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Time-Regularized and Periodic
Event-Triggered Control for Linear
Systems
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Abstract In this chapter, we provide an overview of our recent results for the anal-
ysis and design of Event-Triggered controllers that are tailored to linear systems
as provided in Heemels et al., IEEE Trans Autom Control 58(4):847–861, 2013,
Heemels et al., IEEE Trans Autom Control 61(10):2766–2781, 2016, Borgers et al.,
IEEE Trans Autom Control, 2018. In particular, we discuss two different frame-
works for the stability and contractivity analysis and design of (static) periodic
Event-Triggered control (PETC) and time-regularized continuous Event-Triggered
control (CETC) systems: the lifting-based framework of Heemels et al., IEEE Trans
Autom Control 61(10):2766–2781, 2016, which applies to PETC systems, and the
Riccati-based framework of Heemels et al., IEEE Trans Autom Control 58(4):847–
861, 2013, Borgers et al., IEEE Trans Autom Control (2018), which applies to both
PETC systems and time-regularized CETC systems. Moreover, we identify the con-
nections and differences between the two frameworks. Finally, for PETC and time-
regularized CETC systems, we show how the Riccati-based analysis leads to new
designs for dynamic Event-Triggered controllers, which (for identical stability and
contractivity guarantees) lead to a significantly reduced consumption of communi-
cation and energy resources compared to their static counterparts.
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7.1 Introduction

Inmost digital control systems, themeasured output of the plant is periodically trans-
mitted to the controller, regardless of the state the system is in. This possibly leads
to a waste of (e.g., computation, communication, and energy) resources, as many of
the transmissions are actually not needed to achieve the desired control performance
guarantees. In recent years, many Event-Triggered control (ETC) strategies have
been proposed, which generate the transmission (event) times based on the current
state or output of the system and the most recently transmitted measurement data,
thereby bringing feedback into the process of deciding when control tasks are exe-
cuted and corresponding measurement and control data is transmitted. In contrast, in
periodic time-triggered control, the control execution process could be considered as
an open-loop mechanism. By using feedback in the control execution process, mea-
surement data is only transmitted to the controller when this is really necessary in
order to be able to guarantee the required stability and performance properties of the
system. Clearly, in the interconnected world we live in with many networked control
applications including cooperative robotics, vehicle platooning, Internet-of-things,
and so on, it is important to use the available (computation, communication, and
energy) resources of the system carefully in order to avoid congesting the compu-
tational devices or communication networks, or draining batteries. The use of ETC
can play an important role in achieving this.

A major challenge in the design of ETC strategies is meeting certain control
performance specifications (quality-of-control), such as global asymptotic stability,
bounds on convergence rates, orLp-gain requirements, while simultaneously satis-
fying constraints on the resource utilization (required quality-of-service), including
a guaranteed positive lower bound on the inter-event times and thus the absence
of Zeno behaviour (an infinite number of events in finite time). In [5, 15], it was
shown that this combination of quality-of-control and (required) quality-of-service
specifications is hard to achieve, especially for continuous Event-Triggered control
(CETC) schemes, in which the event condition is continuously monitored (which
also requires continuous measuring of the state or output of the plant), as proposed
in, e.g., [12, 20, 21, 24, 32, 33, 41, 51].

In the recent years, two main solutions were proposed to tackle this problem:

• CETC schemes that adopt aminimal waiting time between two event times (“time-
regularization”), see, e.g., [1, 2, 13, 14, 18, 24, 29, 39, 42–44] and the references
therein;

• Periodic Event-Triggered control (PETC) schemes that check the event conditions
only at periodic sampling times that are equidistantly distributed along the time
axis, see, e.g., [24, 25, 28, 29, 36] and the references therein.

In this chapter, we provide an overview of our recent results for the analysis
and design of PETC and time-regularized CETC schemes that are tailored to linear
systems as provided in [8, 25, 26]. In particular, we discuss two different analysis
and design frameworks: the framework as developed in [26], which uses ideas from
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lifting [4, 10, 16, 45, 46, 53], and the framework as developed in [6–8, 25], which
exploits matrix Riccati differential equations.

The lifting-based framework of [26] applies to PETC systems, and leads to the
important result that the stability and contractivity in L2-sense (meaning that the
L2-gain is smaller than 1) of PETC closed-loop systems (which are hybrid systems)
is equivalent to the stability and contractivity in �2-sense (meaning that the �2-gain is
smaller than 1) of an appropriate discrete-time piecewise linear system [26]. These
new insights are obtained by adopting a lifting-based perspective on this analysis
problem, which leads to computable �2-gain (and thusL2-gain) conditions, despite
the fact that the linearity assumption, which is usually needed in the lifting literature,
is not satisfied.

The Riccati-based framework of [6–8, 25] applies both to PETC systems and to
time-regularized CETC systems, and exploits matrix Riccati differential equations
for the construction of appropriate Lyapunov/storage functions in the stability and
performance analysis. For the PETC case, we identify the connections and differ-
ences between the Riccati-based and lifting-based approaches. Moreover, for PETC
and time-regularized CETC systems, we show how the Riccati-based analysis leads
to new designs for dynamic Event-Triggered controllers. Interestingly, the inclu-
sion of a dynamic variable in the event-generator can lead to a significantly reduced
consumption of communication and energy resourceswhile leading to identical guar-
antees on stability and performance as their static counterparts, see also [13, 14, 21,
37, 38] in which designs of dynamic ETC schemes for general nonlinear systems
were proposed for the first time.

Both frameworks lead to computationally friendly semi-definite programming
conditions, and can also be used for applications in many other domains, including
reset control, networked control systems, and switching sampled-data controllers [4,
9–11, 19, 45, 46, 53].

The chapter is organized as follows. In Sect. 7.2, we introduce the considered
Event-Triggered control setups. For PETC systems, we introduce the lifting-based
framework in Sect. 7.3, and the Riccati-based framework in Sect. 7.4. In Sect. 7.5,
we show how the Riccati-based framework of Sect. 7.4 can be modified in order to
analyze stability and contractivity of time-regularized CETC systems. We illustrate
the results by a numerical example in Sect. 7.6, which also shows that our new
frameworks tailored to linear systems are much less conservative than our previous
results for nonlinear systems in [13, 14], in the sense that tighter performance bounds
can be obtained. Finally, we discuss several directions of extensions of the two
frameworks in Sect. 7.7, and summarize the chapter in Sect. 7.8.

7.1.1 Notation

By N we denote the set of natural numbers including zero, i.e., N := {0, 1, 2, . . . }.
For vectors xi ∈ R

ni , i ∈ {1, 2, . . . , N }, we denote by (x1, x2, · · · , xN ) the vector
[x�

1 x
�
2 · · · x�

N ]� ∈ R
n with n = ∑N

i=1 ni . For a matrix P ∈ R
n×n , we write P � 0
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(P � 0) if P is symmetric and positive (semi-)definite, and P ≺ 0 (P � 0) if P
is symmetric and negative (semi-)definite. By I and O we denote the identity
and zero matrix of appropriate dimensions, respectively. For brevity, we some-
times write symmetric matrices of the form

[
A B
B� C

]
as

[
A B
� C

]
or

[
A �
B� C

]
. For a left-

continuous signal f : R≥0 → R
n and t ∈ R≥0, we use f (t+) to denote the limit

f (t+) = lims→t,s>t f (s).
For X,Y Hilbert spaces with inner products 〈·, ·〉X and 〈·, ·〉Y , respectively, a

linear operator U : X → Y is called isometric if 〈Ux1,Ux2〉Y = 〈x1, x2〉X for all
x1, x2 ∈ X . We denote by U ∗ : Y → X the (Hilbert) adjoint operator that satisfies
〈Ux, y〉Y = 〈x,U ∗y〉X for all x ∈ X and all y ∈ Y . The induced normofU (provided
it is finite) is denoted by ‖U‖X,Y = supx∈X\{0}

‖Ux‖Y
‖x‖X

. If the induced norm is finite we
say thatU is a bounded linear operator. If X = Y wewrite ‖U‖X and if X,Y are clear
from the context we use the notation ‖U‖. An operatorU : X → X with X a Hilbert
space is called self-adjoint if U ∗ = U . A self-adjoint operator U : X → X is called
positive semi-definite if 〈Ux, x〉 ≥ 0 for all x ∈ X . Given a positive semi-definite
U , we say that the bounded linear operator A : X → X is the square root of U if A
is positive semi-definite and A2 = U . This square root exists and is unique, see [31,
Theorem 9.4-1]. We denote it by U 1/2.

To a Hilbert space X with inner product 〈·, ·〉X , we can associate the Hilbert
space �2(X) consisting of infinite sequences x̃ = {x̃0, x̃1, x̃2, . . .} with x̃i ∈ X , i ∈
N, satisfying

∑∞
i=0 ‖x̃i‖2X < ∞, and the inner product 〈x̃, ỹ〉�2(X) = ∑∞

i=0〈x̃i , ỹi 〉X .
We denote �2(R

n) by �2 when n ∈ N≥1 is clear from the context. We also use the
notation �(X) to denote the set of all infinite sequences x̃ = {x̃0, x̃1, x̃2, . . .} with
x̃i ∈ X , i ∈ N. Note that �2(X) can be considered a subspace of �(X). As usual,
we denote by R

n the standard n-dimensional Euclidean space with inner product
〈x, y〉 = x�y and norm |x | = √

x�x for x , y ∈ R
n . L n

2 ([0,∞)) denotes the set of
square-integrable functions defined on R≥0 := [0,∞) and taking values in R

n with

L2-norm ‖x‖L 2 =
√∫ ∞

0 |x(t)|2dt and inner product 〈x, y〉L 2 = ∫ ∞
0 x�(t)y(t)dt

for x , y ∈ L n
2 ([0,∞)). If n is clear from the context we also writeL2. We also use

square-integrable functions on subsets [a, b] of R≥0 and then we write L n
2 ([a, b])

(or L2([a, b]) if n is clear from context) with the inner product and norm defined
analogously. The setL n

2,e([0,∞)) consists of all locally square-integrable functions,
i.e., all functions x defined on R≥0, such that for each bounded domain [a, b] ⊂
R≥0 the restriction x |[a,b] is contained in L n

2 ([a, b]). We also will use the set of
essentially bounded functions defined onR≥0 or [a, b] ⊂ R≥0, which are denoted by
L n∞([0,∞)) orL n∞([a, b]) with the norm given by the essential supremum denoted
by ‖x‖L∞ for an essentially bounded function x . A functionβ : R≥0 → R≥0 is called
aK -function if it is continuous, strictly increasing, and β(0) = 0.



7 Time-Regularized and Periodic Event-Triggered Control for Linear Systems 125

Fig. 7.1 Event-Triggered
control setup
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7.2 Event-Triggered Control Setup

In this paper, we consider the Event-Triggered control setup as shown in Fig. 7.1, in
which the plant P is given by

P :

⎧
⎪⎨

⎪⎩

d
dt x p = Apxp + Bpu + Bpww

y = Cyxp + Dyu

z = Czxp + Dzu + Dzww

(7.1)

and the controller C is given by

C :
{

d
dt xc = Acxc + Bc ŷ

u = Cuxc + Du ŷ.
(7.2)

For ease of exposition, we stick to the configuration of Fig. 7.1, although different
control setups are possible as well, see, e.g., [25].

In (7.1) and (7.2), xp(t) ∈ R
nxp denotes the state of the plant P , y(t) ∈ R

ny its
measured output, z(t) ∈ R

nz the performance output, and w(t) ∈ R
nw a disturbance

at time t ∈ R≥0. Furthermore, xc(t) ∈ R
nxc denotes the state of the controller C ,

u(t) ∈ R
nu is the control input at time t ∈ R≥0, and ŷ(t) ∈ R

ny denotes the output
that is available at the controller, given by

ŷ(t) = y(tk), t ∈ (tk, tk+1], (7.3)

where the sequence {tk}k∈N denotes the event (or transmission) times, which are
generated by the event-generator.

In this chapter, we consider periodic event-generators, and continuous event-
generators with time-regularization. We will provide their designs in Sects. 7.2.1
and 7.2.2, respectively. In order to do so, we will first define the state ξ :=
(xp, xc, ŷ) ∈ R

nξ , with nξ = nxp + nxc + ny , and the matrix Y ∈ R
2ny×nξ as

Y :=
[
Cy DyCu DyDu

O O I

]

(7.4)

such that ζ := (y, ŷ) = Y ξ .
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7.2.1 Periodic Event-Triggered Control

In a periodic Event-Triggered control (PETC) setup, the plant output y is sampled
periodically at fixed sample times sn = nh, n ∈ N, where h ∈ R>0 is the sample
period. At each sample time sn , n ∈ N, the event-generator decides whether or not the
measured output y(sn) should be transmitted to the controller. Hence, the sequence
of event times {tk}k∈N is a subsequence of the sequence of sample times {sn}n∈N.

In this work, we consider periodic event-generators of the form

t0 = 0, tk+1 = inf{t > tk | ζ�(t)Qζ(t) > 0, t = nh, n ∈ N}, (7.5)

where the scalar h ∈ R>0 and the matrix Q ∈ R
2ny×2ny are design parameters. A

possible choice for Q is given by

Q =
[

(1 − σ 2)I −I
−I I

]

(7.6)

with σ ∈ (0, 1), such that (7.5) reduces to

t0 = 0, tk+1 = inf{t > tk | |ŷ(t) − y(t)|2 > σ 2|y(t)|2, t = nh, n ∈ N},

which can be seen as the digital version of static continuous event-generators [41]
of the type

t0 = 0, tk+1 = inf{t ≥ tk | |ŷ(t) − y(t)|2 > σ 2|y(t)|2, t ∈ R≥0}.

Other control setups and other choices of Q are also possible, see, e.g., [25].
By introducing a timer variable τ ∈ [0, h], which keeps track of the time that

has elapsed since the latest sample time, the closed-loop PETC system consisting
of (7.1)–(7.3), and (7.5) can be written as the hybrid system

d
dt

[
ξ

τ

]

=
[
Aξ + Bw

1

]

, τ ∈ [0, h], (7.7a)

[
ξ+
τ+

]

=
[
Jξ

0

]

, τ = h and ζ�Qζ > 0, (7.7b)

[
ξ+
τ+

]

=
[

ξ

0

]

, τ = h and ζ�Qζ ≤ 0, (7.7c)

z = Cξ + Dw, (7.7d)

where



7 Time-Regularized and Periodic Event-Triggered Control for Linear Systems 127

A =
⎡

⎣
Ap BpCu BpDu

O Ac Bc

O O O

⎤

⎦ , B =
⎡

⎣
Bpw

O
O

⎤

⎦ , J =
⎡

⎣
I O O
O I O
Cy DyCu DyDu

⎤

⎦ ,

C = [
Cz DzCu DzDu

]
, and D = Dzw.

(7.8)

At sample times sn = nh, n ∈ N, the reset (7.7b) occurs when an event is triggered by
the event-generator, otherwise the state (ξ, τ ) jumps according to (7.7c). In between
the sample times, the system evolves according to the differential equation (7.7a),
where

(
ξ(s+

n ), τ (s+
n )

)
given by (7.7b) or (7.7c) denotes the starting point for the

solution to (7.7a) in the interval (sn, sn+1], n ∈ N. Hence, the solutions are considered
to be left-continuous signals.

7.2.2 Time-Regularized Continuous Event-Triggered Control

In this chapter, we also consider continuous event-generators with time-
regularization, of the form

tk+1 = inf{t ≥ tk + h | ζ�(t)Qζ(t) > 0}, (7.9)

where now the scalar h ∈ R≥0 is a timer threshold (a waiting time), which enforces a
MIET of (at least) h time units. If we again choose Q as in (7.6), then (7.9) constitutes
the time-regularized version of (7.2.1).Note that the practical implementation of (7.9)
requires continuous monitoring of the output y, which can be difficult to achieve on
digital platforms.

The closed-loop CETC system consisting of (7.1)–(7.3) and (7.9) can be written
as the hybrid system

d
dt

[
ξ

τ

]

=
[
Aξ + Bw

1

]

, τ ∈ [0, h] or ζ�Qζ ≤ 0 (7.10a)

[
ξ+
τ+

]

=
[
Jξ

0

]

, τ ∈ [h,∞) and ζ�Qζ > 0 (7.10b)

z = Cξ + Dw, (7.10c)

where the timer variable τ ∈ R≥0 now keeps track of the time that has elapsed since
the latest event time. The matrices A, B, C , D, and J are again given by (7.8).

7.2.3 Stability and Performance

As the objective of the paper is to study the L2-gain and internal stability of the
systems (7.7) and (7.10), let us first provide rigorous definitions of these important
concepts.
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Definition 7.1 The hybrid system (7.7) or (7.10) is said to have an L2-gain from
w to z smaller than γ if there exist a γ0 ∈ [0, γ ) and a K -function β such that, for
any w ∈ L2 and any initial conditions ξ(0) = ξ0 and τ(0) = h, the corresponding
solution to (7.7) or (7.10) satisfies ‖z‖L 2 ≤ β(|ξ0|) + γ0‖w‖L 2 . Sometimes, we also
use the terminology γ -contractivity (in L2-sense) if this property holds. Moreover,
1-contractivity is also called contractivity (inL2-sense).

Definition 7.2 The hybrid system (7.7) or (7.10) is said to be internally stable if there
exists a K -function β such that, for any w ∈ L2 and any initial conditions ξ(0) =
ξ0 and τ(0) = h, the corresponding solution to (7.7) or (7.10) satisfies ‖ξ‖L 2 ≤
β(max(|ξ0|, ‖w‖L 2)).

A few remarks are in order regarding this definition of internal stability. The re-
quirement ‖ξ‖L 2 ≤ β(max(|ξ0|, ‖w‖L 2)) is rather natural in this context as we are
working with L2-disturbances and investigate L2-gains. Indeed, just as in Defini-
tion 7.1, where a bound is required on theL2-normof the output z (expressed in terms
of a bound on |ξ0| and ‖w‖L 2), we require in Definition 7.2 that a similar (though less
strict) bound holds on the state trajectory ξ . Apart from internal stability, both design
frameworks also lead to global attractivity of the origin (i.e., limt→∞ ξ(t) = 0 for all
w ∈ L2, ξ(0) = ξ0 and τ(0) = h) and Lyapunov stability of the origin, see Propo-
sition 7.1 for the lifting-based framework and [8] for the Riccati-based framework.

Remark 7.1 In this chapter, we focus on the contractivity of the systems (7.7)
and (7.10) as γ -contractivity can be studied by proper scaling of the matrices C
and D in (7.7), i.e., Cscaled = γ −1C and Dscaled = γ −1D.

7.3 Lifting-Based Static PETC

In this section, we give an overview of ourwork [26], which provides a framework for
the contractivity and internal stability analysis of the static PETC system (7.7) using
ideas from lifting [4, 10, 16, 45, 46, 53]. Toobtain necessary and sufficient conditions
for internal stability and contractivity of (7.7), we use a procedure consisting of three
main steps:

• In Sect. 7.3.2, we apply lifting-based techniques to (7.7) (having finite-dimensional
input andoutput spaces) leading to adiscrete-time systemwith infinite-dimensional
input and output spaces (see (7.15) below). The internal stability and contractivity
of both systems are equivalent.

• In Sect. 7.3.3, we apply a loop transformation to the infinite-dimensional system
(7.15) in order to remove the feedthrough term, which is the only operator in the
system description having both its domain and range being infinite dimensional.
This transformation is constructed in such a manner that the internal stability and
contractivity properties of the system are not changed. This step is crucial for
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translating the infinite-dimensional system to a finite-dimensional system in the
last step.

• In Sect. 7.3.4, the loop-transformed infinite-dimensional system is converted into
a discrete-time finite-dimensional piecewise linear system (again without chang-
ing the stability and the contractivity properties of the system). Due to the finite
dimensionality of the latter system, stability and contractivity in �2-sense can be an-
alyzed, for instance, using well-known Lyapunov-based arguments. We elaborate
on these computational aspects (which also exploit semi-definite programming)
in Sect. 7.3.5.

These three steps lead to themain result as formulated inTheorem7.2,which states
that the internal stability and contractivity (inL2-sense) of (7.7) is equivalent to the
internal stability and contractivity (in �2-sense) of a discrete-time finite-dimensional
piecewise linear system. To facilitate the analysis, we first introduce the necessary
preliminary definitions in Sect. 7.3.1.

7.3.1 Preliminaries

Consider the discrete-time system of the form

ξk+1 = χ(ξk, vk) (7.11a)

rk = ψ(ξk, vk) (7.11b)

with vk ∈ V , rk ∈ R, ξk ∈ R
nξ , k ∈ N, with V and R Hilbert spaces, and χ : Rnξ ×

V → R
nξ and ψ : Rnξ × V → R.

For this general discrete-time system, we also introduce �2-gain specifications
and internal stability.

Definition 7.3 The discrete-time system (7.11) is said to have an �2-gain from v to
r smaller than γ if there exist a γ0 ∈ [0, γ ) and a K -function β such that, for any
v ∈ �2(V ) and any initial state ξ0 ∈ R

nξ , the corresponding solution to (7.11) satisfies

‖r‖�2(R) ≤ β(‖ξ0‖) + γ0‖v‖�2(V ). (7.12)

Sometimes, we also use the terminology γ -contractivity (in �2-sense) if this property
holds. Moreover, 1-contractivity is also called contractivity (in �2-sense).

Definition 7.4 The discrete-time system (7.11) is said to be internally stable if there
is a K -function β such that, for any v ∈ �2(V ) and any initial state ξ0 ∈ R

nξ , the
corresponding solution ξ to (7.11) satisfies

‖ξ‖�2 ≤ β(max(|ξ0|, ‖v‖�2(V )). (7.13)
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Note that this internal stability definition for the discrete-time system (7.11) par-
allels the continuous-time version in Definition 7.2. Moreover, since ‖ξ‖�∞ ≤ ‖ξ‖�2

and ‖ξ‖�2 < ∞ implies limk→∞ ξk = 0, we also have global attractivity and Lya-
punov stability properties of the origin when the discrete-time system is internally
stable.

7.3.2 Lifting the System

To study contractivity, we introduce the lifting operator W : L2,e[0,∞) → �(K )

with K = L2[0, h] given for w ∈ L2,e[0,∞) by W (w) = w̃ = {w̃0, w̃1, w̃2, . . .}
with

w̃k(s) = w(kh + s) for s ∈ [0, h] (7.14)

for k ∈ N. Using this lifting operator, we can rewrite the model in (7.7) as

ξk+1 = Âξ+
k + B̂w̃k (7.15a)

ξ+
k =

{
Jξk, ξ�

k Y
�QY ξk > 0

ξk, ξ�
k Y

�QY ξk ≤ 0
(7.15b)

z̃k = Ĉξ+
k + D̂w̃k (7.15c)

in which ξ0 is given and ξk = ξ(kh), k ∈ N≥1, ξ+
k = ξ(kh+) (assuming that ξ is

left-continuous) for k ∈ N, and w̃ = {w̃0, w̃1, w̃2, . . .} = W (w) ∈ �2(K ) and z̃ =
{z̃0, z̃1, z̃2, . . .} = W (z) ∈ �(K ). Here we assume in line with Definition 7.1 that
τ(0) = h in (7.7). Moreover,

Â : Rnξ → R
nξ , B̂ : K → R

nξ , Ĉ : Rnξ → K , and D̂ : K → K

are given for x ∈ R
nξ and ω ∈ K by

Âx = eAhx (7.16a)

B̂ω =
∫ h

0
eA(h−s)Bω(s)ds (7.16b)

(Ĉx)(θ) = CeAθ ξ (7.16c)

(D̂ω)(θ) =
∫ θ

0
CeA(θ−s)Bω(s)ds + Dω(θ), (7.16d)

where θ ∈ [0, h].
It follows that (7.15) is contractive if and only if (7.7) is contractive. In fact, we

have the following proposition
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Proposition 7.1 [26] The following statements hold:

• The hybrid system (7.7) is internally stable if and only if the discrete-time system
(7.15) is internally stable.

• The hybrid system (7.7) is contractive if and only if the discrete-time system (7.15)
is contractive.

• In case (7.7) is internally stable, it also holds that limt→∞ ξ(t) = 0 and ‖ξ‖L∞ ≤
β(max(|ξ0|, ‖w‖L 2)) for all w ∈ L2, ξ(0) = ξ0 and τ(0) = h.

7.3.3 Removing the Feedthrough Term

Following [4], we aim at removing the feedthrough operator D̂ as this is the only
operator with both its domain and range being infinite dimensional. Removal can
be accomplished by using an operator-valued version of Redheffer’s lemma, see [4,
Lemma 5]. The objective is to obtain a new system (without feedthrough term) and
new disturbance inputs ṽk ∈ K , new state ξ̄k ∈ R

nξ , and new performance output
r̃k ∈ K , k ∈ N, given by

ξ̄k+1 = Āξ̄+
k + B̄ṽk (7.17a)

ξ̄+
k =

{
J ξ̄k, ξ̄�

k Y
�QY ξ̄k > 0

ξ̄k, ξ̄�
k Y

�QY ξ̄k ≤ 0
(7.17b)

r̃k = C̄ ξ̄+
k (7.17c)

such that (7.15) is internally stable and contractive if and only if (7.17) is internally
stable and contractive. To do so, we first observe that a necessary condition for
the contractivity (7.15) is that ‖D̂‖K < 1. Indeed, ‖D̂‖K ≥ 1 would imply that
for any 0 ≤ γ0 < 1 there is a w̃0 ∈ K \ {0} with ‖D̂w̃0‖K ≥ γ0‖w̃0‖K , which, in
turn, would lead for the system (7.15) with ξ0 = 0 and thus ξ+

0 = 0 and disturbance
sequence {w̃0, 0, 0, . . .} to a contradiction with the contractivity of (7.15). We can
now find an equivalent system of the form (7.17), with bounded linear operators

Ā : Rnξ → R
nξ , B̄ : K → R

nξ , and C̄ : Rnξ → K .

These operators are given by [26, Sect. IV.B]

Ā = Â + B̂ D̂∗(I − D̂ D̂∗)−1Ĉ, (7.18a)

B̄ = B̂(I − D̂∗ D̂)−
1
2 , (7.18b)

C̄ = (I − D̂ D̂∗)−
1
2 Ĉ . (7.18c)

Hence, we establish the following result.



132 D. P. Borgers et al.

Theorem 7.1 [26] If ‖D̂‖K < 1, then internal stability and contractivity of sys-
tem (7.15) with Â, B̂, Ĉ , and D̂ as in (7.16) are equivalent to internal stability and
contractivity of system (7.17) with Ā, B̄, and C̄ as in (7.18).

7.3.4 From Infinite-Dimensional to Finite-Dimensional
Systems

The system (7.17) is still an infinite-dimensional system, although the operators Ā, B̄,
and C̄ have finite rank and therefore have finite-dimensional matrix representations.
Following (and slightly extending) [4], we now obtain the following result.

Theorem 7.2 [26] Consider system (7.7) and its lifted version (7.15) with ‖D̂‖K <

1. Define the discrete-time piecewise linear system

ξk+1 =
{
A1ξk + Bdvk, ξ�

k Y
�QY ξk > 0

A2ξk + Bdvk, ξ�
k Y

�QY ξk ≤ 0
(7.19a)

rk =
{
C1ξk, ξ�

k Y
�QY ξk > 0

C2ξk, ξ�
k Y

�QY ξk ≤ 0,
(7.19b)

k ∈ N, with A1 = Ad J , A2 = Ad , C1 = Cd J , and C2 = Cd , where Ad is defined by

Ad = Â + B̂ D̂∗(I − D̂ D̂∗)−1Ĉ (7.20a)

and Bd ∈ R
nξ ×nv and Cd ∈ R

nr×nξ are chosen such that

Bd B
�
d = B̄ B̄∗ = B̂(I − D̂∗ D̂)−1 B̂∗ and

C�
d Cd = C̄∗C̄ = Ĉ∗(I − D̂ D̂∗)−1Ĉ . (7.20b)

The system (7.7) is internally stable and contractive if and only if the system (7.19)
is internally stable and contractive.

Hence, this theorem states that under the assumption ‖D̂‖K < 1 (which is a
necessary condition for contractivity of (7.7)) the internal stability and contractivity
(in L2-sense) of (7.7) is equivalent to the internal stability and contractivity (in �2-
sense) of a discrete-time finite-dimensional piecewise linear system given by (7.19).
In the next section, we will show how the matrices Ad , Bd , and Cd in (7.19) can be
constructed, how the condition ‖D̂‖K < 1 can be tested, and how internal stability
and contractivity can be tested for the system (7.19).
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7.3.5 Computing the Discrete-Time Piecewise Linear System

To explicitly compute the discrete-time system (7.19) provided in Theorem 7.2,
we need to determine the operators B̂ D̂∗(I − D̂ D̂∗)−1Ĉ , B̂(I − D̂∗ D̂)−1 B̂∗, and
Ĉ∗(I − D̂ D̂∗)−1Ĉ to obtain the triple (Ad , Bd ,Cd) in (7.19). For the sake of self-
containedness, we recall the procedure proposed in [9] to compute this triple, assum-
ing throughout that ‖D̂‖K < 1.

First, we verify that ‖D̂‖K < 1, which is a necessary condition for the contrac-
tivity of (7.7). Define the Hamiltonian matrix

H :=
[
A+BMD�C BMB�

−C�LC − (
A+BMD�C

)�

]

(7.21)

in which L := (I − DD�)−1 and M := (I − D�D)−1, and the matrix exponential

F(τ ) := e−Hτ =
[
F11(τ ) F12(τ )

F21(τ ) F22(τ )

]

. (7.22)

The condition ‖D̂‖K < 1 is equivalent to the following assumption [26].

Assumption 7.3 λmax(D�D) < 1 and F11(τ ) is invertible for all τ ∈ [0, h].
Invertibility of F11(τ ) for all τ ∈ [0, h] can always be achieved by choosing h suffi-
ciently small, as F11(0) = I and F11 is a continuous function.

The procedure to find Ad , Bd , and Cd boils down to computing F(h), which then
leads to

Ad = F̄−1
11 , (7.23)

and

Bd B
�
d = −F̄−1

11 F̄12, (7.24a)

C�
d Cd = F̄21 F̄

−1
11 , (7.24b)

wherewe used the notation F̄11 := F11(h), F̄12 := F12(h), F̄21 := F21(h), and F̄22 :=
F22(h).

This provides the matrices needed for explicitly determining the discrete-time
piecewise linear system (7.19) for which the internal stability and contractivity tests
need to be carried out.

To guarantee the internal stability and contractivity of a discrete-time piecewise
linear system as in (7.19) (in order to guarantee these properties for the hybrid
system (7.7) using Theorem 7.2), we aim at finding a Lyapunov function V : Rnξ →
R�0 that satisfies the dissipation inequality [47, 52]

V (ξk+1) − V (ξk) < −r�
k rk + v�

k vk, k ∈ N, (7.25)
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and require that it holds along the trajectories of the system (7.19). An effective
approach is to use versatile piecewise quadratic Lyapunov/storage functions [17, 30]
of the form

V (ξ) =
{

ξ�P p
1 ξ with p = min{q ∈ {1, . . . , N } | ξ ∈ Ωq } when ξ�Y�QY ξ > 0

ξ�P p
2 ξ with p = min{q ∈ {1, . . . , N } | ξ ∈ Ωq } when ξ�Y�QY ξ ≤ 0

(7.26)
based on the regions

Ωp :=
{
ξ ∈ R

nξ
∣
∣ X pξ ≥ 0

}
, p ∈ {1, . . . , N } (7.27)

in which the matrices X p, p ∈ {1, . . . , N }, are such that {Ω1,Ω2, . . . ,ΩN } forms
a partition of Rnξ , i.e., ∪N

p=1Ωp = R
nξ and the intersection of Ωp ∩ Ωq is of zero

measure for all p, q ∈ {1, . . . , N } with p �= q.
This translates into sufficient LMI-based conditions for stability and contractivity

using three S-procedure relaxations [30], as formulated next.

Theorem 7.4 If there exist symmetric matrices P p
i ∈ R

nξ ×nξ , scalars a p
i , cpqi j , d

pq
i j ∈

R>0, and symmetric matrices E p
i ,U pq

i j ,W pq
i j ∈ R

nξ ×nξ

≥0 , with i, j ∈ {1, 2}, p, q ∈
{1, 2, . . . , N }, such that

[
P p
i + (−1)i a p

i Y
�QY − X�

p E
p
i X p

] � 0 (7.28a)

and

[
P p
i − C�

i Ci − A�
i P

q
j Ai −A�

i P
q
j Bd

−Bd P
q
j Ai I − B�

d Pq
j Bd

]

+
[

(−1)i cpqi j Y
�QY + (−1) j d pq

i j A�
i Y

�QY Ai (−1) j d pq
i j A�

i Y
�QY Bd

(−1) j d pq
i j B�

d Y
�QY Ai (−1) j d pq

i j B�
d Y

�QY Bd

]

−
[
X�

p U
pq
i j X p + A�

i X
�
q W

pq
i j Xq Ai A�

i X
�
q W

pq
i j Xq Bd

B�
d X�

q W
pq
i j Xq Ai B�

d X�
q W

pq
i j Xq Bd

]

≺ 0 (7.28b)

hold for all i, j ∈ {1, 2} and all p, q ∈ {1, 2, . . . , N }, then the discrete-timepiecewise
linear system (7.19) is internally stable and contractive.

Two comments are in order regarding this theorem. First, note that due to the
strictness of the LMIs (7.28), we guarantee that the �2-gain is strictly smaller than 1,
which can be seen from appropriately including the strictness into the dissipativity
inequality (7.25). Moreover, due to the strictness of the LMIs we also guarantee
internal stability. Second, the LMI conditions of Theorem 7.4 are obtained by per-
forming a contractivity analysis on the discrete-time piecewise linear system (7.19)
using three S-procedure relaxations:
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(i) require that ξ�P p
i ξ is positive only when (−1)iξ�Y�QY ξ ≤ 0 and X pξ ≥ 0

(this corresponds to the terms containing a p
i and E p

i in (7.28a), respectively);
(ii) use a relaxation related to the current time instant, i.e., if V (ξk) = ξ�

k P p
i ξk , then

it holds that (−1)iξ�
k Y

�QY ξk ≤ 0 and X pξk ≥ 0 (this corresponds to the terms
containing cpqi j and U pq

i j in (7.28b), respectively);
(iii) use a relaxation related to the next time instant, i.e., if V (ξk+1) = ξ�

k+1P
q
j ξk+1,

then it holds that (−1) jξ�
k+1Y

�QY ξk+1 ≤ 0 and Xqξk+1 ≥ 0 (this corresponds

to the terms containing d pq
i j and W pq

i j in (7.28b), respectively).

Theorem 7.4 can be used to guarantee the internal stability and contractivity
of (7.19) and hence, the internal stability and contractivity for the hybrid system (7.7).
In the next section, we will rigorously show that these results form significant im-
provements with respect to the earlier conditions for contractivity of (7.7) presented
in [11, 22, 25] and [48]. In Sect. 7.6, we also illustrate this improvement using two
numerical examples.

7.4 Riccati-Based PETC

In this section, we recall the LMI-based conditions for analyzing the stability and
contractivity analysis for the static PETC system (7.7) provided in [11, 25, 48], and
show the relationship to the conditions obtained in Sect. 7.3.2. This also reveals that
the conditions in Sect. 7.3.2 are (significantly) less conservative.

However, instead of reducing the conservatism in the stability and contractivity
analyses of [11, 25, 48], we have shown in [7, 8] that we can also exploit this
conservatism in order to reduce the amount of transmissions even further (with the
same stability and performance guarantees as the static counterpart). This leads to
the design of dynamic periodic event-generators, which we also cover in this section.

7.4.1 Static PETC

We follow here the setup discussed in [25], which is based on using a timer-dependent
storage function V : Rnξ × R�0 → R�0, see [47], satisfying

d
dt V ≤ −z�z + w�w, (7.29)

during the flow (7.7a), and

V (Jξ, 0) < V (ξ, h), for all ξ with ξ�Y�QY ξ > 0, (7.30a)

V (ξ, 0) < V (ξ, h), for all ξ with ξ�Y�QY ξ ≤ 0, (7.30b)
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during the jumps (7.7b) and (7.7c). From these conditions, we can guarantee that the
L2-gain from w to z is smaller than or equal to 1, see, e.g., [27].

In fact, in [25], V (ξ, τ ) was chosen in the form

V (ξ, τ ) = ξ�P(τ )ξ, τ ∈ [0, h], (7.31)

where P : [0, h] → R
nξ ×nξ is a continuously differentiable function with P(τ ) � 0

for τ ∈ [0, h]. The function P will be chosen such that (7.31) becomes a storage
function [47, 52] for the PETC system (7.7), (7.5) with the supply rate θ−2z�z −
w�w. In order to do so, we select the function P : [0, h] → R

nξ ×nξ to satisfy the
Riccati differential equation (where we omitted τ for compactness of notation)

d
dτ P = −A�P − PA − C�C − (PB + C�D)M(D�C + B�P). (7.32)

Note that the solution to (7.32) exists under Assumption 7.3, see also [3, Lemma 9.2].
As shown in the proof of [25, Theorem III.2], this choice for the matrix function P
implies the “flow condition” (7.29). The “jump condition” (7.30) is guaranteed in
[25] by LMI-based conditions that lead to a proper choice of the boundary value
Ph := P(h).

To formulate the result of [25], we again consider the Hamiltonian matrix (7.21)
and thematrix exponential (7.22). The function P : [0, h] → R

nξ ×nξ is then explicitly
defined for τ ∈ [0, h] by

P(τ ) = (F21(h − τ) + F22(h − τ)P(h)) (F11(h − τ) + F12(h − τ)P(h))−1 ,

(7.33)
provided that Assumption 7.3 holds.

Before stating the next theorem (which is a slight variation of [25, Theorem III.2]),
let us introduce the notation P0 := P(0), Ph := P(h), and a matrix S̄ that satisfies
S̄ S̄� := −F̄−1

11 F̄12. Amatrix S̄ exists under Assumption 7.3, because this assumption
will guarantee that the matrix −F̄−1

11 F̄12 is positive semi-definite.

Theorem 7.5 [7] If there exist matrices NT , NN ∈ R
2ny×2ny with NT , NN � 0 and

Ph ∈ R
nξ ×nξ with Ph � 0, and scalars β,μ ∈ R≥0, such that

[
Ph − Y�(NT + μQ)Y − J� (

F̄−�
11 Ph F̄

−1
11 + F̄21 F̄

−1
11

)
J J� F̄−�

11 Ph S̄

� I − S̄�Ph S̄

]

� 0,

(7.34)[
Ph − Y�(NN − βQ)Y − (

F̄−�
11 Ph F̄

−1
11 + F̄21 F̄

−1
11

)
F̄−�
11 Ph S̄

� I − S̄�Ph S̄

]

� 0, (7.35)

and Assumption 7.3 hold, then the static PETC system (7.7) is internally stable and
contractive.

Here, (7.29) is guaranteed by the choice of the function P : [0, h] → R
nξ ×nξ , (7.30a)

is guaranteed by (7.34), and (7.30b) is guaranteed by (7.35).
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In the spirit of Sect. 7.3.5, we can obtain that the LMI-based conditions in this
proposition are equivalent to a conservative check of the �2-gain being smaller than
or equal to 1 for the discrete-time piecewise linear system (7.19). In particular, the
stability and contractivity tests in Theorem 7.5 use a common quadratic storage func-
tion (although extension towards a piecewise quadratic storage function is possible,
see [8]) and only one of the S-procedure relaxations discussed in Sect. 7.3.5 (only (ii)
is used). In addition to this new perspective on the results in [11, 22, 25], a strong
link can be established between the existing LMI-based conditions described in The-
orem 7.5 and the lifting-based conditions obtained in this section, as formalized
next.

Theorem 7.6 [26] If the conditions of Theorem7.5 hold and the regions in (7.27) are
chosen such that for each i = 1, 2, . . . , N there is a ξ̄i ∈ R

nξ such that
ξ̄�
i Xi ξ̄i > 0,1 then ‖D̂‖K < 1 and the conditions of Theorem 7.4 hold.

This theorem reveals an intimate connection between the results obtained in [11,
22, 25] and the new lifting-based results obtained in the present paper. Indeed, as
already mentioned, the LMI-based conditions in [11, 22, 25] as formulated in The-
orem 7.5 boil down to an �2-gain analysis of a discrete-time piecewise linear sys-
tem (7.19) based on a quadratic storage function using only a part of the S-procedure
relaxations possible (only using (7.3.5), while the S-procedure relaxations (i) and (ii)
mentioned at the end of Sect. 7.3.5 are not used). Moreover, Theorem 7.6 shows that
the lifting-based results using Theorems 7.4 and 7.2 never provide worse estimates
of the L2-gain of (7.7) than the results as formulated in Theorem 7.5. In fact, since
the stability and contractivity conditions based on (7.19) can be carried out based
on more versatile piecewise quadratic storage functions and more (S-procedure) re-
laxations (see Theorem 7.4), the conditions in Theorems 7.4 and 7.2 are typically
significantly less conservative than the ones obtained in [11, 22, 25].

Remark 7.2 When Q is given by (7.6) with σ = 0, the static PETC system (7.7)
reduces to a sampled-data system. Moreover, in this case the related discrete-time
piecewise linear system reduces to a discrete-time LTI system, for which the l2-gain
conditions using a common quadratic Lyapunov/storage function are nonconserva-
tive (see [19, Lemma 5.1]). Hence, for sampled-data systems, Theorems 7.5 and 7.4
are equivalent and nonconservative.

7.4.2 Dynamic PETC

Although it is shown above that the stability and contractivity analysis in Theorem7.5
is conservative, it does provide an explicit Lyapunov/storage function for the PETC

1This condition implies that each region has a non-empty interior thereby avoiding redundant regions
of zero measure.



138 D. P. Borgers et al.

system (7.7), which the lifting-based approach does not. Moreover, that this con-
servatism can be exploited in order to further reduce the amount of communication
in the system, while preserving the internal stability and contractivity guarantees
[7, 8].

The idea is as follows. First, introduce the buffer variable η ∈ R (which will be
included in the event-generator), and define the signal ô : R≥0 → R

2ny × [0, h] × R

as
ô(t) := (ζ(sn), τ (t), η(t)), t ∈ (sn, sn+1], n ∈ N, (7.36)

which is the information that is available to the event-generator at time t ∈ R≥0.
The dynamic variable η will evolve according to

d
dt η = Ψ (ô), t ∈ (sn, sn+1), n ∈ N, (7.37a)

η+ = ηT (ô), t ∈ {tk}k∈N, (7.37b)

η+ = ηN (ô), t ∈ {sn}n∈N \ {tk}k∈N, (7.37c)

where the functions Ψ : R2ny × [0, h] × R → R, ηT : R2ny × [0, h] × R → R and
ηN : R2ny × [0, h] × R → R are to be designed. Note that at transmission times tk ,
k ∈ N, the variable η is updated differently than at the other sample times sn �= tk ,
n, k ∈ N, at which no transmission occurs.

The Lyapunov/storage function V given by (7.46) is often decreasing more than
strictly necessary along jumps (7.7b) and (7.7c). To further reduce the amount of
communication, we will store the “unnecessary” decrease of V as much as possible
in a dynamic variable η, which acts as a buffer. For contractivity and internal stability,
we need that the new Lyapunov/storage functionU (ξ, τ, η) = V (ξ, τ ) + η satisfies

d
dt U (ξ, τ, η) < w�w − z�z, τ ∈ (0, h] (7.38a)

U (ξ+, τ+, η+) ≤ U (ξ, τ, η), τ = h. (7.38b)

When a transmission is necessary according to the static event-generator (7.5), we
might choose not to transmit at this sample time. As the state then jumps according
to (7.7c), we can no longer guarantee that V does not increase along this jump.
However, an increase of V can be compensated by reducing η, and hence we can
defer the transmission until the buffer η is no longer large enough. The transmission
only needs to occur if the buffer η would become negative otherwise.

First, we choose the flow dynamics (7.37a) of η as

Ψ (ô) = −ρη, for τ ∈ (0, h], (7.39)

for any arbitrary decay rate ρ ∈ R>0. Together with (7.32), this choice of (7.39)
implies that (7.38a) holds.

Remark 7.3 AsΨ is given by (7.39), it follows that η(sn+1) = eρhη(s+
n ). Thus, since

the event-generator only needs to know the value of η at sample times sn , n ∈ N,
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the variable η does not need to continuously evolve according to (7.39) in the event-
generator. Instead, we can use the discrete-time dynamics just described.

For the functions ηT and ηN , we provide the following two designs. Together with
the inequalities (7.34) and (7.35), both designs ensure that (7.38b) holds.

(1) State-based dynamic PETC:

ηT (ô) = η + ξ�(Ph − J�P0 J )ξ, (7.40a)

ηN (ô) = η + ξ�(Ph − P0)ξ. (7.40b)

(2) Output-based dynamic PETC:

ηT (ô) = η + ζ� (NT + μQ) ζ, (7.41a)

ηN (ô) = η + ζ� (NN − βQ) ζ. (7.41b)

Here, the scalars ρ, μ, and β, and the matrices NT , NN , P0, and Ph follow from the
stability analysis of the static PETC system in Theorem 7.5.

The first design requires that the full state ξ(sn) is known to the event-generator
at sample time sn , n ∈ N. This is the case when y = (xp, xc) (e.g., when C is a static
state-feedback controller in which case y = xp and nxc = 0), as then ζ = ξ . When
y = xp and nxc �= 0, a copy of the controller could be included in the event-generator
in order to track the controller state xc.

The second design is more conservative, but can also be used in case the event-
generator does not have access to the complete vector (xp, xc), in which case ζ �= ξ .
Hence, this choice can be used for output-based dynamic PETC.

Finally, from the definition ofU it is clear that for all ξ ∈ R
nξ , τ ∈ [0, h], and all

η ∈ R≥0, it holds that

c1|ξ |2 + |η| ≤ U (ξ, τ, η) � c2|ξ |2 + |η|, (7.42)

where c1 and c2 are defined by

c1 = min
τ∈[0,h] λmin(P(τ )), and (7.43a)

c2 = max
τ∈[0,h] λmax (P(τ )), (7.43b)

and satisfy c2 ≥ c1 > 0. In order to ensure that U is a proper storage function, we
now only need to ensure that η does not become negative (i.e., that η(t) ∈ R≥0 for
all t ∈ R≥0).

First, assume that we start with η(0) ≥ 0. Next, note that in between jumps η

evolves according to the differential equation (7.39). When after a jump at sample
time sn ,n ∈ N,wehave thatη(s+

n ) ≥ 0, thendue to (7.39)wehave thatη(t) ≥ 0 for all
t ∈ (sn, sn+1]. Hence, it only remains to show that η does not become negative due to
the jumps at the sample times sn , n ∈ N. From (7.35), we know that ηN (ô(sn)) ≥ 0
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when η(sn) ≥ 0 and ζ(sn)�Qζ(sn) ≤ 0. This implies that, as long as η(sn) ≥ 0,
ηN (ô(sn)) can only become negative when ζ(sn)�Qζ(sn) > 0 (in which case the
static periodic event-generator (7.5) would trigger a transmission). Moreover, in
case ζ(sn)�Qζ(sn) > 0, we know from (7.34) that ηT (ô(sn)) ≥ 0 when η(sn) ≥ 0.
In other words, to ensure nonnegativity of η, we only need to trigger a transmission at
the sample times sn , n ∈ N, at which ηN (ô(sn)) < 0. Hence, we propose to generate
the sequence of event/transmission times {tk}k∈N by a new dynamic periodic event-
generator of the form

t0 = 0, tk+1 = inf{t > tk | ηN (ô(t)) < 0, t = nh, n ∈ N}. (7.44)

Here, the scalar h ∈ R>0 and the matrix Q ∈ R
2ny×2ny are design parameters, in

addition to the functions Ψ , ηT , and ηN . Note that the function ηN appears both in
the update dynamics (7.37c), as well as in the triggering condition in (7.44).

The closed-loopdynamicPETCsystemconsistingof (7.1)–(7.3), (7.37), and (7.44)
can be written as the hybrid system

d
dt

⎡

⎣
ξ

τ

η

⎤

⎦ =
⎡

⎣
Aξ + Bw

1
Ψ (ô)

⎤

⎦ , τ ∈ [0, h] (7.45a)

⎡

⎣
ξ+
τ+
η+

⎤

⎦ =
⎡

⎣
Jξ

0
ηT (ô)

⎤

⎦ , τ = h and ηN (ô) < 0 (7.45b)

⎡

⎣
ξ+
τ+
η+

⎤

⎦ =
⎡

⎣
ξ

0
ηN (ô)

⎤

⎦ , τ = h and ηN (ô) ≥ 0 (7.45c)

z = Cξ + Dw. (7.45d)

Theorem 7.7 [7] If η(0) ≥ 0 and the conditions of Theorem 7.5 hold, then the
dynamic PETC system (7.45) with (7.39) and (7.40a) or (7.41a) is internally stable
and contractive.2 Moreover, if the signal w is uniformly bounded, then also η is
uniformly bounded.

While the static periodic event-generator (7.5) only has design parameters h and
Q, the state-based dynamic event-generator (7.44) with (7.39) and (7.40a) has design
parameters h, Q, ρ, P0, and Ph , and the output-based dynamic event-generator (7.44)
with (7.39) and (7.41a) has design parameters h, Q, ρ, NT , NN , μ, and β. However,
for fixed h, Q, inequalities (7.34) and (7.35) are LMIs, in which case the parameters
Ph , P0, NT , NN , μ, and β can be synthesized (and optimized) numerically via semi-
definite programming (e.g., using Yalmip/SeDuMi in Matlab). Of course, manual
tuning of one or more of these parameters is also possible, but can be difficult given
the large design space.

2In the sense that Definitions 7.1 and 7.2 hold along solutions to the dynamic PETC system (7.45)
with (7.39) and (7.40a) or (7.41a).
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7.5 Riccati-Based Time-Regularized CETC

In the previous section, we analyzed internal stability and contractivity of the static
PETC system (7.7) making use of matrix Riccati differential equations. Similar ideas
can also be used to analyze internal stability and contractivity of the static CETC
system with time-regularization as in (7.10), which we will discuss in this section.
Moreover, just as in the previous section, this analysis also gives rise to a state-based
and an output-based dynamic continuous event-generator design, which we will also
provide here.

7.5.1 Static CETC

To analyze contractivity and stability of the system (7.10), we will now use a Lya-
punov/storage function V of the form

V (ξ, τ ) =
{

ξ�P(τ )ξ, when τ ∈ [0, h)

ξ�P(h)ξ, when τ ∈ [h,∞),
(7.46)

wherewe select P : [0, h] → R
nξ ×nξ to satisfy theRiccati differential equation (7.32),

such that again P : [0, h] → R
nξ ×nξ is a continuously differentiable function with

P(τ ) � 0 for τ ∈ [0, h].
In order to guarantee contractivity and stability of the system (7.10), we need that

d
dt V ≤ −z�z + w�w, (7.47)

during flow (7.10a), and

V (Jξ, 0) < V (ξ, h), for all ξ with ξ�Y�QY ξ > 0, (7.48)

during the jumps (7.10b).
Note that (7.48) and (7.30a) are identical, as well as (7.47) and (7.29) as long as

τ ∈ [0, h]. Hence, in contrast to Theorem 7.5, inequality (7.35) is not required, but
is replaced by the condition

d
dt V ≤ −z�z + w�w, for all ξ with ξ�Y�QY ξ ≤ 0 (7.49)

when τ > h. This leads to the following theorem.

Theorem 7.8 [6] Consider the CETC system (7.10) with (7.9), and Q ∈ R
2ny×2ny .

If there exist matrices NN , NT ∈ R
2ny×2ny , NN , NT � 0, and Ph ∈ R

nξ ×nξ , Ph � 0,
and scalars β,μ ∈ R≥0, such that
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[
A�Ph + Ph A + C�C + Y�(NN − βQ)Y �

B�Ph+D�C D�D − I

]

≺ 0, (7.50)

(7.34) and Assumption 7.3 hold, then the system is internally stable and contractive.

Here, (7.47) is guaranteed by the choice of the function P : [0, h] → R
nξ ×nξ when

τ ∈ [0, h] and by (7.50) when τ > h, and (7.48) is again guaranteed by (7.34).

7.5.2 Dynamic CETC

Similar to the PETC case, by adding a dynamic variable in the continuous event-
generator, the conservatism in Theorem7.8 can be exploited in order to further reduce
the amount of communication in the system, while preserving the internal stability
and contractivity guarantees.

Again,we introduce the buffer variable η ∈ R (whichwill be included in the event-
generator). As in the CETC case, the output y(t) can be measured continuously, now

o(t) := (ζ(t), τ (t), η(t)) (7.51)

is the information that is available at the event-generator at time t ∈ R≥0,
The variable η will evolve according to

d
dt η = Ψ (o), t ∈ (tk, tk+1), (7.52a)

η+ = ηT (o), t = tk, (7.52b)

where o(t) = (ζ(t), τ (t), η(t)) is the information that is available at the event-
generator at time t ∈ R≥0, and where the functions Ψ : R2ny × R

2≥0 → R and
ηT : R2ny × R

2≥0 → R≥0 are to be designed.
Next,we design the dynamics (7.52) of the variableηwith the goal of enlarging the

(average) inter-event times compared to the static continuous event-generator (7.9),
while maintaining the same stability and performance guarantees.

We now choose the flow dynamics (7.52a) of η as

Ψ (o) =
{ −2ρη, when τ ∈ [0, h) (7.53a)

−2ρη + ζ�(NN − βQ)ζ, when τ ∈ [h,∞), (7.53b)

for any arbitrary decay rate ρ ∈ R>0, and we again have two designs for the jump
dynamics (7.52b) of η.

(1) State-based dynamic CETC:

ηT (o) = η + ξ� (
Ph − J�P0 J

)
ξ, (7.54)

(2) Output-based dynamic CETC:
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ηT (o) = η + ζ� (NT + μQ) ζ (7.55)

In order to ensure that U (ξ, τ, η) = V (ξ, τ ) + η is a proper storage function, we
now only need to ensure that η does not become negative (i.e., that η(t) ∈ R≥0 for all
t ∈ R≥0). Hence, we propose to generate the sequence of jump/event times {tk}k∈N
by a dynamic continuous event-generator with time-regularization of the form

t0 = 0, tk+1 = inf{t ≥ tk + h | η(t) < 0}. (7.56)

The closed-loop dynamic CETC system consisting of (7.1)–(7.3), (7.52), and
(7.56) can be written as the hybrid system

d
dt

⎡

⎣
ξ

τ

η

⎤

⎦ =
⎡

⎣
Aξ + Bw

1
Ψ (o)

⎤

⎦ , τ ∈ [0, h] or η ≥ 0 (7.57a)

⎡

⎣
ξ+
τ+
η+

⎤

⎦ =
⎡

⎣
Jξ

0
ηT (o)

⎤

⎦ , τ > h and η < 0 (7.57b)

z = Cξ + Dw. (7.57c)

Theorem 7.9 [6] If η(0) ≥ 0 and the conditions of Theorem 7.8 hold, then the
dynamic CETC system (7.57) with (7.53) and (7.54) or (7.55) is internally stable
and contractive.3 Moreover, if the signal w is uniformly bounded, then also η is
uniformly bounded.

7.6 Numerical Example

Consider the unstable batch reactor of [27, 35, 50], with nxp = 4, nxc = 2, ny =
nw = nu = nz = 2, and plant and controller dynamics given by (7.1) and (7.2) with

Ap =

⎡

⎢
⎢
⎣

1.3800 −0.2077 6.7150 −5.6760
−0.5814 −4.2900 0.0000 0.6750
1.0670 4.2730 −6.6540 5.8930
0.0480 4.2730 1.3430 −2.1040

⎤

⎥
⎥
⎦ , Bp =

⎡

⎢
⎢
⎣

0.0000 0.0000
5.6790 0.0000
1.1360 −3.1460
1.1360 0.0000

⎤

⎥
⎥
⎦ ,

Bpw =
[
10 0 10 0
0 5 0 5

]

, Cy = Cz =
[
1 0 1 −1
0 1 0 0

]

, Dy = Dz = Dzw =
[
0 0
0 0

]

,

Ac =
[
0 0
0 0

]

, Bc =
[
0 1
1 0

]

, Cu =
[−2 0

0 8

]

, Du =
[
0 −2
5 0

]

.

3In the sense that Definitions 7.1 and 7.2 hold along solutions to the dynamic CETC system (7.57)
with (7.53) and (7.54) or (7.55).
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Note that for this system, themeasured output y is not equal to the full plant/controller
state (xp, xc), and thus we cannot use (7.40), (7.54), but we have to resort to (7.41)
for the dynamic PETC case and to (7.55) for the dynamic CETC case.

We choose h = 0.1, ρ = 10−3, and Q given by (7.6). For each choice of σ , we
use a bisection algorithm to minimize the L2-gain γ (by appropriately scaling the
matrices C and D, as discussed in Remark 7.1) based on Theorems 7.4, 7.5, and 7.8.
For the lifting-based approach of Theorem 7.4, we use a single region Ω1 = R

nξ ,
i.e., we choose p = 1 and X1 = O . The matrices NT and NN and scalars β and μ

follow from Theorem 7.5 for the dynamic PETC case, and from Theorem 7.8 for the
dynamic time-regularized CETC case.

Figure7.2a shows the guaranteed L2-gain γ as a function of σ for both PETC
approaches and the time-regularized CETC approach. Here, we see that using the
Riccati-based framework, a smaller L2-gain can be guaranteed by using a time-
regularized CETC scheme than by using a PETC scheme. This makes sense intuitive-
ly, as after h time units have elapsed, a time-regularized continuous event-generator
can trigger an event as soon as its event condition is violated, while a periodic event-
generator can only do so at a sample time sn , n ∈ N. Figure7.2a also shows that
for a static PETC system, the lifting-based approach of Theorem 7.4 provides better
L2-gain estimates than the Riccati-based approach of Theorem 7.5. However, the
L2-gain estimate of Theorem 7.5 also holds for both dynamic PETC strategies, while
theL2-gain estimate of Theorem 7.4 only holds for the static PETC strategy.

Figure7.2b shows τavg = (total number of events)/(simulation time), the average
inter-event times for the static and (output-based) dynamic event-generators, which
have been obtained by simulating the systems for 100 time units with ξ(0) = 0,
τ(0) = h, and η(0) = 0, and disturbance w given by

w(t) = e−0.2t

[
5 sin(3.5t)
− cos(3t)

]

. (7.58)

Finally, Fig. 7.2c shows the actual ratio ‖z‖L 2/‖w‖L 2 for disturbance w given
by (7.58), which has been obtained from the same simulations.

In Fig. 7.2c, we see that the dynamic event-generators exploit (part of) the conser-
vatism in theL2-gain analysis of Theorems 7.8 and 7.5 to postpone the transmissions.
This leads to higher ratios ‖z‖L 2/‖w‖L 2 (but still below the guaranteed bounds in
Fig. 7.2b), but also to consistently larger τavg , as can be seen in Fig. 7.2b.

Based on this example, we can conclude that for PETC systems, the lifting-based,
and Riccati-based frameworks each has their own advantages. The lifting-based
framework provides tighterL2-gain guarantees, while the Riccati-based framework
allows to extend the transmission intervals by using a dynamic event-generator. For a
fixedσ and agivendesiredperformance, the lifting-based framework allows for larger
h (hence, for larger minimum inter-event times) while the Riccati-based framework
may lead to larger average inter-event times τavg by using a dynamic event-generator.
Which framework is better thus depends on whether large minimum or average inter-
event times are desired.



7 Time-Regularized and Periodic Event-Triggered Control for Linear Systems 145

Fig. 7.2 Guaranteed
L2-gain γ for varying σ (a),
average inter-event times
τavg for disturbance w given
by (7.58) and different
event-generators (b), and
actual ratio ‖z‖L 2/‖w‖L 2

for disturbance w given
by (7.58) (c)
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For the time-regularized CETC case, only the Riccati-based framework applies,
which for this example yields (almost exactly) the same performance guarantees
as the lifting-based PETC approach, with the same minimum inter-event time h,
but often larger τavg . However, the designed continuous event-generator may be
difficult to implement on a digital platform, as it requires continuous measuring of
the output y.

To compare both frameworks with the (static or dynamic) time-regularized CETC
solutions of [13, 14], note that for a given and L2-gain γ , the waiting time h (or
τMI ET in the terminology of [14]) of the continuous event-generator proposed in [13,
14] cannot exceed the maximally allowable transmission interval (MATI) of [27].
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Moreover, for the same example in [27, Sect. IV],we can calculate thatwhenusing the
sampled-data protocol, no notion of stability can be guaranteed for MATI larger than
0.063. In contrast, here we guarantee internal stability andL2-stability for h = 0.1.
Hence, our frameworks tailored to linear systems are clearly much less conservative
than our previous results for nonlinear systems in [13, 14]. See also [6] for a direct
comparison between the static and dynamic continuous event-generators in Sect. 7.5
and the event-generators proposed in [13, 14].

7.7 Extensions

The results presented in this chapter can be extended in several ways.
First of all, the results in Sects. 7.4 and 7.5 can be extended toward the case with

communication delays, as long as these delays are upper bounded by the sampling
time or time threshold h, see [8]. In order to do so, for each possible delay d ∈ [0, h],
a function Pd : [0, d] → R

nξ ×nξ satisfying the Riccati differential equation (7.32)
needs to be synthesized. Hence, only a finite number of possible transmission delays
can be considered using this approach. However, when the delays can have any value
from a continuous interval, this situation can be effectively approximated by using a
gridding approach, see also [8, Remark III.7]. Similar ideas can be used to extend the
lifting-based approach in Sect. 7.3 toward delays. Moreover, certain Self-Triggered
schemes (e.g., [23, 34, 49]) can also be captured in this lifting-based framework,
see [40].

Second, our proposed frameworks can be extended toward decentralized setups in
a similar manner as in [25, Sect.V] for the static PETC case. However, this requires
that the clocks of all local event-generators are synchronized.

These extensions emphasize the usefulness of our new ETC solutions for linear
systems, but also uncovers two potential drawbacks. In our earlier work [14], we con-
sidered decentralized CETC setups for nonlinear systems with transmission delays.
These results can also be particularized to linear systems, giving rise to continuous
event-generators with time-regularization that are similar (although more conserva-
tive) to those proposed in Sect. 7.5. However, the analysis proposed in [14] does
not require clock synchronization for all local event-generators, and also directly
allows that the transmission delays can have any value from a continuous interval.
Hence, although the analysis in [14] (in the case of linear systems) provides less
tight performance guarantees than our new results tailored to linear systems that we
have proposed in this chapter, it does not suffer from the drawbacks that clocks need
to be synchronized (in case of decentralized event-generators) and that only a finite
number of possible transmission delays can be allowed.
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7.8 Summary

In this chapter, we have provided an overview of our recent results in the design
of time-regularized ETC and PETC schemes that are tailored to linear systems as
provided in [8, 25, 26]. In particular,wehave shown that stability and the contractivity
inL2-sense (meaning that theL2-gain is smaller than 1) of static PETC closed-loop
systems (which are hybrid systems) are equivalent to the stability and the contractivity
in �2-sense (meaning that the �2-gain is smaller than 1) of an appropriate discrete-time
piecewise linear system. These new insights are obtained by adopting a lifting-based
perspective on this analysis problem, which led to computable �2-gain (and thus
L2-gain) conditions, despite the fact that the linearity assumption, which is usually
needed in the lifting literature, is not satisfied.

We have also reviewed the results in [8] that lead to the design of time-regularized
CETC and PETC schemes based on Lyapunov/storage functions exploiting matrix
Riccati differential equations. Moreover, we have identified the connections between
the two approaches.

Additionally, we have discussed new designs of so-called (time-regularized and
periodic) dynamic ETC strategies focused on linear systems. Interestingly, the inclu-
sion of a dynamic variable in the event-generator can lead to a significantly reduced
consumption of communication and energy resourceswhile leading to identical guar-
antees on stability and performance as their static counterparts.

Via a numerical example, we have demonstrated that a Riccati-based CETC de-
sign, a Riccati-based PETC design, and a lifting-based PETC design each has their
own advantages. Hence, which choice of design framework is better depends on the
system at hand.

Acknowledgements This work is part of the research programmes “Wireless control systems: A
new frontier in automation” with project number 11382 and “Integrated design approach for safety-
critical real-time automotive systems” with project number 12698, which are (partly) financed by
the Netherlands Organisation for Scientific Research (NWO).

References

1. Abdelrahim, M., Postoyan, R., Daafouz, J., Nešić, D.: Input-to-state stabilization of nonlinear
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38. Postoyan, R., Tabuada, P., Nešić, D., Anta, A.: A framework for the event-triggered stabilization
of nonlinear systems. IEEE Trans. Autom. Control. 60(4), 982–996 (2015)

39. Selivanov, A., Fridman, E.: Event-triggered H∞ control: a switching approach. IEEE Trans.
Autom. Control. 61(10), 3221–3226 (2016)

40. Strijbosch, N.W.A., Dullerud, G.E., Teel, A.R., Heemels, W.P.M.H.: L2-gain analysis of pe-
riodic event-triggered and self-triggered control systems with delays using lifting techniques.
Submitted

41. Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans.
Autom. Control. 52(9), 1680–1685 (2007)

42. Tallapragada, P., Chopra, N.: Event-triggered dynamic output feedback control for LTI systems.
In: 51st IEEE Conference on Decision and Control, pp. 6597–6602 (2012)

43. Tallapragada, P., Chopra, N.: Decentralized event-triggering for control of nonlinear systems.
IEEE Trans. Autom. Control. 59(12), 3312–3324 (2014)

44. Tarbouriech, S., Seuret, A., Gomes da Silva Jr., J.M., Sbarbaro, D.: Observer-based event-
triggered control co-design for linear systems. IET Control. Theory Appl. 10(18), 2466–2473
(2016)

45. Toivonen, H.T.: Sampled-data control of continuous-time systems with an H∞ optimality
criterion. Automatica 28(1), 45–54 (1992)

46. Toivonen, H.T., Sågfors, M.F.: The sampled-data H∞ problem: a unified framework for
discretization-based methods and Riccati equation solution. Int. J. Control. 66(2), 289–310
(1997)

47. van der Schaft, A.: L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in
Control and Information Sciences, vol. 218. Springer, Berlin (1996)

48. van Loon, S.J.L.M., Heemels, W.P.M.H., Teel, A.R.: ImprovedL2-gain analysis for a class of
hybrid systemswith applications to reset and event-triggered control. In: 53rd IEEEConference
on Decision and Control, pp. 1221–1226 (2014)

49. Velasco,M., Fuertes, J.M.,Marti, P.: The self triggered taskmodel for real-time control systems.
In: 24th IEEE Real-Time Systems Symposium, pp. 67–70 (2003)

50. Walsh, G.C., Ye, H., Bushnell, L.G.: Stability analysis of networked control systems. IEEE
Trans. Control. Syst. Technol. 10(3), 438–446 (2002)

51. Wang, X., Lemmon, M.D.: Event-triggering in distributed networked control systems. IEEE
Trans. Autom. Control. 56(3), 586–601 (2011)

52. Willems, J.C.: Dissipative dynamical systems part I: general theory. Arch. Ration. Mech. Anal.
45(5), 321–351 (1972)

53. Yamamoto, Y.: New approach to sampled-data control systems-a function space method. In:
29th IEEE Conference on Decision and Control, vol. 3, pp. 1882–1887 (1990)


	7 Time-Regularized and Periodic Event-Triggered Control for Linear Systems
	7.1 Introduction
	7.1.1 Notation

	7.2 Event-Triggered Control Setup
	7.2.1 Periodic Event-Triggered Control
	7.2.2 Time-Regularized Continuous Event-Triggered Control
	7.2.3 Stability and Performance

	7.3 Lifting-Based Static PETC
	7.3.1 Preliminaries
	7.3.2 Lifting the System
	7.3.3 Removing the Feedthrough Term
	7.3.4 From Infinite-Dimensional to Finite-Dimensional Systems
	7.3.5 Computing the Discrete-Time Piecewise Linear System

	7.4 Riccati-Based PETC
	7.4.1 Static PETC
	7.4.2 Dynamic PETC

	7.5 Riccati-Based Time-Regularized CETC
	7.5.1 Static CETC
	7.5.2 Dynamic CETC

	7.6 Numerical Example
	7.7 Extensions
	7.8 Summary
	References




