00 0.62 0.48 0.37 1 1.00 1.00 1.00 0.52 0.46 0.36 1 1.00 1.00 1.00 0.50 0.33 0.33
2 1.00 1.00 0.68 0.51 0.38 0.31 2 1.00 1.00 0.58 0.50 0.36 0.30 2 1.00 1.00 0.50 0.50 0.33 0.25
5 0.81 0.57 0.48 0.36 0.29 0.23 5 0.69 0.50 0.45 0.34 0.28 0.24 5 0.72 0.50 0.42 0.33 0.25 0.20
10 0.59 0.49 0.39 0.29 0.24 0.20 10 0.50 0.44 0.34 0.28 0.24 0.22 10 0.51 0.44 0.33 0.25 0.20 0.17
∞ 0.54 0.42 0.36 0.27 0.22 0.18 ∞ 0.50 0.34 0.34 0.26 0.23 0.21 ∞ 0.50 0.34 0.33 0.24 0.20 0.17

Fig. 4. Inter-transmission times ti+1 − ti for an arbitrary selection of τl (blue, solid)
and for τ fixed (orange, dashed).

θ = 11, γ = 2.25 and sampled the disturbance uniformly on W .
The resulting average transmission rate for an arbitrary selection
of τl was 0.2095 and, for τl fixed, 0.25. Further, as shown in Fig. 4,
the trigger behavior in the latter case is strictly periodic, whereas
it is aperiodic in the former case.

YALMIP (Löfberg, 2004), the Multi-Parametric Toolbox 3.0
(Herceg, Kvasnica, Jones, & Morari, 2013), and IBM ILOG
CPLEX Optimization Studio (IBM, 2014) were used in the
simulations.

7. Discussion

The proposed controllers demonstrably achieve a reduction in
communication with a trade-off between the stability properties
of the closed-loop system (defined by the parameters θ and γ )
and the average communication rate. Compared with earlier ap-
proaches (as, for example those in Boisseau et al., 2017; Grüne et
al., 2010; Heemels et al., 2008; Lunze & Lehmann, 2010) the trigger
conditions proposed in the present paper require, in general, a
higher amount of storage and communication. For simplicity, we
compare our approaches to one where (i) only a single trigger
condition based on the state at the last communication instant
is used and (ii) the trigger condition amounts to the evaluation
of the norm of a point in the state space. Further, we restrict the
discussion to the state-feedback event-triggered case. As shown
in Section 5, the evaluation of the trigger conditions at each time
step amounts to checking the set-membership (22) for every τ ∈

{1, . . . , θ}. Here, the computation of the left-hand side is approx-
imately of the same complexity as earlier ‘‘model-based’’ event-
triggered schemes for example proposed in Lunze and Lehmann

(2010). The right-hand side can be computed offline and represents
a compact subset of the state-space. The complexity of sets of
this form is known to grow exponentially with θ , leading to a
far greater storage requirement when compared to approaches,
where the trigger conditions are based on simple, constant sets
based on vector norms. However, as pointed out in Section 5.2.2,
one may employ inner approximation of right-hand side of (22),
possibly based on vector norms, without deteriorating the stability
guarantees of the closed-loop system. With such approximations
in place, the storage and (online) computation effort involved with
our schemes is approximately θ times that of earlier approaches
such as those in Lunze and Lehmann (2010), while at the same time
increasing the number of (non-)trigger conditions (of which only
one needs to be fulfilled in order to prevent communication) also
by a factor of θ .

8. Conclusions

We have presented a general framework for aperiodic control
of perturbed discrete-time linear systems based on checking set-
membership conditions. The framework encompasses many cases
of interest and led to the design of both event-triggered and self-
triggered controllers and both state-feedback and output-feedback
schemes, and can be based on several control input generators in-
cluding to-hold, to-zero and model-based predictions of input sig-
nals between event/transmission times. In particular, the output-
feedback casewashandled by considering the extended state space
describing the original system and the state estimate obtained by
well-designed observer structures. In fact, to describe the stability
of the resulting closed-loop systems a new stability concept (θ-
UGAS) for sets was introduced and connections to more classical
notions for stability were revealed. The tuning parameters in our
scheme are related to the size of the asymptotic state set (γ )
and the complexity of the scheme (θ ) and directly influence the
transmission rates. Design trade-offs between these parameters,
the asymptotic state set and the resulting transmission rates and
comparison to existing schemes (such as periodic triggering and
the model-based ETC schemes in Heemels & Donkers, 2013; Lunze
& Lehmann, 2010) naturally emerge in our framework. The results
were illustrated by numerical examples showing a significant re-
duction in the average transmission rate while ensuring an a priori
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chosen worst-case bound on the system state. Future research
directions include the treatment of multiplicative disturbances,
that is, time-varying uncertainties in the system matrices, the in-
clusion of disturbance estimators, and the extension to distributed
control problems. Another research direction is the quantifica-
tion of the computational effort involved with control schemes
of the form presented here and the ensuing trade-off between
control performance, communication, and computation. Finally,
the impact of effects such as quantization, packet loss, and delay in
various points in the network on the qualitative and quantitative
properties of the control schemes should be investigated.

Appendix A. Equivalence of stability notions

A.1. Proof of Lemma 2

Let arbitrary θ ∈ N≥1 ∪ {∞} and (xt )t∈N be given. Assume first
that β is a KL-function such that for all t0 ∈ N and all t ∈ N≥t0 it
holds that

|xt |Y ≤ max
τ∈{0,1,...,min{t0,θ−1}}

β(|xt0−τ |Y , t − t0 + τ ). (A.1)

Let t0 ∈ N and t ∈ N≥t0 be arbitrary but fixed. As β is decreasing in
its second argument, it follows that |xt |Y ≤ maxτ∈{0,1,...,min{t0,θ−1}}
β(|xt0−τ |Y , t − t0). Further, as β is increasing in its first argument,
it also holds that |xt |Y ≤ β(maxτ∈{0,1,...,min{t0,θ−1}}|xt0−τ |Y , t − t0)
and, hence, also that |xt |Y ≤ β(maxτ∈{0,1,...,θ−1}|xt0−τ |Y , t − t0).
This shows that the implication holds as claimed, with β̂ = β .

Assume second that β̂ is a KL-function such that for all t0 ∈ N
and all t ∈ N≥t0 it holds that

|xt |Y ≤ β̂

(
max

τ∈{0,1,...,θ−1}
|xt0−τ |Y , t − t0

)
. (A.2)

We consider the cases of finite and infinite θ separately; for now,
we assume θ ∈ N≥1. Let t0 ∈ N and t ∈ N≥t0 be arbitrary
but fixed. By the assumption on xρ for negative ρ, it follows
that |xt |Y ≤ β̂(maxτ∈{0,1,...,min{t0,θ−1}}|xt0−τ |Y , t − t0) and, using
the fact that β̂ is increasing in its first argument, that |xt |Y ≤

maxτ∈{0,1,...,min{t0,θ−1}}β̂(|xt0−τ |Y , t − t0). Consider now the KL-
function β defined by

β(r, s) :=

⎧⎨⎩
θ − 1
s + 1

β̂(r, 0) s ∈ {0, . . . , θ − 2}

β̂(r, s − θ + 1) s ∈ N≥θ−1

(A.3)

for all r ∈ R≥0 and all s ∈ N.With this definition, for all r ∈ R≥0 and
all s ∈ N it holds that β(r, s+τ ) ≥ β̂(r, s) for all τ ∈ {0, . . . , θ −1}.
Hence, it holds that |xt |Y ≤ maxτ∈{0,1,...,min{t0,θ−1}}β(|xt0−τ |Y , t −

t0 + τ ), showing the claimed implication also in the reverse di-
rection for finite θ . For θ = ∞, it is sufficient to show that (A.1)
holds for τ = t0, that is |xt |Y ≤ β(|x0|, t). With the assumption
that xρ = x0 for ρ ∈ {−(θ − 1), . . . ,−1}, however, (A.2) implies
|xt |Y ≤ β̂

(
maxτ∈{0,1,...,θ−1}|x0−τ |Y , t − 0

)
= β̂

(
|x0|Y , t

)
, such

that the claimed implication holdswithβ = β̂ , thereby completing
the proof. □

A.2. Counterexample for x−1 ̸= x0

In the following, we drop the assumption that xρ = x0 for
ρ ∈ {−(θ − 1), . . . ,−1} and provide an example where the origin
is uniformly globally asymptotically stable when the system is
viewed as a time-delay system with delay 1 but the origin is not

θ-UGAS for the corresponding θ = 2. Consider a dynamical system
q : R2

× (W)N → (R)N, with xt+1 =
1
2xt−1, t ∈ N, that is

xt =

⎧⎪⎨⎪⎩
(
1
2
)
t
2 x0 t even

(
1
2
)
t+1
2 x−1 t odd

(A.4)

for all t ∈ N. It follows that

|xt | ≤ max

⎧⎨⎩
(
1
2

) t−t0
2

|xt0 |,
(
1
2

) t−t0+1
2

|xt0−1|

⎫⎬⎭
≤

(
1
2

) t−t0
2

max{|xt0 |, |xt0−1|} (A.5)

for all t0 ∈ N and all t ∈ N≥t0 . Hence, the origin is uniformly glob-
ally asymptotically stable in the time-delay sense for the system.
The definition of θ-UGAS (for any θ ∈ N≥1 ∪ {∞}) requires that
there exists a KL-function β with |xt | ≤ β(|x0|, t) for all t ∈ N
(indeed, take t0 = 0), implying that for all x0 ∈ R there exists a
T ∈ N with |xt | ≤

1
2 |x0| for all t ≥ T . For the system in (A.4),

however, it holds that lim|x−1|→∞|xt | = ∞ for all odd t ∈ N and,
hence, a T ∈ N with the properties above which depends only
on x0, but which is independent of x−1, does not exist. Hence, the
origin cannot be θ-UGAS for any θ for this system and, hence is, in
particular, not 2-UGAS.

Appendix B. Proof of Theorem 5

We prove the statement by first establishing that the stated
conditions imply that for all t0 ∈ N and all t ∈ N≥t0 , there
exists a t−1

∈ N ∩ {t0 − θ + 1, . . . , t0} such that xt ∈ {(A +

BK )t−t−1
xt−1} ⊕ γFt−t−1 . Note that we may equivalently establish

that the statement holds for all t ∈ N and all t0 ∈ {0, . . . , t},
simplifying the following reasoning based on strong induction on
t ∈ N. In particular, we will prove that for all t ∈ N the following
hypothesis holds:

∀t0 ∈ {0, . . . , t}, ∃t−1
∈ N ∩ {t0 − θ + 1, . . . , t0},

xt ∈ {(A + BK )t−t−1
xt−1} ⊕ γFt−t−1 . (B.1)

Let (xs)s∈N = p(x0, (ws)s∈N) be arbitrary. The claimed set-member
ship condition xt ∈ {(A + BK )t−t−1

xt−1} ⊕ γFt−t−1 holds for t = 0
and t0 = 0 with t−1

= 0, providing the base case. Assume now
that the hypothesis in (B.1) holds for all t̂ ∈ {0, . . . , t} and an
arbitrary t ∈ N, that is, for all t̂ ∈ {0, . . . , t} and all t̂0 ∈ {0, . . . , t̂}
we have xt̂ ∈ {(A + BK )t̂−t̂−1

xt̂−1} ⊕ γFt̂−t̂−1 for some t̂−1
∈

N ∩ {t̂0 − θ + 1, . . . , t̂0}. Consider the time point t + 1, for which,
by (11), it holds that xt+1 ∈ {(A + BK )τ xt+1−τ } ⊕ γFτ for some
τ ∈ {1, . . . ,min{θ, t + 1}}. Hence, for t0 ∈ {t + 1 − τ , . . . , t + 1}
the choice t−1

= t + 1− τ is sufficient for providing the inductive
step for this case. Assume now that t0 ∈ {0, . . . , t − τ }. By the
induction hypothesis (B.1), noting that t + 1 − τ ∈ {0, . . . , t},
there exists a t̂−1

∈ N ∩ {t0 − θ + 1, . . . , t0} such that xt+1−τ ∈

{(A+BK )t+1−τ−t̂−1
xt−1}⊕γFt+1−τ−t̂−1 . Using again the assumption

that (11) holds for xt+1, we obtain xt+1 ∈ (A + BK )τ
(
{(A +

BK )t+1−τ−t̂−1
xt−1} ⊕ γFt+1−τ−t̂−1

)
⊕ γFτ . With (10), this implies

xt+1 ∈ {(A + BK )t+1−t̂−1
xt−1} ⊕ γFt+1−t̂−1 , such that t̂−1 has the

desired properties, completing the inductive step.
Before we continue, we state the following fact which follows

immediately from the definitions.

Lemma 11. Let x, y ∈ Rn and let X ,Y ⊆ Rn be compact sets. Then
it holds that |x + y|X⊕Y ≤ |x|X + |y|Y .
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We proceed with the proof of Theorem 5. The following analysis is
similar to the proof of Lemma3.2 inGhaemi, Sun, andKolmanovsky
(2008). As the matrix A + BK is Schur, there exist scalars c1, c2 ∈

(0, ∞), a matrix P ∈ Rp×n, and a scalar λ ∈ [0, 1) such that for
all x ∈ Rn it holds that c1|x| ≤ |Px| ≤ c2|x| and |P(A + BK )x| ≤

λ|Px|, see for example Lazar (2010) andMolchanov and Pyatnitskiy
(1989). The condition xt ∈ {(A + BK )t−t−1

xt−1} ⊕ γFt−t−1 implies
that xt = (A + BK )t−t−1

xt−1 + f for some f ∈ γFt−t−1 . From the
stated properties above, we obtain

|xt |γF∞

(10)
= |(A + BK )t−t−1

xt−1 +f |
γ (A+BK )t−t−1F∞⊕γFt−t−1

Lemma 11
≤ |(A + BK )t−t−1

xt−1 |
γ (A+BK )t−t−1F∞

+ |f |γFt−t−1

f∈γFt−t−1
= |(A + BK )t−t−1

xt−1 |
γ (A+BK )t−t−1F∞

= min
y∈γ (A+BK )t−t−1F∞

|(A + BK )t−t−1
xt−1 − y|

= min
y∈γF∞

|(A + BK )t−t−1
(xt−1 − y)|

≤
1
c1

min
y∈γF∞

|P(A + BK )t−t−1
(xt−1 − y)|

≤ λt−t−1 1
c1

min
y∈γF∞

|P(xt−1 − y)|

≤ λt−t−1 c2
c1

min
y∈γF∞

|xt−1 − y|

= λt−t−1 c2
c1

|xt−1 |γF∞

≤ max
τ∈{0,...,min{t0,θ−1}}

λt−t0+τ c2
c1

|xt0−τ |γF∞
, (B.2)

where the last line follows from the fact that t−1
∈ N ∩ {t0 − θ +

1, . . . , t0}. Hence, as (xs)s∈N, t0 ∈ N, and t ∈ N≥t0 were arbitrary,
the requirements of Definition 1 hold with β : (s, r) ↦→ λr c2

c1
s. □

Appendix C. Proof of Theorem 6

In order to prove the statement,we establish that the conditions
in Theorem 5 are satisfied. If δt (ti, x0, . . . , xt ) = 0, the condition
xt+1 ∈ {(A+BK )τ xt+1−τ }⊕γFτ for some τ ∈ {1, . . . ,min{θ, t+1}}
holds by definition. If δt (ti, x0, . . . , xt ) = 1, we have t = ti,
and, by assumption, ut = κ(0, xt ) = Kxt . Hence, it holds that
xt+1 = (A + BK )xt + wt ∈ {(A + BK )xt} ⊕ W . By convexity of
W and the assumption that 0 ∈ W , it holds that W ⊆ γF1, such
that xt+1 ∈ {(A + BK )τ xt+1−τ } ⊕ γFτ holds with τ = 1, thereby
completing the proof. □
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