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a b s t r a c t

In event-triggered control, the control task consisting of sampling the plant’s output and updating the
control input is executedwhenever a certain event function exceeds a given threshold. The event function
typically needs to be monitored continuously, which is difficult to realize in digital implementations. This
has led to the development of periodic event-triggered control (PETC), in which the event function is only
evaluated periodically. In this paper, we consider general nonlinear continuous event-triggered control
(CETC) systems, and present a method to transform the CETC system into a PETC system. In particular, we
provide an explicit sampling period atwhich the event function is evaluated andwepresent a constructive
procedure to redesign the triggering condition. The latter is obtained by upper-bounding the evolution
of the event function of the CETC system between two successive sampling instants by a linear time-
invariant system and then by using convex overapproximation techniques. Using this approach, we are
able to preserve the control performance guarantees (e.g., asymptotic stability with a certain decay rate)
of the original CETC system.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In digital control applications, the control task consists of sam-
pling the outputs of the plant and computing and implementing
new actuator signals. This procedure is typically executed in a
time-triggered fashion, which may lead to a waste of communi-
cation and energy resources, as the execution of the control task is
done irrespective of whether there actually is a need for a control
update or not. To mitigate the unnecessary waste of resources,
various event-triggered control (ETC) strategies have been pro-
posed in the recent literature, see, e.g., Cassandras (2014), Dolk,
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Borgers, and Heemels (2017), Girard (2015), Heemels, Sandee,
and Van Den Bosch (2008), Henningsson, Johannesson, and Cervin
(2008), Lunze and Lehmann (2010), Miskowicz (2006), Postoyan,
Tabuada, Nesić, and Anta (2015), Tabuada (2007) and Tallapragada
and Chopra (2014). In ETC, the control task is executed after the
occurrence of an event, generated by some well-designed trigger-
ing condition, rather than after a fixed period of time, as in conven-
tional periodic sampled-data control. In this way, ETC is capable of
significantly reducing the number of control task executions, while
retaining a satisfactory closed-loop performance.

A main implementation issue of ETC (for which we will use
the term continuous event-triggered control (CETC) from here
on) is that the event function has to be monitored continuously,
which is difficult to realize on digital platforms. A solution to this
problem is periodic event-triggered control (PETC), in which the
event function is only checked periodically at fixed equidistant
time instances, thereby enabling (easier) implementation on a
digital platform. Note that PETC differs from standard periodic
sampled-data control, as in PETC the event times (which result
from the triggering condition and the system’s state evolution)
are in general only a (specific) subset of the sampling times and
can be aperiodic. Of course, event-triggered control schemes for
discrete-time systems (e.g., Cogill, 2009, Eqtami, Dimarogonas, &
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Kyriakopoulos, 2010, Heemels & Donkers, 2013, Li & Lemmon,
2011, Molin & Hirche, 2013, Yook, Tilbury, & Soparkar, 2002) can
also be interpreted as PETC schemes, but these do not take into
account the inter-sample behavior. In the past few years, various
PETC strategies have been proposed, see, e.g., Heemels, Donkers,
and Teel (2013), Heemels, Dullerud, and Teel (2016), Heemels et
al. (2008), Henningsson et al. (2008) and Postoyan, Anta, Heemels,
Tabuada, and Nesić (2013). However, to the best of the authors’
knowledge, there are hardly any design methods for PETC for non-
linear continuous-time systems. Two exceptions are the works in
Sanfelice and Teel (2006) andWang, Postoyan, Nesić, and Heemels
(2016). In Sanfelice and Teel (2006), the sample-and-hold imple-
mentation of general hybrid controllers for nonlinear systems is
analyzed, which covers the PETC implementation of a nonlinear
CETC system as a subcase. These results ensure that, under general
conditions, if a compact set is uniformly globally asymptotically
stable (UGAS) for the original CETC system, then this property
is semiglobally and practically preserved for the emulated PETC
system by taking the sampling period sufficiently small. In the
recent workWang et al. (2016), an approach has been proposed for
the design of PETC state-feedback controllers to stabilize nonlinear
systems, which ensures uniform global asymptotic properties and
provides an explicit bound on the sampling period.

In this paper, we present a method to transform a general non-
linear CETC system into a PETC systemwhich preserves the control
performance guarantees of the given CETC system. Our method
consists of two steps. First, we upper bound the evolution of the
event function of the given CETC system between two successive
sampling instants by a linear time-invariant (LTI) system. Based on
this LTI system, we can formulate a redesigned event function for
the PETC implementationwhichwould involve checking an infinite
number of conditions at every sample time. To overcome this issue,
we use convex techniques to overapproximate the evolution of the
LTI system over a sampling period, and end up with a redesigned
event function which is implementable in practice.

In contrast to Sanfelice and Teel (2006), our method provides
an explicit sampling period (in fact, the sampling period is a design
parameter), it fully preserves the control performance guarantees
of the givenCETC system, and is not limited to stability of a compact
set a priori. Compared to Wang et al. (2016), we do not focus
on stabilization and we can cope with a larger class of triggering
conditions. Preliminary results have been presented in Postoyan et
al. (2013), in which we were only able to approximately preserve
the control performance guarantees of the given CETC system. In
addition, the new results presented here are based on less stringent
conditions compared to Postoyan et al. (2013) (see Remark 3 for
more details).

Nomenclature. Let R = (−∞, ∞), R⩾0 = [0, ∞), N = {1, 2, . . .}
and N0 = {0, 1, 2, . . .}. Given N ∈ N, we denote the set
{1, 2, . . . ,N} by N̄ . For a vector x ∈ Rn, we denote by ∥x∥ :=

√
x⊤x

its 2-norm, and for a matrix A ∈ Rn×m, we denote by ∥A∥ :=√
λmax(A⊤A) its induced 2-norm. For a signal w : R⩾0 → Rn, we

denote the right limit at time t ∈ R⩾0 byw(t+) = lims↓tw(s), when
it exists. The solution z of a time-invariant dynamical system at
time t ∈ R⩾0 starting with the initial condition z(0) = z0 will be
denoted by z(t, z0) or simply by z(t) when the initial state is clear
from the context. The notation ⌊x⌋ stands for the largest integer
smaller than or equal to x ∈ R.

2. Problem statement

We consider a nonlinear plant of the form

ẋ(t) = f (x(t), u(t)), (1)

where x(t) ∈ Rnx is the state and u(t) ∈ Rnu is the control input
at time t ∈ R⩾0. We assume that we have designed a continuous
event-triggered state-feedback controller for plant (1), given by

x̂(t) = x(tk), for t ∈ (tk, tk+1] (2a)
u(t) = k(x̂(t)) (2b)
t0 = 0

tk+1 = inf{t > tk | Γ
(
x(t), x̂(t), χ (t)

)
> 0}, (2c)

where the function k(x̂) defines the feedback law, x̂ is the state
information available to the controller, and χ ∈ Rnχ is used
to capture other relevant variables such as timers, counters, or
possibly even the state of an auxiliary dynamical system (Dolk
et al., 2017; Girard, 2015; Postoyan et al., 2015). The event func-
tion Γ is designed such that some desired control performance
(e.g., asymptotic stability with a certain decay rate) is achieved as
long as it remains non-positive along the system’s trajectories.

Writing the triggering law as in (2c) allows us to consider var-
ious event-triggers considered previously in the literature, which
we illustrate by the following two examples. In Tabuada (2007),
the condition Γ (x, x̂) = γ (∥x̂ − x∥) − σα(∥x∥) ⩽ 0 (for specific
functions γ , α and σ ∈ (0, 1)) ensures that a Lyapunov function
V has a guaranteed decay rate (1 − σ )α(∥x∥) along the solutions
to system (2) (which guarantees global asymptotic stability of the
system). In Dolk et al. (2017), we have that χ = (τ , κ, η) (where
τ is a timer, κ a counter, and η the state of an auxiliary dynamical
system), and that the condition Γ (x, x̂, χ ) = −η ⩽ 0 ensures that
the system is UGASwith a guaranteed decay rate. Another example
is provided in Section 4.

Let z = (x, x̂, χ ) ∈ Rnz with nz = 2nx + nχ . We model the
closed-loop system (1)–(2) (and possibly auxiliary dynamics for χ )
as an impulsive system like in Heemels et al. (2013), which gives

ż = g(z), for t ∈ (tk, tk+1] (3a)
z(t+k ) = b(z(tk)) (3b)

t0 = 0
tk+1 = inf{t > tk | Γ (z(t)) > 0}, (3c)

for k ∈ N0, and appropriate g : Rnz → Rnz and b : Rnz → Rnz . In
case nχ = 0, we have that

g(z) =

[
f (x, k(x̂))

0

]
and b(z) =

[
x
x

]
.

For the definition of the functions g and b in case nχ ̸= 0 we refer
to Section 4 for an example.

Solutions to (3) are interpreted as follows. In between the
event times tk, k ∈ N, determined by (3c), the system evolves
according to the differential equation (3a), where z(t+k ) given by
the update (3b) denotes the starting point for the solution to (3a)
in the interval (tk, tk+1], k ∈ N. Hence, the solutions we consider
are left-continuous signals. Note that t0 = 0, and hence, we start
with an update according to (3b).

Remark 1. The analysis presented in this paper is based on sys-
tem (3). Therefore, our design applies to any CETC configuration
that can be written in the format of (3), including the case where
the control input u in (1) is generated by a dynamic controller. The
states of the controller would then be incorporated in the vector x
and we would obtain a model of the form (3). Similarly, the case
in which the controller is not implemented using zero-order-hold
functions can be considered as long as the problem can bemodeled
by (3). For instance, when using the model-based technique of
Lunze and Lehmann (2010), x̂ would be equal to xs in Lunze and
Lehmann (2010), which is the model-based estimate of x.

In order to transform the CETC system (3) into a PETC system,
we require the following three assumptions.
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Assumption 1. There exists a nonempty setΩ ⊆ Rnz such that for
all z0 ∈ Ω , all corresponding solutions z(t, z0) to (3) are defined for
all time t ∈ R⩾0 and satisfy z(t, z0) ∈ Ω for all t ∈ R⩾0.

Assumption 1 holds for most CETC designs proposed in litera-
ture, including Abdelrahim, Postoyan, Daafouz, and Nesić (2016),
Dolk et al. (2017), Girard (2015), Heemels et al. (2008), Hennings-
son et al. (2008), Li and Lemmon (2011), Lunze and Lehmann
(2010), Postoyan et al. (2015), Tabuada (2007) and Tallapragada
and Chopra (2014). It implies that the set Ω is forward invariant
for the closed-loop CETC system (3) (i.e., that all solutions starting
in Ω remain in Ω for all t ∈ R⩾0), and rules out finite escape
times and Zeno-behavior (an infinite number of events in a finite
time interval) that would prevent global existence of all solutions
starting in Ω . Note that we do not exclude Zeno behavior or finite
escape times for solutions starting outside Ω .

Because the system starts with an update according to (3b) (as
t0 = 0), Assumption 1 also implies that the function b satisfies
b(Ω) ⊆ Ω . Hence, solutions do not leave the set Ω , even if we
allow the generation of events when Γ (z(t)) < 0, which will
typically be the case in the PETC implementation that we envision.

Assumption 2. There exists T > 0 such that the jumps induced
by Γ on the CETC system (3) are spaced by at least T units of time,
i.e., for all z0 ∈ Ω and all solutions z(·, b(z0)) to (3) it holds that

inf{t > 0 | Γ (z(t, b(z0))) > 0} ⩾ T . (4)

Assumption 2 implies that there exists a uniform positive mini-
mum inter-event time T for the CETC system in the setΩ . Sufficient
conditions for this assumption to hold are given in Postoyan et
al. (2015), and most available event-triggering schemes in the
literature either provide a positive lower bound on T (e.g., Girard,
2015, Postoyan et al., 2015, Tabuada, 2007), or enforce a positive
lower bound by design (e.g., Abdelrahim et al., 2016, Dolk et al.,
2017, Postoyan et al., 2015, Tallapragada & Chopra, 2014).

Assumption 3. There exists p ∈ N such that Γ is p-times continu-
ously differentiable on Ω , g is (p−1)-times continuously differen-
tiable onΩ , and there exist real numbers c, ςj, j ∈ {0, 1, . . . , p−1},
satisfying

Lp
gΓ (z) ⩽

p−1∑
j=0

ςjLj
gΓ (z) + c, (5)

for all z ∈ Ω , where Lj
gΓ is the jth Lie derivative of Γ along the

flow dynamics ż = g(z), with L0
gΓ = Γ , (LgΓ )(z) =

∂Γ
∂z g(z) and

Lj
gΓ = Lg (L

j−1
g Γ ) for j ∈ N.

Assumption 3 is a condition on the evolution of Γ along the
solution to (3a), i.e., along the solutions to the system between two
successive updates. It plays a crucial role in our design as it allows
us to upper-bound the evolution of Γ by the solution to a linear
system, as explained later in Section 3.2. A similar assumption is
made in the context of self-triggered control in Anta and Tabuada
(2012). In case Ω is compact, inequality (5) can always be satisfied
when g and Γ are (p − 1)-times and p-times continuously differ-
entiable, respectively, as it suffices to take c = maxz∈ΩLp

gΓ (z)
and ςj = 0 for j ∈ {0, 1, . . . , p − 1} to ensure (5). However,
this particular choice may be conservative and tighter estimates
of Lp

gΓ (z) can be obtained by using the other terms Lj
gΓ (z) in the

right-hand side of (5). The parameter pmay be increased to further
reduce the conservatism of the upper bounds on Lp

gΓ (z) in (5) at
the price of a higher computational complexity.

In this paper, we describe a method for designing PETC strate-
gies for nonlinear system (1), given that a CETC scheme (2) has

already been designed. We do this by redesigning the event func-
tion Γ to a new event function Γ̃ , while we keep using the pre-
designed feedback law. The envisioned closed-loop PETC system is
described by

ż = g(z), for t ∈ (t̃k, t̃k+1] (6a)
z(t̃+k ) = b(z(t̃k)) (6b)

t̃0 = 0
t̃k+1 = min{t > t̃k |

Γ̃ (z(t)) ⩾ 0, t = nh, n ∈ N}, (6c)

where h > 0 is the sampling period at which the triggering
condition Γ̃ is evaluated. Our aim is to provide tools for the design
of h and Γ̃ to guarantee that Γ remains non-positive along all so-
lutions to (6) starting inΩ , such that the stability and performance
guarantees of the original CETC system (3) are preserved. To do so,
we will use the following design requirement on h and Γ̃ .

Design Requirement 1. For all z0 ∈ Ω such that Γ̃ (z0) < 0 it
holds that Γ (z(t, z0)) < 0 for all t ∈ [0, h] for all solutions z(·, z0) to
ż = g(z).

Remark 2. In general it is not possible to satisfy Design Require-
ment 1 by choosing Γ̃ = Γ , see for example Postoyan et al. (2013).
We will also demonstrate this in Section 4.

Remark 3. Based on Assumptions 1, 2, and 3, we present in the
next section our method to transform the CETC system (3) into a
PETC system (6). Compared to the conference version of this work
Postoyan et al. (2013), we provide the following improvements:

(1) We guarantee preservation of the control performance of the
original CETC system (whichwewere not able to in Postoyan
et al., 2013), see Theorem 8.

(2) We do not require that the set Ω is compact, see Assump-
tion 1. As a result, we can now also apply our PETC design to
CETC systems which have additional variables in the event-
generator that are not forward invariant with regard to any
compact set, such as timers or counters (see, e.g., Abdelrahim
et al., 2016, Dolk et al., 2017, Postoyan et al., 2015, Tallapra-
gada & Chopra, 2014).

(3) We do not require that all solutions z(t, z(tsj )) to ż = g(z)
lie inside Ω for all t ∈ [0, h]. Consequently, we do not
require (Postoyan et al., 2013, Assumption 3), which basi-
cally states that Ω is a forward invariant set for the system
ż = g(z) (without resets), which would mean that the plant
already satisfies the desired control performance in open-
loop.

These observations reveal a significant relaxation with respect
to Postoyan et al. (2013).

Note that items (1) and (2) also support our claims with respect
to Sanfelice and Teel (2006).

3. Main results

3.1. Sampling period selection

Under the PETC strategy, the input can be updated only when
the triggering condition is evaluated, that is, every h units of time.
Hence, an event should be triggered at a sampling time t = nh,
n ∈ N, before Γ becomes positive, and thus it is necessary that the
sampling interval h is less than theminimum inter-event time T of
the CETC system (which exists in view of Assumption 2).

In this way, after a jump, we know that Γ will remain non-
positive at least until the next sampling instant, and that Design
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Requirement 1 may be satisfied. Therefore, we select h such that

0 < h ⩽ T (7)

with T as in (4).

Remark 4. We do not need to verify the triggering condition for
the next ⌊

T
h ⌋ sampling instants following a control input update

due to Assumption 2, which allows to reduce the computational
load of the event-trigger.

As we aim at guaranteeing that Γ remains non-positive along
the solutions in Ω of the PETC system, we would like to verify at
each sample time tsj = jh, j ∈ N0, whether the condition Γ (z(t)) >

0 may be satisfied for t ∈ [tsj , t
s
j+1] (as then we will have to trigger

an event at tsj ). To do this, we would need to analyze the evolution
of the triggering function Γ along the solutions to ż = g(z), which
is difficult to dowhen g(z) is a nonlinear function.We first propose
to upper bound the evolution of Γ on flows by a linear system.

3.2. Analysis of the evolution of Γ (z) on flows

To upper bound the evolution ofΓ by a linear system, we resort
to similar techniques as in Anta and Tabuada (2012), which rely on
Assumption 3. This assumption allows to bound the evolution of
Γ by a linear differential equation as stated in the lemma below,
which is a variation of Anta and Tabuada (2012, Lemma V.2). The
proof directly follows from the comparison lemma (Khalil, 2002,
Lemma 3.4).

Lemma 5. Consider any solution z(·, z0) to ż = g(z) with initial
state z0 ∈ Ω , and define t∗ := inf{τ ∈ R⩾0 | z(τ , z0) ̸∈ Ω}.
If Assumption 3 holds, then Γ (z(t, z0)) ⩽ y1(t, µp(z0)) for all t ∈

[0, t∗], where y1(t, µp(z0)) is the first component of the solution to
the linear differential equation⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẏj = yj+1, j ∈ {1, 2, . . . , p − 1}

ẏp =

p−1∑
j=0

ςjyj+1 + yp+1

ẏp+1 = 0

(8)

with initial condition y(0) = µp(z0) given by

µp(z0) = (Γ (z0),LgΓ (z0), . . . ,Lp−1
g Γ (z0), c). (9)

As formalized in the next theorem, for each initial state z0 ∈ Ω ,
we can now check if Γ remains non-positive for the complete
sampling interval [0, h], by checking the solution of the linear
system (8) with initial condition (9).

Theorem 6. Suppose Assumptions 1 and 3 hold and that z0 ∈ Ω ,
and consider the solution y(·, µp(z0)) to (8) with initial condition (9).
If y1(t, µp(z0)) < 0 for all t ∈ [0, h], then for all solutions z(·, z0)
to ż = g(z) with initial state z0, it holds that Γ (z(t, z0)) < 0 for all
t ∈ [0, h].

Proof. First, note that Assumption 1 is an invariance property of
system (3), while here we consider the system ż = g(z), which is
system (3a) (without the discrete dynamics (3b) and (3c)). These
are therefore two different dynamical systems, and the solutions
to ż = g(z), may leave Ω , while those of (3) will not because of the
well-designed discrete dynamics (jumps) in (3b) and (3c).

Consider any solution z(·, z0) to ż = g(z) with initial state
z0 ∈ Ω , and suppose that y1(t, µp(z0)) < 0 for all t ∈ [0, h].

Case 1: z(t, z0) ∈ Ω for all t ∈ [0, h].
From Lemma 5, it directly follows that Γ (z(t, z0)) ⩽

y1(t, µp(z0))
< 0 for all t ∈ [0, h].

Case 2: z(t, z0) ̸∈ Ω for some t ∈ [0, h]. Define t∗ := inf{τ ∈

[0, h] | z(τ , z0) ̸∈ Ω} and t1 := inf{τ > 0 | Γ (z(τ , z0)) ⩾ 0}. For
all t ∈ [0, t1), it holds thatΓ (z(t, z0)) < 0, and thus in this interval
the solutions z(t, z0) to ż = g(z) coincide with the solutions to
the CETC system (3) with initial condition z(0) = z0. As Ω is
forward invariant for CETC system (3), it follows that z(t, z0) ∈ Ω

for all t ∈ [0, t1), which leads to the observation that t1 ⩽ t∗ ⩽
h. Furthermore, Γ (z(t1, z0)) = 0 as Γ is continuous in view of
Assumption 3. Finally, since according to Lemma 5, y1(t, µp(z0)) ⩾
Γ (z(t, z0)) for all t ∈ [0, t∗) we will have that y1(t1, µp(z0)) ⩾ 0,
which is in contradiction with the assumptions of the theorem. As
a result, Case 2 cannot occur. □

Remark 7. The self-triggering formulas in Anta and Tabuada
(2012) tend to provide accurate estimates of the time instants
when Γ becomes positive provided the bound (5) is tight, which
may be difficult to achieve in practice. In the proposed PETC ap-
proach, the evolution of Γ is investigated over shorter horizons
than in STC, namely at time-intervals of length h. Hence, the bound
in (5) does not necessarily need to be accurate to provide satisfac-
tory results, as we expect these estimates to be tighter whenever
times are shorter based on previous experience (Anta & Tabuada,
2012).

3.3. Design of Γ̃

The analytic expression of y1(t, µp(z0)) is given by

y1(t, µp(z0)) = CpeAptµp(z0) (10)

with

Ap =

⎡⎢⎢⎢⎢⎣
0 1 · · · 0 0
...

. . .
...

0 0 · · · 1 0
ς0 ς1 · · · ςp−1 1
0 0 · · · 0 0

⎤⎥⎥⎥⎥⎦ and Cp =

⎡⎢⎢⎣
1
0
...

0

⎤⎥⎥⎦
⊤

.

At each sampling instant tsj , j ∈ N0, the current state z(tsj ) is
measured and a transmission should occur if y1(t, µp(z(tsj ))) ⩾ 0
for some t ∈ [0, h], as then Γ (z(t, z(tsj ))) may be positive for some
t ∈ [0, h]. Otherwise, according to Theorem 6 a transmission is
not necessary to satisfy Design Requirement 1. However, verifying
whether y1(t, µp(z(tsj ))) < 0 for all t ∈ [0, h], involves an
infinite number of conditions and is computationally infeasible. In
Postoyan et al. (2013), this problem was (approximately) solved
by evaluating y1(t, µp(z(tsj ))) only at a finite number of points in
the interval [0, h]. The price paid for this solution is that the non-
positivity of Γ (z(t)) along the solutions of (6) can no longer be
ensured, but only approximated.

The solution we propose here satisfies Design Requirement 1,
and thus guarantees non-positivity of Γ (z(t)) for all t ∈ R⩾0,
thereby preserving the stability and performance guarantees of the
CETC system. Our method uses convex techniques to overapprox-
imate the set {y1(t, µp(z(tsj ))) | t ∈ [0, h]} in a computationally
tractable manner.

To find a convex overapproximation of (10), we first define

Φ =
{
CpeApt | t ∈ [0, h]

}
. (11)

By using overapproximation techniques as described in Heemels
et al. (2010), the set Φ of matrices can be embedded as

Φ ⊆

{
N∑
i=1

αi(Fi + Gi∆Hi)

⏐⏐⏐⏐⏐α ∈ A, ∆ ∈ ∆

}
, (12)

in which Fi ∈ R1×p, Gi ∈ R1×q, Hi ∈ Rq×p are suitably con-
structed matrices, N is the number of vertices in the polytopic
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overapproximation (which can be freely selected), ∆ is a specific
set of structured matrices in Rq×q with norm bound ∥∆∥ ⩽ 1,
α := (α1, . . . αN ), and

A =

{
α ∈ RN

⩾0

⏐⏐⏐⏐⏐
N∑
i=1

αi = 1

}
. (13)

In Heemels et al. (2010), overapproximations as in (12) with ∆

absent (Gi = 0 and Hi = 0) are also given.
As y1(t, µp(z0)) ∈ Φµp(z0) for t ∈ [0, h] and (12), it follows that

y1(t, µp(z0)) < 0 for all t ∈ [0, h] if

max

{
N∑
i=1

αi(Fi + Gi∆Hi)µp(z0)

⏐⏐⏐⏐⏐α ∈ A, ∆ ∈ ∆

}
< 0,

which holds when

Fiµp(z0) + ∥Gi∥ ∥Hiµ
p(z0)∥ < 0 for all i ∈ N̄, (14)

where we used that ∥∆∥ ⩽ 1. Consequently, we can choose Γ̃

in (6c) as

Γ̃ (z) := max
i∈N̄

{
Fiµp(z) + ∥Gi∥

Hiµ
p(z)

}
(15)

to obtain the guarantee Γ (z(t, z0)) ⩽ 0 for all t ∈ R>0, z0 ∈ Ω ,
where z is the corresponding solution to (6), as formalized in the
next theorem, whose proof directly follows from Theorem 6 and
the developments above.

Theorem 8. Suppose Assumptions 1, 2, and 3 hold and consider the
PETC system (6). If h satisfies (7) and Γ̃ is defined by (15), then the set
Ω is forward invariant for the system (6), and for any solution z to (6)
with initial state z0 ∈ Ω it holds that Γ (z(t)) ⩽ 0 for all t ∈ R>0.

Proof. Define zP (t, z0) as the solution to the PETC system (6), and
zC (t, z0) as the solution to the CETC system (3), both starting in
z0 ∈ Ω . Hence, zP (t0, z0) = zC (t0, z0) = z0. At t = 0, both (3)
and (6) startwith an update. Hence, zP (t+0 , z0) = zC (t+0 , z0) = b(z0).
Next, due to Assumption 2 and h satisfying (7), it follows that
zP (t, z0) = zC (t, z0) for all t ∈ [0, h]. At t = h, the PETC system (6)
may or may not generate an event. In case an event is generated
by the PETC system (6), we have that t̃1 = h < T , and hence that
t̃1 < t1. In case an event is not generated by the PETC system (6)
at t = h, it still follows that t̃1 ⩽ t1, as Γ̃ defined by (15) satisfies
Design Requirement 1. The above proves that zP (t, z0) = zC (t, z0)
for all t ∈ [0, t̃1], and hence that Γ (zP (t, z0)) ⩽ 0 for all t ∈ (0, t̃1]
as the solution to (3) satisfies Γ (zC (t, z0)) ⩽ 0 for all t ∈ R>0.

As b(Ω) ⊆ Ω , the same reasoning can be used to show
that Γ (zP (t, z0)) ⩽ 0 for all t ∈ (t̃1, t̃2], and by induction, that
Γ (zP (t, z0)) ⩽ 0 for each interval (t̃k, t̃k+1], k ∈ N. The proof is
completed by observing that limk→∞tk = ∞. □

Note that the redesigned event function Γ̃ maybecomepositive
in between sampling instants along solutions to (6). However,
when Γ̃ (z(tsj )) < 0 at sample time tsj , j ∈ N0, our design of Γ̃

given by (15) ensures that Γ (z(t)) < 0 will be satisfied for all
t ∈ [tsj , t

s
j+1] = [tsj , t

s
j + h]. Alternatively, when Γ̃ (z(tsj )) ⩾ 0, then

our periodic event-generator (6c) triggers an event, after which
Assumption 2 ensures that Γ (z(t)) ⩽ 0 will be satisfied for all
t ∈ [tsj , t

s
j + T ]. Hence, by selecting h < T , our proposed periodic

event-generator ensures that Γ (z(t)) ⩽ 0 for all t ∈ R>0, and thus
preserves the control performance guarantees of the original CETC
system (3).

Remark 9. When the numerical complexity of calculating µp(z)
is O(φ(p)), for some function φ, then evaluating the event func-
tion (15) has numerical complexityO(Nqp+φ(p)) (orO(Np+φ(p))
when ∆ is absent). Thus, from a computational point of view, it

makes sense to choose p and N small. On the other hand, choosing
p and N large usually increases the accuracy of the overapprox-
imation of the evolution of Γ along the solutions to ż = g(z)
in view of Anta and Tabuada (2012) and Heemels et al. (2010),
which leads to larger inter-event times. As such, there is a trade-
off between computation and communication, as is also apparent
from the example in Section 4.

Remark 10. The plant (1) can be extended to include process
disturbances w (i.e., ẋ(t) = f (x(t), u(t), w(t))) as long as the
continuous event-triggering law (2c) also satisfies Assumptions 1
and 2. In order to satisfy Assumption 3 we then either require that
w does not show up in Lj

gΓ (z) in (5) for j ∈ {1, 2, . . . , p} (which
might be the case when Γ (z) does not depend on the complete
plant state x), or we need to know (estimates of) bounds on w and
of its time-derivatives which show up in (5).

4. Illustrative example

Consider the following example inspired by Nesić, Teel, and
Carnevale (2009), in which the plant is given by

ẋ(t) = x2(t) − x3(t) + u(t), (16)

and the controller by

u(t) = −2x̂(t), (17)

where x̂ is the sampled version of x as in (2a). We design a con-
tinuous event-triggering condition as in Abdelrahim et al. (2016).
The idea is to wait a fixed amount of time T > 0 before checking a
state-dependent criterion of the same form as in Tabuada (2007).
We introduce an extra variable χ ∈ R⩾0 to keep track of the time
between two events. Hence, χ evolves according to χ̇ (t) = 1 for
t ∈ [tk, tk+1) and χ (t+k ) = 0. The function Γ in (2) is given in this
case by

Γ
(
x, x̂, χ

)
= min

{
χ − T , γ 2

|x̂ − x|2 − δ(x)
}

, (18)

with parameter γ ∈ R>0 and δ a positive definite function to be
designed. Hence, the CETC system (3) is given by z = [x, x̂, χ]

⊤,
g(z) = [x2 − x3 − 2x̂, 0, 1]⊤, b(z) = [x, x, 0]⊤, and Γ as in (18).
Note that this CETC system satisfies Assumption 2 by design for
any set Ω .

To construct Γ̃ , we have verified that the conditions required
in Abdelrahim et al. (2016) hold, by following similar lines as
in Nesić et al. (2009, Example 1). We have taken the Lyapunov
function R(z) = V (x) + max{0, λζ (χ )W 2(x̂ − x)}, with V (x) =

σ 2
(

α
2 x

2
+

β

4 x
4
)
, W (x̂ − x) = |x̂ − x|, ζ : R⩾0 → R the solution

to

ζ̇ = −2Lζ − λ(ζ 2
+ 1), ζ (0) = θ−1, (19)

and parameters σ = 1, α = β = 3, L = 2, ρ̄ = 0.1, η = 2,
λ = σ

√
α2 + β2 + σ−2ρ̄ + η, and θ = 0.9, and we have obtained

that the choice T = 0.010, δ(x) = δ̄x2 with δ̄ = 0.5, and
γ = σ

√
α2 + β2 + σ−2ρ̄, guarantees uniform global asymptotic

stability of the set A := {z ∈ Rnz | x = 0} for the CETC system.
The evolution of Γ along the solution to the CETC system

with initial condition z(0) = z0 = [0.3, 0.3, 0]⊤ is shown in
Fig. 1. This figure also includes a simulation of the emulated PETC
implementation with h = 0.005 and Γ̃ = Γ . Clearly, this PETC
implementation does not ensure that Γ (z(t)) ⩽ 0 for all t ∈ R>0,
and thus does not preserve the control performance guarantees of
the CETC system.

To overcome this issue, we construct Γ̃ as in (15). For this
purpose we need Γ to be p-times continuously differentiable, for
some p ∈ N, which is currently not the case in view of (18). Still,
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Fig. 1. Evolution of Γ (z(t)) along the solution to the CETC system, the PETC
implementation with Γ̃ = Γ , and the PETC implementation with Γ̃ as in (15).

Table 1
Parameters of Assumption 3 for Γ2 in the invariant set (20).

c ς0 ς1 ς2 ς3

p = 2 359.7 −26.46 3.085
p = 3 0 222.8 −36.37 10.1
p = 4 0 4384 −645.9 145.3 −17.36

Table 2
Average inter-event time τavg for the first 10 events of the PETC implementation
with Γ̃ as in (15).

h = T h = T/2 h = T/4 h = T/8

p = 2,N = 2 0.0100 0.0380 0.0627 0.0715
p = 2,N = 3 0.0200 0.0495 0.0672 0.0731
p = 2,N = 5 0.0240 0.0535 0.0685 0.0735
p = 2,N = 9 0.0260 0.0540 0.0690 0.0735

p = 3,N = 2 0.0700 0.0730 0.0745 0.0751
p = 3,N = 9 0.0700 0.0730 0.0745 0.0751

p = 4,N = 9 0.0700 0.0730 0.0745 0.0751

we can apply the procedure of Section 3.2 for Γ1 = χ − T and
Γ2 = γ 2

|x̂ − x|2 − δ(x) separately. The case of Γ1 is trivial as we
know that it is violated after T units of time. We proceed by con-
structing Γ̃2 for Γ2. We have verified numerically using SOSTOOLS
(Papachristodoulou et al., 2013) that for Γ2, Assumption 3 holds in
the forward invariant set

Ω := {z | R(z) ⩽ 0.15}. (20)

The obtained values of c and ςi, i ∈ {0, 1, . . . , p − 1}, for different
values of p are reported in Table 1.

Finally, we design the PETC strategy by following the procedure
in Section 3 and by using the gridding and norm bounding (GNB)
overapproximation technique as described in Heemels et al. (2010,
Section III), with N equally distanced grid points.

A simulation of this redesigned PETC implementation with p =

3 andN = 2 is shown in Fig. 1 (againwith z(0) = z0 and h = 0.005)
. Clearly, the redesigned PETC implementation does ensure that
Γ (z(t)) ⩽ 0 for all t ∈ R>0, and the control performance of the
CETC system is preserved.

In Table 2, the average inter-event time τavg for the first 10
events of the proposed PETC implementation is shown for different
parameter settings. The average inter-event time for the first 10
events of the original CETC system is τavg = 0.0757. As expected,
choosing h smaller leads to a better approximation of the CETC
system, and thus the inter-event times of the PETC implementation
approach those of the CETC implementation. Similarly, increasing
N leads to larger inter-event times when p = 2, and increasing p to
p = 3 also leads to a large improvement (especially for large values
of h). However, increasing p or N beyond p = 3, N = 2, does not
further improve the results.

5. Conclusions

We have presented a systematic method for designing periodic
event-triggered controllers for nonlinear systems, given that a
continuous event-triggered controller is already available. Using
convex overapproximation techniques, we were able to preserve
the control performance guarantees of the given CETC system.
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