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a b s t r a c t

Wepropose a robust self-triggered control algorithm for constrained linear discrete-time systems subject
to additive disturbances based on MPC. At every sampling instant, the controller provides both the next
sampling instant, as well as the inputs that are applied to the system until the next sampling instant. By
maximizing the inter-sampling time subject to bounds on the MPC value function, the average sampling
frequency in the closed-loop system is decreasedwhile guaranteeing an upper bound on the performance
loss when compared with an MPC scheme sampling at every point in time. Robust constraint satisfaction
is achieved by tightening input and state constraints based on a TubeMPC approach.Moreover, a compact
set in the state space, which is a parameter in the MPC scheme, is shown to be robustly asymptotically
stabilized.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

For control systemswhere the communication between system
and controller constitutes a considerable effort in terms of energy
or infrastructure, the performance of the control system must
be weighed against the amount of communication necessary to
achieve this performance. In this context, it has been found that
controllers with aperiodic scheduling of input and measurement
updates may achieve a better trade-off between performance
and overall communication load than controllers with periodic
scheduling, see for example Heemels, Johansson, and Tabuada
(2012) and You and Xie (2013) and the references therein. In
particular, event-triggered and self-triggered control schemes have
been proposed, where in the first class of controllers a new
input is computed and communicated to the system only if
certain conditions on the state of the system are met (defining
an ‘‘event’’), and in the second class the next update time is
calculated explicitly at the current update time based on the
current state of the system. The main difference between the
two classes of controllers is that event-triggered control requires
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periodic or continuous measurement of the system state (or
output) while in self-triggered control the sensors may be shut
down completely betweenupdates. For a recent overviewof event-
triggered and self-triggered control we refer the interested reader
to Heemels et al. (2012). While self-triggered control schemes
have the advantage of requiring overall less information from the
system in general, this advantage at the same time makes these
schemesmore susceptible to disturbances and uncertainties when
compared to event-triggered control schemes.

In this paper, we present a robust self-triggered MPC method
based on ideas from Tube MPC (Chisci, Rossiter, & Zappa, 2001;
Langson, Chryssochoos, Raković, & Mayne, 2004). MPC is a control
methodwhere the control input at each sampling instant is defined
as the first part of the solution of a finite-horizon optimal control
problem. MPC is especially suited for setups with hard constraints
on the input and states, as these constraints can be explicitly
taken into account in the definition of the optimization problem.
For an overview of MPC, please refer to Mayne (2014), Mayne,
Rawlings, Rao, and Scokaert (2000) and Rawlings and Mayne
(2009). For linear time-invariant systems subject to bounded
additive disturbances, TubeMPC has proven to be an effective way
of robustifying MPC. Tube MPC is based on set-valued predictions
of the state and input of the system taking the effect of the
disturbances into account. A key ingredient in Tube MPC is the
assumption that feedback is present at every point in time, reducing
the effect of the disturbances and thereby restricting the growth
of the predicted sets (Chisci et al., 2001). In the present work, the
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assumption of feedback at every point in time is not satisfied as
we are explicitly designing controllers with extended periods of
open-loop control. This limitation leads to a stronger growth of
the uncertainty in the prediction. However, it holds that feedback
will be present at some time in the future which still restricts the
growth of the uncertainty in the predictions, as we will see. This
knowledge is used in the construction of the tightened constraint
sets, which extend those employed in Chisci et al. (2001). An
additional challenge when adapting Tube MPC methods to a self-
triggered setup is the fact that the asymptotic bound on the
system state depends on the times between control updates,
which are determined online. In standard Tube MPC, the times
between control updates are uniform. We address this problem
by carefully designing the MPC cost function and determining
the times between control updates according to the evolution
of this function. This enables us to provide an offline a priori
asymptotic bound on the system state which is also a tuning
parameter of the MPC scheme. Note that in Eqtami (2013), and the
references therein, robust event- and self-triggered MPC schemes
are proposed based on tubes where no feedback is assumed
in the predictions. For open-loop unstable systems this has the
drawback of leading to an exponential growth of the predicted
uncertainty, thereby imposing an upper bound on the maximal
prediction horizon if state constraints are present and reducing the
feasible region of the MPC scheme. Inspired by Barradas Berglind,
Gommans, and Heemels (2012) and Gommans, Antunes, Donkers,
Tabuada, and Heemels (2014), the self-triggered controller in
the present paper maximizes, at each sampling instant, the time
until the next sampling instant subject to constraints on the
associatedMPC cost function and addresses thementioned issue of
exponentially growing uncertainty under open-loop predictions.
These constraints on the MPC cost will enable us to prove that
the cost of our new self-triggered MPC scheme is bounded by
the cost associated with the solution of a standard periodically
triggered MPC scheme multiplied by a positive factor which is a
tuning knob of our scheme. Another tuning knob is the size of
the set that is robustly stabilized. As a consequence, the proposed
self-triggered MPC scheme allows trade-offs between closed-loop
performance, the asymptotic bound on the system state, and the
average communication rate.

AlternativeMPC-based self-triggered control schemes are avail-
able. In Henriksson (2014) and Henriksson, Quevedo, Sandberg,
and Johansson (2012), an MPC scheme for undisturbed systems
is considered, where the sampling rate is part of the MPC cost
function. In Antunes and Heemels (2014), an optimization-based
scheme is proposed where at each sampling instant the input is
decided by selecting an optimal scheduling sequence with respect
to a quadratic cost function. Note that both Barradas Berglind et al.
(2012), Henriksson (2014) and Henriksson et al. (2012) do not con-
sider disturbances, while Antunes and Heemels (2014) and Gom-
mans et al. (2014) consider disturbances but no constraints on
the state or input. In Kögel and Findeisen (2014), a self-triggered
scheme for disturbed systems under constraints was presented
based on robust control-invariant sets. However, neither stability,
nor performance is addressed. In earlier results on self-triggered
MPC for disturbed systems (Aydiner, 2014; Brunner, Heemels, &
Allgöwer, 2014), the asymptotic bound depended on the opti-
mal MPC cost function, which is usually not easily obtainable. In
Aydiner, Brunner, Heemels, and Allgöwer (2015), a robust self-
triggered MPC scheme based on Raković, Kouvaritakis, Findeisen,
and Cannon (2012) was presented, which allows a similar a priori
determination of the asymptotic bound, while employing a con-
ceptionally differentway of describing the uncertainties in the pre-
diction. The MPC schemes proposed in Eqtami (2013) allow an a
priori determination of the guaranteed asymptotic bound in the
form of an ellipsoidal set, which is a conservative restriction for
the linear systems considered in the present paper.
The remainder of the paper is structured in the following
way. Some notes on notation and some preliminary results and
definitions are given in Section 2. The problem setup is stated
in Section 3. In Section 4, a Tube MPC optimization problem
is defined, where the first steps in the prediction horizon are
assumed to be applied in an open-loop fashion. The main results
of the paper are given in Section 5, where the robust self-triggered
scheme and its properties are presented. Section 6 contains some
notes on the implementation and the complexity of the algorithm.
Section 7 concludes the paper.

For the sake of readability, most of the proofs are located in the
Appendix.

2. Notation and preliminaries

LetNdenote the set of non-negative integers. For q, s ∈ N∪{∞},
let N≥q and N[q,s] denote the sets {r ∈ N | r ≥ q} and {r ∈ N |

q ≤ r ≤ s}, respectively. The set of non-negative real numbers is
denoted by R+. For n ∈ N, In denotes the n × n identity matrix. A
matrix with zero entries is denoted by 0, where the dimension is
defined by context. Given sets X, Y ⊆ Rn, a scalar α, and matrices
A ∈ Rm×n, B ∈ Rn×m we define αX := {αx | x ∈ X}, AX :=

{Ax | x ∈ X}, and B−1X := {x ∈ Rm
| Bx ∈ X}. The Minkowski

set addition is defined by X ⊕ Y := {x + y | x ∈ X, y ∈ Y}.
Given a vector x ∈ Rn we define X ⊕ x := x ⊕ X := {x} ⊕ X.
The Pontryagin set difference (Kolmanovsky & Gilbert, 1995, 1998)
is defined by X ⊖ Y := {z ∈ Rn

| z ⊕ Y ⊆ X}. Given a
(finite or infinite) sequence of sets Xi for i ∈ N[a,b] with a ∈ N

and b ∈ N ∪ {∞}, we define
b

i=a Xi :=

b
i=a xi | xi ∈ Xi


. By

convention, the empty sum is equal to {0}. Similarly, for any vectors
vi ∈ Rn, i ∈ N, we define

b
i=a vi = 0 for any a, b ∈ N if a > b.

We call a compact, convex set containing the origin a C-set. A C-set
containing the origin in its (non-empty) interior is called a PC-set.
A function α : R+ → R+ belongs to class K if it is continuous,
strictly increasing and α(0) = 0. If additionally α(s) → ∞ as
s → ∞, α is said to belong to class K∞. The Euclidean norm of
a vector v ∈ Rn is denoted by |v|. Given any compact set S ⊆ Rn,
the distance between v and S is defined by |v|S := mins∈S |v − s|.
The convex hull of a set X ⊆ Rn is denoted by convh(X). Define
finally the Euclidean unit ball by B := {x ∈ Rn

| |x| ≤ 1}.

Lemma 1. Let X, Y, Z ⊆ Rn be compact convex sets. Let further
A ∈ Rm×n. Then it holds that X ⊕ Y = Y ⊕ X, X ⊖ (Y ⊕ Z) =

(X⊖Y)⊖Z, (X⊕Y)⊖Y = X, (X⊖Y)⊕Y ⊆ X, A(X⊕Y) =

AX ⊕ AY, and A(X ⊖ Y) ⊆ (AX ⊖ AY).

Next, we define stability properties of dynamical systems subject
to disturbances of the form

(x⊤

k+1, z
⊤

k+1)
⊤

= f (xk, zk, wk), (1)

where f : Rn
× Rp

× W → Rn, k ∈ N, are given, and xk ∈ Rn and
wk ∈ W ⊆ Rn, are the state and disturbance at time k ∈ N, and
zk ∈ Rp is an internal state of the controller with z0 = 0.

Definition 2 (Robust Lyapunov Stability of Sets). A set Y ⊆ Rn is
robustly Lyapunov stable for System (1) if there exist a K-function
γ and a δ > 0 such that for any initial condition x0 ∈ {x ∈ Rn

|

|x|Y ≤ δ} and any disturbances with wk ∈ W, k ∈ N, it holds that
|xk|Y ≤ γ (|x0|Y) for all k ∈ N.

Definition 3 (Robust Asymptotic Stability of Sets). A set Y ⊆ Rn is
robustly asymptotically stable for System (1)with X̂ ⊆ Rn belonging
to its region of attraction if it is robustly Lyapunov stable for this
system and limk→∞ |xk|Y = 0 for all x0 ∈ X̂, and any disturbances
with wk ∈ W, k ∈ N.
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Definition 4 (Robustly Positive Invariant Sets). A set Y ⊆ Rn is
robustly positive invariant (RPI) for System (1) with p = 0, if for
every x ∈ Y, every z ∈ Rp, and every w ∈ W it holds that
f (x, z, w) ∈ Y.

3. Problem formulation

We consider discrete-time linear time-invariant systems sub-
ject to bounded additive disturbances given by

xk+1 = Axk + Buk + wk, (2)

where xk ∈ Rn, uk ∈ Rm, and wk ∈ W ⊆ Rn denote the state,
control input, and unknown disturbance, respectively, at discrete
time k ∈ N. Moreover, W is a known C-set. The state xk is available
as a measurement.

Our goal is to robustly asymptotically stabilize a set containing
the origin of (2) while satisfying the constraints xk ∈ X and
uk ∈ U for all k ∈ N, where X and U are PC-sets. We want
to achieve this goal by implementing a control law for which
only sporadic measurements of the system state are necessary,
thereby reducing the overall communication load in the control
system. Furthermore,wewant to guarantee an upper bound for the
closed-loop performance that is not worse than the upper bound
guaranteed by a periodically updated MPC scheme, multiplied by
a positive factor of our choice. In the closed-loop system, the input
is given by

uk = κ(xkj , k − kj), k ∈ N[kj,kj+1−1], j ∈ N, (3)

for a function κ : Rn
× N → Rm. The state measurements are

only updated at the time points kj ∈ N, called sampling instants
henceforth. These sampling instants shall be determined in a self-
triggered fashion, that is,

k0 = 0, kj+1 = kj + µ(xkj), j ∈ N, (4)

for a function µ : Rn
→ N≥1. Hence, the problem addressed in

this paper is finding functions κ and µ such that the closed-loop
system (2)–(4) exhibits the properties mentioned above. Note that
the closed-loop system composed of (2), (3), and (4) can bewritten
in the form of (1)with zk := (x⊤

kj
−x⊤

k , k−kj)⊤ for all k ∈ N[kj,kj+1−1]

and j ∈ N.

Remark 5. We allow the input to be time-varying between
sampling instants. However, the input is open-loop in the sense
that it is only allowed to depend on the state at the last sampling
instant. If the definition of the feedback law in (3) is changed
to uk = κ(xkj , kj), k ∈ N[kj,kj+1−1], j ∈ N, then the input
only changes at the sampling instants, which further reduces the
amount of communication needed in the system (in this case in
the controller-to-actuator channel). Changing the requirement to
uk = κ(xkj , kj), k ∈ {kj | j ∈ N}, uk = 0, else, promotes
sparsity in the input signal in addition to reducing the amount
of communication. Please refer to Gommans and Heemels (2015,
Sections 3.1 and 3.2), for an extended discussion of this matter.

4. M-step open-loop tube MPC

In this paper, we present a solution to the problem described in
Section 3 based onMPC. In particular, at a given sampling instant kj,
and a system state xkj , the controller will provide a positive integer
M = µ(xkj) and a sequence of control inputs (ukj , . . . , ukj+M−1) =

(κ(xkj , 0), . . . , κ(xkj ,M−1)), which are then applied to the system
(2) at the time points kj, . . . , kj +M − 1. Hence, at the time points
kj+1, . . . , kj+M−1 the system can be considered to be controlled
in an open-loop fashion. At the next sampling instant, defined by
kj+1 = kj +M , the next sequence of inputs is calculated. The input
sequences are obtained by solvingMPC problems, that is, they each
are defined as the first M inputs of the solution to a finite-horizon
optimal control problem, parameterized by the state xkj . The inter-
sampling time M is chosen to be maximal, subject to constraints
on the worst-case performance of the closed-loop system.

In order to guarantee robust constraint satisfaction, Tube MPC
methods as proposed in Chisci et al. (2001) are employed. In Tube
MPC, set-valued predictions of the (uncertain) system state are
made under the assumption that the input at future time instances
will include feedback reacting to the disturbances. The assumption
of feedback is incorporated by parameterizing the input as uk =

ūk + Kxk, k ∈ N, with the stabilizing feedback matrix K ∈ Rm
×

Rn, and the new input ūk. The following assumption holds in the
remainder of the paper.

Assumption 6. The eigenvalues of thematrix A+BK are contained
in the interior of the unit disc.

The main problem when applying Tube MPC methods in a self-
triggered setup is that the inputs are necessarily applied in an
open-loop fashion until the next scheduled sampling instant, and
hence cannot react to disturbances during this time span. This
requires modifications of the standard Tube MPC approaches.

In Section 4.1, constraints on the predicted input sequence are
defined that guarantee robust constraint satisfaction. The first M
inputs in the sequence are assumed to be applied to the system
in an open-loop fashion. For the remaining N − M steps in the
prediction horizon N it is assumed that feedback, based on the
affinely parameterized control law mentioned above, is present.
In order to guarantee robust stability properties and performance
bounds on the closed-loop system, a cost function is introduced
in Section 4.2. The finite-horizon optimal control problems used
in the MPC scheme are discussed in Section 4.3. In Section 4.4,
properties of the optimal cost functions are provided, useful for
guaranteeing stability and performance properties of the closed-
loop system later.

4.1. Feasibility problem

We first only consider the feasibility problem, that is, we
define constraints on the predicted input sequence that guarantee
recursive feasibility and robust constraint satisfaction for the
closed-loop system.

Let the decision variable of the finite-horizon feasibility
problem at time point k be given by

dfp
k = ((x0|k, . . . , xN|k), (u0|k, . . . , uN−1|k)) ∈ Dfp

N , (5)

where Dfp
N = Rn

× · · · × Rn
× Rm

× · · · × Rm and N ∈ N≥1 is the
prediction horizon.

Depending on the number M ∈ N[1,N] of open-loop steps,
different constraints are imposed on dfp

k . In particular, for a given
system state xk at time point kwe impose the constraints

x0|k = xk, (6a)
∀i ∈ N[0,N−1], xi+1|k = Axi|k + Bui|k, (6b)

∀i ∈ N[0,N−1], xi|k ∈ XM
i , (6c)

∀i ∈ N[0,N−1], ui|k ∈ UM
i , (6d)

xN|k ∈ XM
f (6e)

on the decision variable dfp
k , where the variables xi|k represent

a predicted trajectory for the undisturbed system generated by
the inputs ui|k. The sets XM

i and UM
i , i ∈ N[0,N−1], are tightened

constraint sets, each depending on the step i in the prediction and
the number M of open-loop steps. The sets XM

f is a terminal set.
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Define the set of all feasible decision variables for a given point
xk ∈ Rn and a fixedM by

D
M,fp
N (xk) = {dfp

k ∈ Dfp
N | (6a)–(6e)}. (7)

In the following, the tightened constraint sets XM
i and UM

i will be
defined, such that the application of the predicted control inputs
ensures satisfaction of the constraints (xk+i, uk+i) ∈ X × U for all
predicted time steps k + i, i ∈ N[0,N−1]. In particular, it is assumed
that for the first M time steps in the prediction the inputs ui|k are
applied in an open-loop fashion, while for all time steps after that
feedback, defined by the matrix K (see Assumption 6), is present.
Define for allM ∈ N[1,N]

XM
i := X ⊖ F M

i , i ∈ N[0,N−1] (8a)

UM
i :=


U,

U ⊖ KF M
i ,

i ∈ N[0,M−1]
i ∈ N[M,N−1].

(8b)

The sets F M
i ⊆ Rn, i ∈ N[0,N−1], are used to describe a tube

containing all possible future trajectories around the nominal state
trajectory given by xi|k, produced by the nominal inputs ui|k.

For allM ∈ N[1,N] define

F M
i :=



i−1
j=0

AjW, i ∈ N[0,M]

(A + BK)i−M


M−1
j=0

AjW



⊕

i−M−1
j=0

(A + BK)jW, i ∈ N≥M+1.

(9)

For M = 1, the definition of F M
i , i.e. F 1

i =
i−1

j=0(A + BK)W ,
matches the definition of the tube in Chisci et al. (2001). The
satisfaction of the tightened constraints in (6) guarantees robust
satisfaction of the state and input constraints.

Lemma 7. Let any M ∈ N[1,N] and any decision variable dfp
k =

((x0|k, . . . , xN|k), (u0|k, . . . , uN−1|k)) ∈ Dfp
N satisfying (6a)–(6d) be

given. Let further xk+i+1 = Axk+i + Buk+i + wk+i, where wk+i ∈ W
and

uk+i =


ui|k, i ∈ N[0,M−1]
ui|k + K(xk+i − xi|k), i ∈ N[M,N−1]

(10)

for i ∈ N[0,N−1]. Then it holds that xk+i ∈ xi|k ⊕ F M
i for i ∈ N[0,N]

and uk+i ∈ ui|k ⊕ KF M
i for i ∈ N[M,N−1]. Furthermore, it holds that

xk+i ∈ X and uk+i ∈ U for i ∈ N[0,N−1].

Remark 8. From (9) it follows that for all M ∈ N[1,N] and all
i ∈ N≥M it holds that

F M
i = (A + BK)i−MF M

M ⊕ F 1
i−M . (11)

The terminal constraint (6e) is included in order to make the
constraints in (6) recursively feasible in the following sense. If,
starting at a given state xk at time point k, and an input sequence
satisfying the constraints in (6) for a given M is applied to the
system in (2) for M steps, then, at the resulting state xk+M , the
existence of some input sequence satisfying the constraints in (6)
for M = 1 is guaranteed. In order to ensure this property, the
terminal sets XM

f are required to satisfy the following assumption.

Assumption 9. For all M ∈ N[1,N] it holds that XM
f is a compact

and convex set that satisfies

∀i ∈ N[0,M−1], (A + BK)iXM
f ⊕ F M

N+i ⊆X (12a)
∀i ∈ N[0,M−1], K(A + BK)iXM
f ⊕ KF M

N+i ⊆ U (12b)

(A + BK)MXM
f ⊕ (A + BK)NF M

M ⊆X1
f. (12c)

Remark 10. For the setX1
f , which is equivalent to the terminal set

used in Chisci et al. (2001), Assumption 9, requires X1
f to be an RPI

set for the dynamics defined by (A + BK) and the disturbance set
(A + BK)NW . If the set X1

f has been defined, the other terminal
sets XM

f ,M ∈ N≥2, can be calculated by simply intersecting the
constraints defined in (12).

The property of recursive feasibility is formalized in the following
lemma.

Lemma 11. Let any M ∈ N[1,N] and any decision variable dfp
k =

((x0|k, . . . , xN|k), (u0|k, . . . , uN−1|k)) ∈ D
M,fp
N (xk) be given. Let

further xk+i+1 = Axk+i + Buk+i + wk+i, where wk+i ∈ W and
uk+i = ui|k for i ∈ N[0,M−1]. Then D

1,fp
N (xk+M) ≠ ∅.

4.2. Cost functions

For a disturbed system, the best result that can be achieved in
terms of stability is the robust stabilization of an RPI set Y ⊆ Rn.
We expect the size of this set to be traded off with the average
inter-sampling time in the closed-loop system. In order to make
this trade-off accessible in the design phase, the set Y is chosen to
be a parameter in the MPC scheme. For simplicity, we choose Y to
be an RPI set for system (2) in closed-loop with the feedback law
uk = Kxk (see Assumption 6). Both the performance specification
and the cost function are defined in terms of this set. In particular,
we consider the infinite-horizon performance index

V∞(x0) :=

∞
k=0

min
yk∈Y

vk∈KY

ℓ(xk − yk, uk − vk) (13)

for system (2) in closed-loop with the self-triggered controller and
initial condition x0, with the stage cost function ℓ : Rn

× Rm
→ R.

We expect the performance of the closed-loop system to depend
on the length M of the open-loop phase. In order to make the
finite-horizon cost functions for different M comparable in the
MPC scheme, we use different stage and terminal cost functions
for different values of M . Essentially, we will define the stage and
terminal cost functions such that theworst case deviation (defined
by the function ℓ) of the cross section of the tube from the sets Y
and KY, respectively, is penalized. Define the stage cost functions
ℓ̄M
i : Rn

× Rm
→ R, i ∈ N[0,N−1], and the terminal cost functions

V̄M
f : Rn

→ R, each forM ∈ N[1,N], where

ℓ̄M
i (x, u) :=


min
y∈YM

i
v∈VM

i

max
e∈EM

i

ℓM
i (x − y + e, u − v) i ∈ N[0,M−1]

min
y∈YM

i

max
e∈EM

i

ℓM
i (x − y + e, u − Ky + Ke)

i ∈ N[M,N−1]

(14a)

V̄M
f (x) := min

y∈YM
N

VM
f (x − y), (14b)

for x ∈ Rn and u ∈ Rm, where the sets YM
i ⊆ Rn, i ∈ N[0,N], the

sets VM
i , i ∈ N[0,M−1], the sets EM

i , i ∈ N[0,N], and the functions
ℓM
i : Rn

× Rm
→ R and VM

f : Rn
→ R will be defined next. That

is, for allM ∈ N[1,N] define

YM
i :=

(Y ⊕ EM
i ) ⊖ F M

i ,

((Y ⊖ F 1
i−M) ⊕ EM

i )

⊖(A + BK)i−MF M
M ,

i ∈ N[0,M−1]

i ∈ N[M,N]

(15a)

VM
i := KY, i ∈ N[0,M−1] (15b)
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Fig. 1. Relationship between the sets Y, F M
i , and EM

i as described in (17b). The set
with dotted border is obtained by translating the set EM

i .

for allM ∈ N[1,N].Wewill use the following assumption on the sets
Y and EM

i , i ∈ N[0,N].

Assumption 12. The set Y is a C-set such that

(A + BK)Y ⊕ W ⊆ Y. (16)

Further, for all M ∈ N[1,N] and all i ∈ N[0,N] it holds that EM
i is a

C-set and

∀i ∈ N[0,N], E1
i = {0}, (17a)

∀i ∈ N[0,M−1], F M
i ⊆ Y ⊕ EM

i (17b)

∀i ∈ N[M,N], (A + BK)i−MF M
M ⊆ (Y ⊖ F 1

i−M) ⊕ EM
i . (17c)

This assumption ensures that the sets YM
i are non-empty for all

M ∈ N[1,N] and all i ∈ N[0,N]. Essentially, the sets EM
i are used to

(over-) estimate the size of the uncertainty in the prediction when
compared to the set Y. The relationship between the sets Y, F M

i
and EM

i for the inclusion (17b) is sketched in Fig. 1.

Remark 13. From (16) it follows directly that (A+BK)iY⊕F 1
i ⊆ Y

and, hence, F 1
i ⊆ Y for all i ∈ N[0,N]. Methods for constructing the

sets Y and EM
i ,M ∈ N[1,M], i ∈ N[0,N], are discussed in Section 6.3.

For the sake of exposition, for all M ∈ N[1,N], all i ∈ N[1,N−1], all
x̄ ∈ Rn, and all ū ∈ Rm, the functions ℓM

i and VM
i are defined by

ℓM
i (x̄, ū) =


max
e∈EM

i

ℓ(x̄ + e, ū), i ∈ N[0,M−1]

max
e∈EM

i

ℓ(x̄ + e, ū + Ke), i ∈ N[M,N−1]
(18a)

VM
f (x̄) = max

e∈EM
N

Vf(x̄ + e). (18b)

Remark 14. With the cost functions defined in this way, the
overall optimization problem defined below becomes similar to
the optimization problems arising in min–max MPC approaches,
see for example Campo and Morari (1987).

Lemma 15. For all i ∈ N it holds that

(A + BK)(Y ⊖ F 1
i ) ⊆ (Y ⊖ F 1

i+1). (19)

Lemma 16. The sets YM
i , i ∈ N[0,N], are non-empty. Further, it holds

that

∀i ∈ N[0,N], (A + BK)iY ⊆ Y1
i . (20)

Finally, the following assumptions are required to hold.

Assumption 17. The functions ℓ and Vf are continuous and
positive definite. Furthermore, for all x ∈ Rn

ℓ(x, Kx) + Vf((A + BK)x) ≤ Vf(x). (21)

Finally, there exist K∞-functions α1, α2, such that for all x ∈

Rn, u ∈ Rm it holds that

ℓ(x, u) ≥ α1(|x|), (22a)
Vf(x) ≤ α2(|x|). (22b)
Lemma 18. For any i ∈ N≥1 and any x ∈ Rn it holds thati−1
j=0 ℓ((A + BK)jx, K(A + BK)jx) + Vf ((A + BK)ix) ≤ Vf (x).

Proof. It follows immediately from Assumption 17 by
induction. �

Lemma 19. For all M ∈ N[1,N] and all i ∈ N[0,N−1] the functions ℓM
i

and VM
f are continuous and satisfy ℓM

i (x, u) ≥ α1(|x|) for all x ∈ Rn

and u ∈ Rm.

Proof. It follows directly from the definition of the functions,
Assumptions 12, and 17. �

4.3. Finite-horizon optimal control problem

With the stage and terminal cost functions defined above,
we are now ready to define the finite-horizon optimal control
problems used in the MPC scheme. For all M ∈ N[1,N] and a fixed
constant β ≥ 1, define for all dfp

k ∈ Dfp
N , k ∈ N, the finite-horizon

cost function

J̄MN (dfp
k ) =

M−1
i=0

1
β

ℓ̄M
i (xi|k, ui|k)

+

N−1
i=M

ℓ̄M
i (xi|k, ui|k) + V̄M

f (xN|k), (23)

which is inspired by the cost function proposed in Barradas
Berglind et al. (2012). The parameter β allows a trade-off between
the performance (in terms of the infinite horizon cost function) and
the average sampling rate, see Barradas Berglind et al. (2012) and
Gommans et al. (2014). For all M ∈ N[1,N] and any xk ∈ Rn, define
the finite-horizon optimization problem

V̄M
N (xk) := min

dfpk ∈D
M,fp
N (xk)

J̄MN (dfp
k ). (24)

The optimization problem in (24) contains inner optimization
problems due to the definition of the stage and terminal cost
functions in (14). For the discussions pertaining to the optimal
cost function in the next subsection, it is convenient to remove
these inner optimization problems. Hence, define the augmented
decision variable at time point k by

dM
k = ((x0|k, . . . , xN|k), (u0|k, . . . , uN−1|k),

(y0|k, . . . , yN|k), (v0|k, . . . , vM−1|k)) ∈ DM
N , (25)

whereDM
N = Rn

×· · ·×Rn
×Rm

×· · ·×Rm
×Rn

×· · ·×Rn
×Rm

×

· · · × Rm. The additional variables are subject to the constraints

∀i ∈ N[0,N], yi|k ∈ YM
i , (26a)

∀i ∈ N[0,M−1], vi|k ∈ VM
i , (26b)

such that the set of all feasible decision variables for a given point
xk ∈ Rn is given by

DM
N (xk) = {dM

k ∈ DM
N | (6a)–(6e), (26a), (26b)}, (27)

for a given M ∈ N[1,N]. The cost function for the augmented
decision variable reads

JMN (dM
k ) =

M−1
i=0

1
β

ℓM
i (xi|k − yi|k, ui|k − vi|k)

+

N−1
i=M

ℓM
i (xi|k − yi|k, ui|k − Kyi|k) + VM

f (xN|k − yN|k). (28)
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For a givenM ∈ N[1,N], the finite-horizon optimal control problem
with the augmented decision variable is given by

VM
N (xk) := min

dMk ∈DM
N (xk)

JMN (dM
k ). (29)

The optimal control problems in (24) and (29) are equivalent,
which is expressed in the following lemma.

Lemma 20. For a given xk ∈ Rn, a solution to the optimization
problem in (24) exists, if and only if a solution to the optimization
problem in (29) exists. Furthermore, if solutions to the problems exist,
it holds that VM

N (xk) = V̄M
N (xk).

Proof. It follows directly from the definitions. �

4.4. Properties of the optimal cost function

In the following, several properties of the optimal cost function
will be established.

Lemma 21. Let any k ∈ N, any xk ∈ Rn, any M ∈ N[1,N],
and any dM

k = ((x0|k, . . . , xN|k), (u0|k, . . . , uN−1|k), (y0|k, . . . , yN|k),

(v0|k, . . . , vM−1|k)) ∈ DM
N (xk) be given. Let further for all i ∈

N[0,M−1] xk+i+1 = Axk+i + Bui|k + wk+i, where wk+i ∈ W .
Then, there exists a d1

k+M = ((x0|k+M , . . . , xN|k+M), (u0|k+M , . . . ,

uN−1|k+M), (y0|k+M , . . . , yN|k+M), v0|k+M) ∈ D1
N(xk+M) such that

J1N(d1
k+M) ≤ JMN (dM

k ) −
M−1

i=0
1
β
ℓM
i (xi|k − yi|k, ui|k − vi|k).

In order to derive properties of the optimal cost functions VM
N , we

need some further technical results.

Lemma 22. Define the set where the optimization problem for M =

1 is feasible by X̂N := {xk ∈ Rn
| D1

N(xk) ≠ ∅}. It holds that X̂N is a
compact set.

Define a set X̃N where the optimization problem for M = 1 is
feasible with an input defined by the linear control law u = Kx.
In particular, define

X̃N := {x ∈ Rn
|(A + BK)Nx ∈ X1

f

∀i ∈ N[0,N−1], (A + BK)ix ⊕ F 1
i ⊆ X,

∀i ∈ N[0,N−1], K(A + BK)ix ⊕ KF 1
i ⊆ U, }. (30)

Lemma 23. It holds that (A + BK)X̃N ⊕ W ⊆ X̃N .

Lemma 24. If there exists an η > 0 such that ηB ⊕ Y ⊆ X̃N , then
there exists a class K-function α3, such that for all xk ∈ X̂N it holds
that

V 1
N(xk) ≤ α3(|xk|Y). (31)

Proof. Theupper boundonV 1
N canbe constructed by extending the

proof of Theorem III.2 in Lazar, Heemels, Weiland, and Bemporad
(2006). �

5. Robust self-triggered control

In this section, we propose a solution to the problem statement
in Section 3 in the form of an MPC controller which maximizes the
number of steps until the next control update, subject to certain
conditions that will guarantee robust constraint satisfaction,
stability, and performance properties. In particular, for any k ∈ N
and any xk ∈ Rn define the optimization problem
M⋆(xk) := max

M ∈ N[1,Mmax]

D1
N(xk) ≠ ∅,

DM
N (xk) ≠ ∅, VM

N (xk) ≤ V 1
N(xk)


(32a)

d⋆
k(xk) := argmin

dk∈D
M⋆(xk)

N (xk)

JM
⋆(xk)

N (dk) (32b)

with

d⋆
k(xk) = ((x⋆

0|k(xk), . . . , x
⋆
N|k(xk)),

(u⋆
0|k(xk), . . . , u

⋆
N−1|k(xk)),

(y⋆
0|k(xk), . . . , y

⋆
N|k(xk))

(v⋆
0|k(xk), . . . , v

⋆
M⋆(xk)−1|k(xk))), (33)

where Mmax ∈ N[1,N] is a chosen maximal length of the open-loop
phase.

Remark 25. We do not concern ourselves here with the possible
non-uniqueness of the minimizer. In the following it is assumed
that d⋆

k(xk) is any solution to the optimization problem.

The optimization problem in (32) forms the basis of the following
control algorithm.

Algorithm 1 Self-Triggered Tube MPC
1: Set k = 0.
2: At time k, obtain the current state xk of system (2).
3: Solve the optimization problems in (32), obtain M⋆(xk) and

d⋆
k(xk).

4: Apply uk+i = u⋆
i|k(xk) to the system for i ∈ N[0,M⋆(xk)−1].

5: At time k + M⋆(xk), set k = k + M⋆(xk).
6: Go to 2.

The set of stateswhereAlgorithm1 is feasible is X̂N = {x ∈ Rn
|

D1
N(x) ≠ ∅}. The closed-loop system resulting from the application

of Algorithm 1 is

xk+1 = Axk + Buk + wk

where uk = κ(xkj , k − kj) if k ∈ N[kj,kj+1−1] (34a)

kj+1 = kj + µ(xkj), (34b)

for j ∈ N, k0 = 0, x0 ∈ X̂N , and wk ∈ W for all k ∈ N, where the
functions κ and µ are given by

κ(xkj , k − kj) := u⋆
k−kj|kj(xkj) if k ∈ N[kj,kj+1−1] (35a)

µ(xkj) := M⋆(xkj). (35b)

Theorem 26 (Recursive Feasibility). For all x0 ∈ X̂N , the closed-loop
system (34) is well defined, that is, if x0 ∈ X̂N , then for all j ∈ N
and all kj the optimization problem in (32) admits a solution for xkj .
Furthermore, if x0 ∈ X̂N , then for all k ∈ N and all j ∈ N it holds that
xk ∈ X and uk ∈ U for any disturbances wk ∈ W, k ∈ N.

Proof. The statement follows directly from Lemmas 7 and 11. �

Theorem 27 (Performance Bound). For any x0 ∈ X̂N and any
disturbances wk ∈ W, k ∈ N, the closed-loop dynamics (34) satisfy
the performance bound

∞
k=0

min
yk∈Y

vk∈KY

ℓ(xk − yk, uk − vk) ≤ βV 1
N(x0) (36)

defined in terms of the stage cost function ℓ, the set Y, the parameter
β , and the optimal cost function V 1

N for theMPC schemewere sampling
is assumed to occur at every point in time.
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Theorem 28 (Asymptotic Bound). For the closed-loop dynamics (34)
and any x0 ∈ X̂N it holds that xk converges to the set Y as k
approaches infinity in the sense that limk→∞ |xk|Y = 0 for any
disturbances with wk ∈ W, k ∈ N.

Theorem 29 (Robust Asymptotic Stability). If there exists an η > 0
such that ηB ⊕ Y ⊆ X̃N , then the set Y is robustly asymptotically
stable for the closed-loop dynamics (34) and the set X̂N belongs to its
region of attraction.

If the assumption that ηB ⊕ Y ⊆ X̃N for an η > 0 is not satisfied,
it is not guaranteed that the upper bound in Lemma 24 can be
established. Hence, without this assumption, robust Lyapunov
stability of Y is not ensured. However, Theorems 26, 27, and 28
still hold.

6. Implementation

In this section we discuss some issues regarding implementa-
tion and computation.

6.1. Implementation via quadratic or linear programming

If the stage and terminal cost functions are convex and can be
written as the sum of quadratic and piecewise linear functions
and if additionally all involved sets are polytopes, then the
optimization problems in this paper can be solved via quadratic
(or, if the quadratic term is zero, by linear) programming, compare
Campo andMorari (1987) andRamírez andCamacho (2001). Hence
the algorithm in (32) can be evaluated by solving at most Mmax
quadratic programs or linear programs at each sampling instants,
see also Barradas Berglind et al. (2012) for additional discussion.

6.2. Sparsity promoting constraints

In addition to the reduction of communication, theMPC scheme
described in Section 5 can be used to promote sparsity in the inputs
applied to the system. This can be achieved by adding additional
constraints on the predicted input trajectory in the open-loop
phase. Such constraintsmight be for example Aydiner et al. (2015),
Barradas Berglind et al. (2012) and Brunner et al. (2014),

∀i ∈ N[1,M−1], ui|k = 0, (37a)
or ∀i ∈ N[1,M−1], ui|k = u0|k. (37b)

6.3. Parameterization of Y and EM
i

In general, one would want to choose the set Y as small as
possible, as the asymptotic bound on the system state guaranteed
by Theorem28 is defined in terms ofY. However, if the assumption
that ηB ⊕Y ⊆ X̃N for an η > 0 is satisfied, for all states contained
in Y it holds that V 1

N is identical to zero as a feasible solution with
zero cost is given by just applying the control law u = Kx at
each predicted time step. As the constraints in the optimization
problem are different for largerM , especiallywhen considering the
constraints discussed in Section 6.2, it does not necessarily hold
that VM

N is also zero on Y, implying that for large times in the
closed-loop system the inputs have to be updated at every time-
step due to the way the self-triggering algorithm is defined in (32).
Enlarging Y leads to a general decrease of the cost functions VM

N
and, hence, allows both V 1

N and VM
N to be zero at the same time

for an enlarged set of states, in turn leading to an enlarged set
of states in the state space where the algorithm in (32) decides
on an M⋆ larger than one. This interdependency leads to a trade-
off between the asymptotic bound Y on the system state and the
average sampling frequency for large times.

In the following, an approach of parameterizing Y in terms of a
single scalar parameter will be presented. The approach relies on
a set Ȳ, which is an RPI outer approximation of the minimal RPI
set (Raković, Kerrigan, Kouramas, & Mayne, 2005). In particular,
assume that

(A + BK)Ȳ ⊕ W ⊆ Ȳ (38)

and let Y := c1Ȳ, where c1 ≥ 1. If there exists an η̄ > 0 such
that Ȳ ⊕ η̄B ⊆ X̃N , there also exist c1 > 1 and η > 0 such that
c1Ȳ ⊕ ηB ⊆ X̃N . Assumption 12 is satisfied by construction with
this approach.

After Y has been designed, the sets EM
i can for example

be constructed by parameterizing a PC-set and choosing the
parameters such that Assumption 12 is satisfied. A simple choice
is to fix any PC-set E and define

EM
i := ρM

i E, (39)

where ρM
i ∈ R+ is chosen as small as possible under the constraint

that Assumption 12 is satisfied, for allM ∈ N[1,N].

6.4. Computational complexity

Considering that, as far as polytopes are concerned, the
complexity of a set A ⊖ B is not higher than that of A (see, for
example, Section2of Kolmanovsky andGilbert (1998)), constraints
(6a)–(6e) are not more complex than for a standard MPC scheme.
Additional complexity does arise from the non-standard cost
function employed in this paper, i.e. via the minimization over
the sets YM

i and VM
i in (15) and the maximization over the sets

EM
i in (18). Note, however, that the complexity of these sets does

not depend on the prediction horizon, and, in the case of the sets
EM
i , can be determined by the user. Overall, the computational

complexity of the scheme in terms of the number of decision
variables and scalar valued inequalities grows linearly in the
prediction horizon and is mainly determined by the complexity of
the sets Y and EM

i in (15).

Remark 30. Due to space limitations we could not include a
numerical example. However, we will present numerical results
that show the effectiveness of our novel control algorithm
elsewhere.

7. Conclusions

In this paper, we have proposed a self-triggered controller
that robustly stabilizes a compact set and guarantees constraint
satisfaction while reducing the average communication between
the controller and the system which is subject to additive
disturbances. Performance guarantees are given in the form of a
guaranteed upper bound on the performance loss when compared
to an MPC scheme that is updated at every point in time. An
asymptotic bound on the system state for the closed-loop system
under disturbances can be determined a priori and is in fact
a parameter in the MPC scheme. The exact interdependence
between the closed-loop performance, the asymptotic bound and
the average communication rate is subject to future research.
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Appendix A. Proof of Lemma 1

Only the last property, that is A(X ⊖ Y) ⊆ (AX ⊖ AY), is
proven here, as the other properties are proven in Kolmanovsky
andGilbert (1998) andNajfeld, Vitale, andDavis (1980). Let z ∈ Rm

with z ∈ A(X ⊖ Y) be arbitrary. Then it holds that z = As for an
s ∈ Rn where s ⊕ Y ⊆ X. It follows that As ⊕ AY ⊆ AX, such that
z ⊕ AY ⊆ AX, and therefore z ∈ (AX ⊖ AY). �

Appendix B. Proof of Lemma 7

For i ∈ N[0,M] it holds that

xk+i = Aixk +

i−1
j=0

AjBui−j−1|k +

i−1
j=0

Ajwk+i−j−1

= xi|k +

i−1
j=0

Ajwk+i−j−1

∈ xi|k ⊕

i−1
j=0

AjW = xi|k ⊕ F M
i . (B.1)

Further, for i ∈ N[M,N−1] it holds that xk+i+1 − xi+1|k = A(xk+i −

xi|k) + BK(xk+i − xi|k) + wk+i and, hence,

xk+i − xi|k = (A + BK)i−M(xk+M − xM|k)

+

i−M−1
j=0

(A + BK)jwk+i−j−1

∈ (A + BK)i−M
M−1
j=0

AjW ⊕

i−M−1
j=0

(A + BK)jW

= F M
i (B.2)

for i ∈ N[M+1,N]. Similarly, it holds that uk+i−ui|k = K(xk+i−xi|k) ∈

KF M
i . for i ∈ N[M,N−1], thereby proving that xk+i ∈ xi|k ⊕ F M

i for
i ∈ N[0,N] and uk+i ∈ ui|k ⊕ KF M

i for i ∈ N[M,N−1]. The second part
of the statement, that is, xk+i ∈ X and uk+i ∈ U for i ∈ N[0,N−1],
follows directly from the above and the definition of the tightened
constraints in (6) and (8). �

Appendix C. Proof of Lemma 11

Define

xj|k := (A + BK)j−NxN|k (C.1)

for j ∈ N[N+1,N+M] and

uj|k := K(A + BK)j−NxN|k (C.2)

for j ∈ N[N,N+M−1]. Define further

xi|k+M := xi+M|k + (A + BK)i(xk+M − xM|k) (C.3)

for i ∈ N[0,N] and

ui|k+M := ui+M|k + K(A + BK)i(xk+M − xM|k) (C.4)
for i ∈ N[0,N−1]. With these choices, it follows that xi|k+M and
ui|k+M satisfy constraints (6a) and (6b) in D

1,fp
N (xk+M). Further, by

Lemma 7 it holds that

xk+M − xM|k ∈ F M
M , (C.5)

such that for all i ∈ N[0,N]

xi|k+M ⊕ F 1
i

(C.3)
⊆ xi+M|k ⊕ (A + BK)iF M

M ⊕ F 1
i

(11)
= xi+M|k ⊕ F M

i+M . (C.6)

Similarly, for all i ∈ N[0,N−1] it holds that

ui|k+M ⊕ KF 1
i

(C.4)
⊆ ui+M|k ⊕ K(A + BK)iF M

M ⊕ KF 1
i

= ui+M|k ⊕ KF M
i+M . (C.7)

Hence, for i ∈ N[0,N−M], the satisfaction of constraint (6c) and for
i ∈ N[0,N−M−1], the satisfaction of constraint (6d) in D

1,fp
N (xk+M)

follows directly from the definitions ofDM,fp
N (xk) and the tightened

constraint sets in (8).
By the definition of D

M,fp
N (xk), it holds that xN|k ∈ XM

f , such
that by (C.1) and (12a) it also holds that xi+M|k ⊕ F M

i+M ⊆ X for
i ∈ N[N−M+1,N] and by (C.2) and (12b) that ui+M|k ⊕ KF M

i+M ⊆ U
for i ∈ N[N−M+1,N−1], such that by (C.6) and (C.7) it follows that
constraint (6c) is also satisfied for i ∈ N[N−M+1,N] and constraint
(6d) is also satisfied for i ∈ N[N−M,N−1] in D

1,fp
N (xk+M). Further,

again exploiting xN|k ∈ XM
f we obtain

xN|k+M
(C.5), (C.3)

∈ xN+M|k ⊕ (A + BK)NF M
M

(C.1)
= (A + BK)MxN|k ⊕ (A + BK)NF M

M . (C.8)

Using now (12c) gives that constraint (6e) in D
1,fp
N (xk+M) is

satisfied, such that dfp
k+M := ((x0|k+M , . . . , xN|k+M), (u0|k+M , . . . ,

uN−1|k+M)) ∈ D
1,fp
N (xk+M), as needed. �

Appendix D. Proof of Lemma 15

By Assumption 12 it holds that (A + BK)Y ⊆ Y ⊖ W , such that
for all i ∈ N it follows that

(A + BK)(Y ⊖ F 1
i ) ⊆ (A + BK)Y ⊖ (A + BK)F 1

i

⊆ Y ⊖ W ⊖ (A + BK)F 1
i

= Y ⊖ (W ⊕ (A + BK)F 1
i )

= Y ⊖ F 1
i+1, (D.1)

thereby completing the proof. �

Appendix E. Proof of Lemma 16

It follows directly fromAssumption 12 that the setsYM
i are non-

empty for i ∈ N[0,N]. The inclusions in (20) follow from Remark 13,
Remark 8, and the fact that E1

i = {0}. �

Appendix F. Proof of Lemma 21

Consider again the variables x0|k+M , . . . , xN|k+M , and u0|k+M ,
. . . , uN−1|k+M chosen in the proof of Lemma 11. By (C.3), there
exists a gM ∈ F M

M such that

xi|k+M = xi+M|k + (A + BK)igM , i ∈ N[0,N]. (F.1)
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Hence, considering (15a) and (26a), for all i ∈ N[0,N−M] there exists
an ei+M ∈ EM

i+M such that

yi+M|k + (A + BK)igM ∈ (Y ⊖ F 1
i ) ⊕ ei+M . (F.2)

Defining

yi|k+M := yi+M|k + (A + BK)igM − ei+M (F.3)

for i ∈ N[0,N−M] then gives

yi|k+M ∈ (Y ⊖ F 1
i ) = (Y ⊕ E1

i ) ⊖ F 1
i , (F.4)

using the fact that E1
i = {0} due to (17a). For i = 0 this already

implies that yi|k+M ∈ Y1
i . For i ∈ N[1,N−M] we further infer

yi|k+M ∈ ((Y ⊖ F 1
i−1) ⊕ E1

i ) ⊖ (A + BK)i−1F 1
1

= Y1
i , (F.5)

where the first line follows from Remark 8. Define further for all
i ∈ N[N−M+1,N]

yi|k+M := (A + BK)i−N+MyN−M|k+M

= (A + BK)i−N+MyN|k + (A + BK)igM
− (A + BK)i−N+MeN . (F.6)

It follows that

yi|k+M
(F.4)
∈ (A + BK)i−N+M(Y ⊖ F 1

N−M)

(19)
⊆ (Y ⊖ F 1

i )

= ((Y ⊖ F 1
i−1) ⊕ E1

i ) ⊖ (A + BK)i−1F 1
1

= Y1
i , (F.7)

for all i ∈ N[N−M+1,N]. The above implies that (26a) is satisfied in
D1

N(xk+M) for our choice of yi|k+M . Finally, define

v0|k+M = Ky0|k+M ∈ KY = V1
0 , (F.8)

such that d1
k+M ∈ D1

N(xk+M) is satisfied for d1
k+M :=

((x0|k+M , . . . , xN|k+M), (u0|k+M , . . . , uN−1|k+M), (y0|k+M , . . . ,
yN|k+M), v0|k+M). Note that by (C.4) for all i ∈ N[0,N−1] it holds that

ui|k+M = ui+M|k + K(A + BK)igM (F.9a)
(F.3)
= ui+M|k + Kyi|k+M − Kyi+M|k + Kei+M , (F.9b)

where uN+i|k := K(A + BK)ixN|k, i ∈ N[0,M−1], such that

v0|k+M
(F.3)
= KyM|k + KgM − KeM
(F.9a)
= KyM|k + u0|k+M − uM|k − KeM . (F.10)

Using the fact that E1
i = {0} due to (F.4) for all i ∈ N[0,N], it holds

that ℓ1
i = ℓ and V 1

f = Vf, and hence

J1N(d1
k+M) =

1
β

ℓ(x0|k+M − y0|k+M , u0|k+M − v0|k+M)

+

N−1
i=1

ℓ(xi|k+M − yi|k+M , ui|k+M − Kyi|k+M)

+ Vf(xN|k+M − yN|k+M)

β≥1,(F.8)
≤

N−M−1
i=0

ℓ(xi|k+M − yi|k+M , ui|k+M − Kyi|k+M)

+

N−1
i=N−M

ℓ(xi|k+M − yi|k+M , ui|k+M − Kyi|k+M)

+ Vf(xN|k+M − yN|k+M). (F.11)
From (F.1) and (F.3) it follows that xi|k+M − yi|k+M = xi+M|k −

yi+M|k + ei+M , i ∈ N[0,N−M−1], and from (F.9b) it follows that
ui|k+M −Kyi|k+M = ui+M|k −Kyi+M|k +Kei+M , i ∈ N[0,N−M]. Further,
it holds that

xi|k+M
(C.1), (C.3)

= (A + BK)i−N+MxN|k + (A + BK)igM (F.12a)

ui|k+M
(C.2), (C.4)

= K(A + BK)i−N+MxN|k + K(A + BK)igM (F.12b)

for i ∈ N[N−M,N] and i ∈ N[N−M,N−1], respectively, such that with
(F.6), it follows that

J1N(d1
k+M) ≤

N−M−1
i=0

ℓ(xi+M|k − yi+M|k + ei+M ,

ui+M|k − Kyi+M|k + Kei+M)

+

N−1
i=N−M

ℓ

(A + BK)i−N+M(xN|k − yN|k + eN),

K(A + BK)i−N+M(xN|k − yN|k + eN)


+ Vf

(A + BK)M(xN|k − yN|k + eN)


. (F.13)

With Lemma 18 we obtain

J1N(d1
k+M) ≤

N−M−1
i=0

ℓ(xi+M|k − yi+M|k + ei+M ,

ui+M|k − Kyi+M|k + Kei+M)

+ Vf(xN|k − yN|k + eN). (F.14)

Finally, for all i ∈ N[0,N−M] it holds that ei+M ∈ EM
i+M , and, hence,

J1N(d1
k+M)

(18)
≤

N−M−1
i=0

ℓM
i+M(xi+M|k − yi+M|k,

ui+M|k − Kyi+M|k) + VM
f (xN|k − yN|k)

=

N−1
i=M

ℓM
i (xi|k − yi|k, ui|k − Kyi|k) + VM

f (xN|k − yN|k)

= JMN (dM
k ) −

1
β

M−1
i=0

ℓM
i (xi|k − yi|k, ui|k − vi|k), (F.15)

thereby completing the proof. �

Appendix G. Proof of Lemma 22

It holds that X̂N ⊆ X, such that X̂N is bounded. As additionally
all sets involved in the definition of D1

N are closed, it follows that
X̂N is compact, thereby completing the proof. �

Appendix H. Proof of Lemma 23

Let x ∈ X̃N and z ∈ (A+ BK)x⊕W arbitrary. Then it holds that

(A + BK)Nz ∈ (A + BK)N+1x ⊕ (A + BK)NW

⊆ (A + BK)X1
f ⊕ (A + BK)NF 1

1

(12c)
⊆ X1

f . (H.1)

Further, it holds that

(A + BK)iz ⊕ F 1
i ⊆ (A + BK)i+1x ⊕ (A + BK)iW ⊕ F 1

i

= (A + BK)i+1x ⊕ F 1
i+1 (H.2)

for i ∈ N[0,N−1]. Hence, it holds that (A + BK)iz ⊕ F 1
i ⊆ X for all

i ∈ N[0,N−2]. Moreover, it follows that

(A + BK)N−1z ⊕ F 1
N−1 (H.3)
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= (A + BK)Nx ⊕ (A + BK)N−1W ⊕ F 1
N−1

= (A + BK)Nx ⊕ F 1
N

⊆ X1
f ⊕ F 1

N

(12a)
⊆ X. (H.4)

Hence, it holds that (A+BK)iz⊕F 1
i ⊆ X for all i ∈ N[0,N−1]. By the

same arguments it follows that also K(A + BK)iz ⊕ KF 1
i ⊆ U for

all i ∈ N[0,N−1]. From all of the above it follows that z ∈ X̃N . �

Appendix I. Proof of Theorem 27

The proof is obtained by extending the proofs of Theorems 2 and
3 in Barradas Berglind et al. (2012) to the stabilization of compact
sets for disturbed systems. By the definition of the optimization
problem in (32), for the closed-loop system (34), any x0 ∈ X̂N and

all j ∈ N it holds that V
M⋆(xkj )

N (xkj) ≤ V 1
N(xkj), and hence

V 1
N(xkj+1)

Lemma 21
≤ V 1

N(xkj)

−

kj+1−kj−1
i=0

1
β

ℓ
M⋆(xkj )

i (x⋆
i|kj(xkj) − y⋆

i|kj(xkj),

u⋆
i|kj(xkj) − v⋆

i|kj(xkj)). (I.1)

Further, by the reasoning in the proof of Lemma 21, specifically
considering (F.1), for all j ∈ N and all k ∈ N[kj,kj+1−1] there exists a

gk ∈ F
M⋆(xkj )

k−kj
such that xk = x⋆

k−kj|kj
(xkj) + gk. By (15a), there exist

ȳk ∈ Y and ēk ∈ E
M⋆(xkj )

k−kj
such that y⋆

k−kj|kj
(xkj) + gk = ȳk + ēk and,

hence, xk − ȳk = x⋆
k−kj|kj

(xkj) − y⋆
k−kj|kj

(xkj) + ēk. Further, consider
that for all j ∈ N and all k ∈ N[kj,kj+1−1] it holds that uk = u⋆

i|kj
(xkj)

and define v̄k := v⋆
k−kj|kj

(xkj). Hence, for any T ∈ N it holds that

T−1
k=0

min
yk∈Y

vk∈KY

ℓ(xk − yk, uk − vk)

≤

kT−1
k=0

min
yk∈Y

vk∈KY

ℓ(xk − yk, uk − vk)

≤

kT−1
k=0

ℓ(xk − ȳk, uk − v̄k)

=

T−1
j=0

kj+1−1
k=kj

ℓ(x⋆
k−kj(xkj) − y⋆

k−kj(xkj) + ēk,

u⋆
k−kj(xkj) − v⋆

k−kj(xkj))

≤

T−1
j=0

kj+1−1
k=kj

max
ek∈E

M⋆(xkj )

k−kj

ℓ(x⋆
k−kj(xkj) − y⋆

k−kj(xkj) + ek,

u⋆
k−kj(xkj) − v⋆

k−kj(xkj))

=

T−1
j=0

kj+1−1
k=kj

ℓ
M⋆(xkj )

k−kj
(x⋆

k−kj(xkj) − y⋆
k−kj(xkj),

u⋆
k−kj(xkj) − v⋆

k−kj(xkj))

(I.1)
≤

T−1
j=0

βV 1
N(xkj) − βV 1

N(xkj+1)

= βV 1
N(x0) − βV 1

N(xkT ) ≤ βV 1
N(x0). (I.2)
As the inequality in (I.2) holds for every T ∈ N, it also holds that
∞
k=0

min
yk∈Y

vk∈KY

ℓ(xk − yk, uk − vk) ≤ βV 1
N(x0), (I.3)

thereby completing the proof. �

Appendix J. Proof of Theorem 28

By the reasoning in the proof of Theorem27, particularly by (I.3)
and by considering (22a) in Assumption 17, it holds that

∞
k=0

α1(|xk|Y)

=

∞
k=0

α1


min
yk∈Y

|xk − yk|


=

∞
k=0

min
yk∈Y

α1(|xk − yk|)

(22a)
≤

∞
k=0

min
yk∈Y

vk∈KY

ℓ(xk − yk, uk − vk)
(I.3)
≤ βV 1

N(x0). (J.1)

AsV 1
N(x0) is finite for any x0 ∈ X̂N , it follows that limk→∞ |xk|Y = 0

for any x0 ∈ X̂N and any disturbances with wk ∈ W, k ∈ N,
thereby completing the proof. �

Appendix K. Proof of Theorem 29

The proof of Theorem 28, particularly (J.1), gives that for all x0 ∈

X̂N and all k ∈ N that |xk|Y ≤ α−1
1 (βV 1

N(x0)) ≤ α−1
1 (βα3(|x0|Y)) =

γ (|x0|Y), where the first inequality follows from Lemma 24 and γ

is a K-function defined by γ (s) = α−1
1 (βα3(s)) for all s ≥ 0. As

by assumption there exists an η > 0 such that ηB ⊕ Y ⊆ X̃N

and the fact that X̃N ⊆ X̂N , it follows that the set Y is robustly
Lyapunov stable for the closed-loop dynamics (34). In combination
with Theorem28 it follows that the setY is robustly asymptotically
stable for the closed-loop dynamics (34) and the set X̂N belongs to
its region of attraction, thereby completing the proof. �
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