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Incremental Stability of Hybrid
Dynamical Systems

J. J. Benjamin Biemond , Romain Postoyan , W. P. Maurice H. Heemels , Fellow, IEEE,
and Nathan van de Wouw

Abstract—The analysis of incremental stability typically
involves measuring the distance between any two solutions
of a given dynamical system at the same time instant, which
is problematic when studying hybrid dynamical systems.
Indeed, hybrid systems generate solutions defined with re-
spect to hybrid time instances (that consists of both the
continuous time elapsed and the discrete time, which is
the number of jumps experienced so far), and two solu-
tions of the same hybrid system may not be defined at
the same hybrid time instant. To overcome this issue, we
present novel definitions of incremental stability for hybrid
systems based on graphical closeness of solutions. As we
will show, defining incremental asymptotic stability with re-
spect to the hybrid time yields a restrictive notion, such that
we also investigate incremental asymptotic stability notions
with respect to the continuous time only or the discrete time
only, respectively. In this manner, two (effectively dual) in-
cremental stability notions are attained, called jump- and
flow incremental asymptotic stability. To present Lyapunov
conditions for these two notions, in both cases, we resort
to an extended hybrid system and we prove that the sta-
bility of a well-defined set for this extended system implies
incremental stability of the original system. We can then
use available Lyapunov conditions to infer the set stabil-
ity of the extended system. Various examples are provided
throughout this paper, including an event-triggered control
application and a bouncing ball system with Zeno behavior,
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that illustrate incremental stability with respect to continu-
ous time or discrete time, respectively.

Index Terms—Hybrid systems, incremental stability, Lya-
punov stability.

I. INTRODUCTION

ADYNAMICAL system is said to be incrementally asymp-
totically stable when all its solutions are asymptotically

stable, see, e.g., [1]–[4]. Loosely speaking, this means that i) the
states of any two solutions, whose initial conditions are “close”
to each other, remain “close” to each other for all positive times
and ii) the states of any two solutions converge toward each
other as time proceeds. Incremental stability (and the related
notions of convergence [5] and contraction [6]) is a key con-
cept that arises in a wide variety of control problems. Examples
include synchronization [7], tracking control and observer de-
sign [8], output regulation [5], robustness analysis [9], control
reconfiguration of systems with actuator and sensor faults [10],
frequency-domain analysis of nonlinear systems [11], model
reduction [12], construction of symbolic models for nonlinear
control systems [13], and many more.

The majority of the literature on incremental stability (and
related stability notions) focuses on smooth continuous-time
or discrete-time systems, while some works addressing such
stability properties for classes of nonsmooth systems can be
found in [8], [11], and [14]–[15]. The objective of this paper
is to investigate incremental stability for hybrid systems, for
which results in the literature are rare. Exceptions are the recent
works in [16]–[19], where incremental stability is studied for
a class of hybrid systems in the formalism of [20]. Results on
convergence for a class of measure differential inclusions can
be found in [21] and [22].

Since the solutions to a hybrid system experience both
continuous-time evolution and discrete events, these solutions
can be defined on a domain of hybrid time instants, which con-
sists of a pair containing the continuous time elapsed and the
number of discrete events [20]. The analysis of incremental
stability for hybrid systems in this formalism is challenging
for two reasons, both associated with the hybrid nature of the
dynamics. First, solutions for the same hybrid system do not
necessarily have identical hybrid time domains and, therefore,
it is not a priori clear at which hybrid time instants solutions
should be compared. Second, earlier works in [23] and [24] on
tracking control problems have shown that, if close solutions
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may exhibit jumps with a small time mismatch, as generally
occurs for hybrid systems with state-triggered jumps, then the
Euclidean distance function is not suitable due to the “peaks” in
this distance function.

In this paper, we address both challenges and we first propose
an incremental stability definition, which says that the graphs
of two maximal solutions with “close” initial conditions remain
“close” for all hybrid times and converge to each other when
hybrid time progresses. To decide when solutions should be con-
sidered “close” as stated in the previous sentence, we exploit the
concept of ε-closeness of hybrid arcs (see [20]) and we use a
generic mapping to evaluate the distance between the states of
the solutions, and not necessarily the Euclidean distance. Con-
sistent with incremental stability definitions for continuous-time
in [1] and discrete-time systems in [25], we define incremental
stability as a uniform asymptotic stability property.

When the asymptotic behavior of incremental stability is de-
fined with respect to the hybrid time, a restrictive system prop-
erty follows as we formally show that then the system is either
purely continuous, meaning that all its solutions exclusively
flow and do not undergo jumps, or it behaves like a discrete-
time systems and its solutions exclusively jump. Motivated by
this observation, we present alternative definitions that relax the
requirements on the hybrid time domains of the solutions. We
do this by introducing two weaker notions for (pre)incremental
stability, being flow (pre)incremental asymptotic stability, and
jump (pre)incremental asymptotic stability, where the systems
satisfy incremental asymptotic stability properties with respect
to the continuous time or discrete time, respectively. The anal-
ysis of flow incremental stability consists of evaluating the dis-
tance between two solutions at “close” continuous times, while
tolerating an offset between the discrete times at which the two
solutions are compared. Consequently, flow incremental stabil-
ity is important for hybrid systems, in which the continuous time
is more dominant than the discrete time as, e.g., in models of
mechanical systems with impacts. In contrast, the definition of
jump incremental stability allows an offset between the contin-
uous times while keeping the discrete time instances close. This
definition is relevant for systems for which the discrete time is
dominant.

We provide sufficient conditions for flow incremental asymp-
totic stability using the stability analysis of a set for an extended
system, as also employed in [1] for continuous-time systems.
Solutions of this extended system represent a pair of solutions
to the original system, where by construction, the continuous
time elapsed for both solutions are synchronized. The stability
of a well-defined set for this extended system is shown to be
equivalent to incremental stability with respect to continuous
time, provided that the distance between two solutions can al-
ways be evaluated at identical continuous times. This may not
be feasible when the “peaking phenomenon” of the distance
evaluated at identical continuous times necessitates the compar-
ison of solutions with a small time mismatch. In that case we
show, for a class of hybrid systems, that the analysis of flow
incremental stability with respect to a specifically constructed
distance function, for which no continuous-time mismatch is
required, allows us to prove flow incremental stability also in
the original (peaking) distance. Exploiting available set-stability

analysis techniques, we then provide Lyapunov-based suffi-
cient conditions for flow incremental stability. These results are
illustrated with two examples, including an event-triggered con-
trol system [26].

Additionally, sufficient conditions for the symmetric notion
of jump incremental asymptotic stability are also provided us-
ing a different extended hybrid system that synchronizes the
number of jumps of two solutions. We show that jump in-
cremental asymptotic stability is equivalent to uniform global
asymptotic stability of a well-defined set for this extended sys-
tem, and exploit this equivalence to provide Lyapunov-based
sufficient conditions for incremental stability using existing
set-stability analysis techniques. These results are applied to
the bouncing-ball system to show that the accumulation of
jumps (Zeno behavior) induces jump incremental asymptotic
stability.

Finally, the relations between the three definitions are inves-
tigated in detail. Moreover, we show that incrementally stable
continuous-time and discrete-time systems are flow or jump
incrementally stable, respectively, when these systems are em-
bedded in a hybrid system, thereby showing that these notions
naturally extend the “classical” ones.

To relate our work further to the existing literature, note that
the notions of incremental asymptotic stability with respect to
the hybrid time, as well as jump incremental stability, have not
been studied before. However, the incremental stability notion
presented in [16] and [17], as well as the two alternative notions
presented in [18], also prioritize continuous time and, conse-
quently, are related to the concept of flow incremental stability,
even though they all differ from flow incremental stability in
the following sense. First, in contrast to [18], flow incremen-
tal stability does not require to compare two solutions at the
same continuous time, but allows a small time mismatch, which
is essential to handle the “peaking” phenomenon. Second, we
require a uniform bound on the convergence rate for flow incre-
mental stability, in contrast with [18, Definition 2.2] and [16],
[17], which do not provide uniform notions, but is similar to [18,
Definition 2.9]. Finally, we allow for a larger class of distance-
like functions than in [16]–[18] and allow us to consider hy-
brid systems with noncomplete solutions or with solutions that
can have two consecutive jumps without flow in between. The
characterization of flow incremental stability in terms of set-
stability reminds of the approach in [18], when the assumptions
in [18] are satisfied, even though we use a different extended
system.

Focusing on systems with complete solutions, in our prelim-
inary work in [19], we have advertised the proposed definitions
for incremental stability. In this paper, we generalize these defi-
nitions to systems with noncomplete solutions, and, in addition,
provide a characterization of flow and jump incremental stabil-
ity using extended hybrid systems and set-stability results, not
given in [19].

This paper is organized as follows. Preliminaries are given
in Section II. The definitions of incremental stability in the
graphical sense is presented in Section III. We then define
flow and jump incremental stability and we provide the as-
sociated Lyapunov-based conditions in Sections IV and V, re-
spectively. The relations between the definitions are studied in
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Section VI and the link with existing notions for continuous-
time and discrete-time systems are addressed in Section VII.
Section VIII concludes the paper. All the proofs are given in the
appendix.

II. PRELIMINARIES

Let R := (−∞,∞), R≥0 := [0,∞), Z := {. . . ,−2,−1, 0,
1, 2, . . .}, N0 := {0, 1, 2, . . .}, and N>0 := {1, 2, . . .}. For x ∈
Rn and y ∈ Rm , (x, y) stands for [xT , yT]T . The notation I
denotes the identity mapping from R≥0 to R≥0 . A function
γ : R≥0 → R≥0 is of class K if it is continuous, zero at zero and
strictly increasing, and is of class K∞ if, in addition, it is un-
bounded. A continuous function γ : R≥0 × R≥0 −→ R≥0 is of
class KL if for each t ∈ R≥0 , γ(·, t) is of class K, and for each
s ∈ R>0 , γ(s, ·) is decreasing to zero for s → ∞. We consider
locally Lipschitz Lyapunov functions U : Rn → R≥0 (that are
not necessarily differentiable everywhere) and let ∂U(x) de-
note the generalized gradient of Clarke [27] at a point x ∈ Rn ,
which is defined as ∂U(x) = co{limi→∞ ∇U(xi) : xi → x
as i → ∞, xi /∈ ΩU }where ΩU is the union of the set of points

where U is not differentiable with any set of Lebesgue-measure
zero, and co(S) stands for the convex hull of the set S ⊂ Rn .
For a set-valued mapping F : Rn ⇒ Rm , the domain of F is the
set dom F := {x ∈ Rn : F (x) �= ∅}. Given sets S1 , S2 ⊂ Rn ,
let (S1

S2
) = S1 × S2 . We let Bs , for any s ∈ (0,∞), denote the

closed ball in Rn centered at the origin with radius s ∈ R>0 .
Given a closed set B ⊂ Rn and x ∈ Rn , the tangent cone at
point x to the set B is denoted as TB (x) := {y : ∀{tk}k∈N0 ,
tk ↓ 0,∀{xk}k∈N0 , xk → x and xk ∈ B,∃{yk}k∈N0 , yk → y,
with xk + tkyk ∈ B for any k ∈ N0}. Given a closed set B1 ⊂
Rn × Rn and points x, y ∈ Rn , let ‖x‖ denote the Euclidean
norm of x and let ρB1 (x, y) := inf(u,v )∈B1

∥
∥
(
x − u, y − v

)∥
∥.

We study hybrid systems of the form [20]
{

ẋ ∈ F (x) x ∈ C

x+ ∈ G(x) x ∈ D
(1)

where x ∈ Rn is the state, F is the flow map, G is the jump
map, C is the flow set, and D is the jump set. We assume that
system (1) satisfies the following hybrid basic conditions (see
[20, Assumption 6.5]):

A1) C and D are closed subsets of Rn .
A2) F : Rn ⇒ Rn is outer semicontinuous1 and locally

bounded2 relative to C, C ⊂ dom F , and F (x) is con-
vex for each x ∈ C.

A3) G : Rn ⇒ Rn is outer semicontinuous and locally
bounded relative to D, and D ⊂ dom G.

We recall some definitions related to [20]. A subset E ⊂ R≥0
× N0 is a hybrid time domain if for all (T, J) ∈ E, E ∩ ([0, T ]
× {0, 1, . . . , J}) =

⋃

j∈{0,1,...,J }([tj , tj+1], j) for some finite

1The set-valued mapping F : Rn ⇒ Rn is outer semicontinuous if for each
x ∈ Rn , every sequence {xi}i∈N0 of points xi ∈ Rn , i ∈ N0 , convergent to
x and any convergent sequence {yi}i∈N0 of points yi ∈ F (xi ), i ∈ N0 , one
has limi→∞ yi ∈ F (x), cf. [20, Definition 5.9].

2A set-valued mapping M : Rm ⇒ Rn is locally bounded relative to a set
S ⊂ M if, for each x ∈ Rm there exists a neighborhood Ux of x such that
M |S (Ux ) is bounded, where the set-valued mapping M |S from Rm to Rn

is defined as M (x) for x ∈ S and ∅ for x �∈ S , see [20, Definition 5.14].

sequence of times 0 = t0 ≤ t1 ≤ . . . ,≤ tJ +1 . A function φ :
E → Rn is a hybrid arc if E is a hybrid time domain and if
for each j ∈ N0 , t �→ φ(t, j) is locally absolutely continuous
on Ij := {t : (t, j) ∈ E}. The hybrid arc φ : dom φ → Rn is
a solution to (1) if the following conditions hold:

i) φ(0, 0) ∈ C ∪ D;
ii) for any j ∈ N0 , φ(t, j) ∈ C, and d

dt φ(t, j) ∈ F (φ(t, j))
for almost all t ∈ Ij ;

iii) for every (t, j) ∈ dom φ such that (t, j + 1) ∈ dom φ,
φ(t, j) ∈ D, and φ(t, j + 1) ∈ G(φ(t, j)).

A solution φ to (1) is maximal if it cannot be extended
and complete if dom φ is unbounded. For a solution φ to
(1), supt dom φ := sup{t ∈ R≥0 : ∃j ∈ N0 , (t, j) ∈ dom φ},
supj dom φ := sup{j ∈ N0 : ∃t ∈ R≥0 , (t, j) ∈ dom φ}, and
we call the solution t-complete or j-complete if supt dom φ =
∞ or supj dom φ = ∞, respectively.

We will use the following stability definitions.
Definition 1: Let δ : Rn → R≥0 be continuous. We say that

system (1) has the following properties:
i) stable with respect to δ if for any ε > 0 there exists s > 0

such that for any solution φ to (1) with δ(φ(0, 0)) < s,
δ(φ(t, j)) < ε for any (t, j) ∈ dom φ;

ii) uniformly in t (respectively, in j) globally preattractive
with respect to δ if for any ε > 0 and r > 0, there exists
T > 0 (respectively, J ∈ N>0) such that for any solu-
tion φ to (1) with δ(φ(0, 0)) < r, δ(φ(t, j)) < ε for any
(t, j) ∈ dom φ with t ≥ T (respectively, with j ≥ J);

iii) uniformly in t (respectively, in j) globally preasymptot-
ically stable with respect to δ [δ-UtGpAS (respectively,
δ-Uj GpAS)] if it is both stable with respect to δ and
uniformly in t (respectively, in j) globally preattractive
with respect to δ.
When, in addition all maximal solutions are t-complete
(respectively, j-complete), we say that system (1) is
uniformly in t (respectively, in j) globally asymptoti-
cally stable with respect to δ [δ-UtGAS (respectively,
δ-Uj GAS )]. �

The notions of δ-UtGpAS and δ-UjGpAS include stability
notions of sets by appropriate selection of the function δ.

III. FROM GRAPHICAL CLOSENESS TO INCREMENTAL

ASYMPTOTIC STABILITY

To define incremental stability for hybrid systems, we need
to evaluate the distance between any two solutions of system
(1). However, for hybrid systems, two solutions do not have the
same hybrid time domain in general. Hence, we may not be
able to compare two solutions of a given system at the same
(hybrid) time instant. To avoid that issue, we resort to graphical
closeness concepts. In particular, the definitions we propose
below are inspired by the notion of ε-closeness of hybrid arcs,
which is related to the Hausdorff distance between the graphs
of the hybrid arcs, see [20, Definition 4.11].

Definition 2: Given ε > 0, two hybrid arcs φ1 and φ2 are
ε-close if they satisfy the following conditions.

i) for all (t, j) ∈ dom φ1 there exists t′ ∈ R≥0 such that
(t′, j) ∈ dom φ2 , |t − t′| < ε and ‖φ1(t, j) − φ2(t′, j)‖
< ε.
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ii) for all (t, j) ∈ dom φ2 there exists t′ ∈ R≥0 such that (t′,
j)∈dom φ1 , |t−t′|<ε and ‖φ2(t, j)−φ1(t′, j)‖<ε. �

Using graphical closeness to compare solutions of hybrid
systems was motivated by earlier use in [16], [17], [19], and
[20]. In Definition 2, the hybrid arcs φ1 and φ2 are not compared
at the same hybrid time instant but at (t, j) for one and (t′, j)
for the other, with |t − t′| < ε. In this way, dom φ1 and dom φ2
do not need to be equal, they only need to be “close” enough
so that for any (t, j) ∈ dom φ1 there exists an appropriate pair
(t′, j) ∈ dom φ2 and vice versa. Definition 2 may, therefore, be
used to compare two solutions to (1), even when these may not
have the same hybrid time domain.

The distance between two hybrid arcs is evaluated using the
Euclidean distance in Definition 2, which may be restrictive in
the context of incremental stability, see [4]. Inspired by [28], we
use a generic positive function, which we denote δ, instead of the
Euclidean distance, to compare the states of two hybrid solutions
and we will talk of incremental stability properties with respect
to a certain δ, which also allows us to characterize “output”
incremental stability (in addition to incremental stability for the
full state). We concentrate on mappings δ : Rn × Rn → R≥0 ,
which belong to the set D of continuous mappings that verify
for any x1 , x2 ∈ Rn :

1) δ(x1 , x2) = δ(x2 , x1);
2) x1 = x2 ⇒ δ(x1 , x2) = 0.

The first condition means that δ is symmetric and the sec-
ond one states that δ vanishes when x1 = x2 . In this way, the
functions in D are general enough to encompass the metrics
considered in [4], and [23] as particular cases and to accom-
modate the features of state-triggered hybrid systems for which
the requirement that δ(x1 , x2) = 0 implies x1 = x2 leads to an
overly restrictive stability notion, see [23].

In view of Definition 2 and the discussion above, we propose
the following definition of incremental asymptotic stability.

Definition 3: Given δ ∈ D, system (1) is uniformly preincre-
mentally asymptotically stable with respect to δ in the graphical
sense (δ-UpIS) if the following conditions hold.

i) For any ε > 0, there exists s > 0 such that for any pair of
maximal solutions (φ1 , φ2) with δ(φ1(0, 0), φ2(0, 0)) <
s it holds that, for all (t, j) ∈ dom φ1 , there exists
(t′, j) ∈ dom φ2 with |t − t′| < ε such that δ(φ1(t, j),
φ2(t′, j)) < ε.

ii) For any ε > 0 and r > 0, there exists Θ ≥ 0 such that
for any pair of maximal solutions (φ1 , φ2) with δ(φ1(0,
0), φ2(0, 0)) < r it holds that, for all (t, j) ∈ dom φ1
with t + j ≥ Θ, there exists (t′, j) ∈ dom φ2 with |t −
t′| < ε such that δ(φ1(t, j), φ2(t′, j)) < ε.

System (1) is uniformly incrementally asymptotically stable
with respect to δ in the graphical sense (δ-UIS) when it is δ-UpIS
and any maximal solution to (1) is complete. �

Item i) of Definition 3 is a stability property of all maximal
solutions. It means that for any ε > 0, there exists s > 0 such
that any two maximal solutions φ1 and φ2 are ε-close, in the
distance function δ, when δ(φ1(0, 0), φ2(0, 0)) < s. Item ii) of
Definition 3 is a uniform global attractivity property of all the
maximal solutions. It requires that, for any ε, r > 0, there exists
Θ > 0 such that any two maximal solutions φ1 and φ2 with
δ(φ1(0, 0), φ2(0, 0)) < r are ε-close (in the distance function

δ) after a uniform amount of time Θ, the “tails” of the solutions
are ε-close. Notice that we do not explicitly state symmetric
statements as in Definition 2, as items i) and ii) of Definition 3
hold for any pair of maximal solutions.

Remark 1: A related, nonuniform definition for incremental
stability of hybrid systems has been provided in [16] and [17].
However, uniformity is a key aspect of incremental stability
also in continuous-time systems, see [1], we have chosen to
provide uniform incremental stability notions by imposing
less restrictive conditions on the hybrid time domains of
different solutions. As the uniform attractivity requirement
in item ii) of Definition 3 is more restrictive than the even-
tually closeness requirement of φ1 and φ2 in [16] and [17,
Example 3.5], the system in this example is not δ-UIS according
to Definition 3. �

Definition 3 implies that, when there exists a pair of maximal
solutions φ1 and φ2 with φ1 complete and φ2 not complete,
system (1) can never be δ-UpIS for any δ ∈ D, as item ii) of
Definition 3 can never be satisfied. Hence, either all maximal
solutions should be complete or all should have a bounded hy-
brid time domain for the system to be δ-UpIS. Consequently,
Definition 3 not only requires the states of any two solutions to
remain close and to converge to each other, it also requires their
hybrid time domains to be close and to converge to each other
(namely, the maximally allowed time mismatch |t − t′| has to
decrease when time evolves), which is a strong requirement as
confirmed by the proposition below.

Proposition 1: Consider system (1) and suppose it is δ-UIS
for a given δ ∈ D. Then, one of the following properties holds:
i) dom φ = R≥0 × {0} for any maximal solution φ; and ii)
dom φ = {0} × N0 for any maximal solution φ. �

Proposition 1 implies that, if system (1) is δ-UIS (whatever
δ ∈ D is adopted), it is either a purely continuous-time system
or a purely discrete-time system, which is clearly restrictive. For
this reason, in the following sections, we formulate incremen-
tal stability notions, which can be satisfied by a larger class of
hybrid systems and enable application of these incremental sta-
bility notions to study, e.g., tracking control, observer design,
or synchronisation problems for hybrid systems. In fact, we
present alternative definitions to characterize hybrid systems,
which exhibit incremental stability properties with respect to
the continuous time, or the discrete time, respectively, which
are less restrictive than the generic δ-UIS property proposed in
this section. We remark that in [18, Definition 2.2], uniformity of
the convergence property is dropped, therewith attaining a less
stringent system property in a different manner than proposed
here.

Remark 2: Interestingly, hybrid systems with noncomplete
maximal solutions can be δ-UpIS, while still allowing solutions
with both flow and jumps. An example is given by ẋ = −1 when
x ∈ [1, 2] and x+ = 0 when x = 1, where x ∈ R and δ is the
Euclidean distance. �

IV. FLOW INCREMENTAL ASYMPTOTIC STABILITY

Given the restrictive nature of δ-UIS observed in
Proposition 1, we present in Section IV-A an incremental stabil-
ity notion, which considers continuous time as more important
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than the discrete time. Subsequently, sufficient Lyapunov-based
conditions are presented in Section IV-B followed by application
of these results for event-triggered control systems in
Section IV-C. In Section IV-D, we show how incremental stabil-
ity can be analyzed if “peaking” of the distance function occurs.

A. Definition

We propose the next incremental stability definition, in which
the solutions to (1) are evaluated at close continuous times,
while disregarding the number of jumps elapsed contrary to
Definition 3.

Definition 4: Given δ ∈ D, system (1) is flow uniformly
preincrementally asymptotically stable with respect to δ (δ-
FUpIS) if the following conditions hold.

i) For any ε > 0, there exists s > 0 such that for any pair
of maximal solutions (φ1 , φ2) with δ(φ1(0, 0), φ2(0, 0))
< s it holds that, for all (t, j) ∈ dom φ1 , there exists
(t′, j′) ∈ dom φ2 with |t − t′| < ε such that δ(φ1(t, j),
φ2(t′, j′)) < ε.

ii) For any ε > 0 and r > 0, there exists T ≥ 0 such
that for any pair of maximal solutions (φ1 , φ2) with
δ(φ1(0, 0), φ2(0, 0)) < r it holds that, for all (t, j) ∈
dom φ1 with t ≥ T , there exists (t′, j′) ∈ dom φ2 with
|t − t′| < ε such that δ(φ1(t, j), φ2(t′, j′)) < ε.

System (1) is flow uniformly incrementally asymptotically
stable with respect to δ (δ-FUIS) when, in addition, any maximal
solution φ to (1) is t-complete. �

Item i) of Definition 4 is a stability property. It implies that
any two solutions φ1 and φ2 , which are initialized close to each
other (where δ is used to evaluate the distance between the initial
conditions), remain close to each other at some close continuous
times, discarding the number of jumps the solutions have expe-
rienced. It also implies that supt dom φ1 and supt dom φ2 are
“close,” otherwise there may not exist (t′, j′) ∈ dom φ2 such
that |t − t′| < ε in item i) of Definition 4. Item ii) is a uni-
form global attractivity property of every solution, as the con-
stant T is the same for all maximal solutions φ1 and φ2 with
δ(φ1(0, 0), φ2(0, 0)) < r, given ε, r > 0. It can be noted that the
time mismatch t − t′ of the solutions in Definition 4 reminds
of Zhukovsky stability for continuous-time systems, see [29,
Ch. 8.4] for instance. If δ is the Euclidean distance, a small time
mismatch t − t′ can circumvent the “peaking phenomenon” of
the error δ(φ1(t, j), φ2(t, j′)) as described in, e.g., [21], [23],
and [24].

When there exists a pair of maximal solutions φ1 and φ2
with supt dom φ1 = ∞ and supt dom φ2 < ∞, the system can
never be δ-FUpIS for any δ ∈ D, as item ii) of Definition 4 can
never be satisfied. Hence, either all maximal solutions should
be t-complete or all hybrid time domains should be bounded in
the t-direction for the system to be δ-FUpIS. In the first case,
δ-FUpIS would immediately become δ-FUIS. We also remark
that when supt dom φ < T ′ < ∞ for all maximal solutions φ to
(1), with T ′ > 0, then item ii) of Definition 4 trivially holds by
taking T = T ′.

Remark 3: A formulation of δ-FU(p)IS in Definition 4 can
also be given in terms of KL-functions, similar to [1]. Namely,
given δ ∈ D, system (1) is δ-FUpIS if and only if there exists

β ∈ KL such that for any pair of maximal solutions φ1 , φ2 , and
any (t, j) ∈ dom φ1

inf
(t ′,j ′)∈dom φ2

max
(

|t − t′|, δ(φ1(t, j), φ2(t′, j′))
)

≤ β(δ(φ1(0, 0), φ2(0, 0)), t) (2)

and (1) is δ-FUIS if and only if, in addition, all maximal solutions
φ are t-complete. The only-if-statement trivially holds, whereas
the if-statement follows from the observation that the required
existence of (t′, j′) in items i) and ii) of Definition 4 is equiva-
lent to inf(t ′,j ′)∈dom φ2 max (|t − t′|, δ(φ1(t, j), φ2(t′, j′))) < ε,
combined with standard arguments to construct a function
β ∈ KL from the two mappings ε �→ s(ε) and (ε, r) �→ T (ε, r)
as used, e.g., in the proof of [30, Lemma 4.5]. �

Remark 4: Definition 4 differs from the two definitions in
[18] on several points. First, a solution may experience two con-
secutive jumps (see [19, Example 1] for instance) and the max-
imal solutions to system (1) are not required to be t-complete
in the definition of δ-UpIS, relaxing [18, Assumption 2.1]. Sec-
ond, the class of admissible distance-like functions D is broader
than the distance functions allowed in [18]. Third, in contrast to
[18], the solutions φ1 and φ2 in Definition 4 are not compared
at the same continuous time t but at two (potentially) distinct
times t and t′ with |t − t′| < ε, which provides more flexibil-
ity. Fourth, a uniform bound is imposed in Definition 4 on the
convergence rate in contrast with [18, Definition 2.2] and [16],
[17], but similar to [18, Definition 2.9]. �

In the following, we propose a Lyapunov characterization of
flow incremental stability. We focus on δ-FUIS for any given
δ ∈ D, and we leave the study of δ-FUpIS for future work.

B. Lyapunov Conditions

We introduce an extended system as suggested in [1] in the
context of continuous-time systems and in [31] for hybrid sys-
tems (without “time mismatch”). The idea is to duplicate the
system (1). In this way, we are able to compare two solutions of
the original system using the extended system, now having the
same hybrid time domain. The extended system is given by

(ẋ1 , ẋ2) ∈ Ff (x1 , x2) (x1 , x2) ∈ Cf(

x+
1 , x+

2

) ∈ Gf (x1 , x2) (x1 , x2) ∈ Df
(3)

where

Cf :=
{

(x1 , x2) : x1 ∈ C and x2 ∈ C
}

Df :=
{

(x1 , x2) : x1 ∈ D or x2 ∈ D
} (4)

and

Ff (x1 , x2) := (F (x1), F (x2)) for x1 , x2 ∈ Rn

Gf (x1 , x2) :=

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(G(x1), {x2})
if x1 ∈ D and x2 /∈ D

({x1}, G(x2))
if x1 /∈ D and x2 ∈ D

{(G(x1), {x2}), ({x1}, G(x2))}
if x1 ∈ D and x2 ∈ D.

(5)

The mapping Gf is such that the x1 system experiences a jump
when x1 ∈ D and vice versa for the x2 system. When x1 , x2
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∈ D, the solution jumps twice in any order. This construction
of the jump map is based on [31] and ensures that the jump map
(4) is outer semicontinuous, which is one of the hybrid basic
conditions, see Section II. In addition, this construction ensures
that a solution φ of the extended system (3) has experienced
as many jumps as the solutions φ1 and φ2 together (in contrast
to the different definition of the jump map for the extended
system proposed in [18]). The next lemma relates solutions to
the extended system (3) to solutions to (1).

Lemma 1: Suppose that any maximal solution to (1) is t-
complete. The following hold.

i) Consider any two maximal solutions φ1 , φ2 to (1). There
exists a solution φ to (3) such that for each (t, j) ∈
dom φ1 , there exist (t, j′) ∈ dom φ2 such that

φ(t, j + j′) = (φ1(t, j), φ2(t, j′)). (6)

ii) Given any solution φ to (3), there exist two solutions
φ1 , φ2 to (1) such that for every (t, j) ∈ dom φ, there exist
(t, j) ∈ dom φ1 , (t, j′) ∈ dom φ2 such that j = j + j′,
and (6) holds. �

Item i) of Lemma 1 implies that, for any pair of solutions
to the original system (1), there exists a maximal solution to
the extended system (3), which is equal to the former pair at
any continuous time, provided any maximal solution to (1) is t-
complete. The latter assumption is essential here. Indeed, if the
pair (φ1 , φ2) of solutions to (1) would be such that supt dom φ1
differs from supt dom φ2 , then the solution φ to the extended
system (3) initialized at (φ1(0, 0), φ2(0, 0)) will not continue
past continuous time min(supt dom φ1 , supt dom φ2) and, for
this reason, this extended system is not appropriate to charac-
terize δ-FUpIS but it is for δ-FUIS as we show in Theorem 1
below. Item ii) of Lemma 1 means that, for any solution to (3),
there exists a pair of solutions to (1), which, after a change of
the discrete times j, is mapped onto the solution to (3). Hence,
Lemma 1 shows that the solutions to systems (1) and (3) are
closely related apart from the discrete times, which are never-
theless irrelevant when investigating flow incremental stability
in view of Definition 4. The next result ensures t-completeness
of all maximal solutions to system (3).

Lemma 2: All maximal solutions φ to (1) are t-complete if
and only if all maximal solutions φ to (3) are t-complete. �

In the following theorem, we characterize δ-FUIS of system
(1) in terms of stability properties of the extended system (3).
The first characterization, which we will present in Theorem 1,
in fact yields a stronger system property, which is formalized in
the next definition. In Section IV-D, we provide a less restrictive
characterization for δ-FUIS.

Definition 5: Given δ ∈ D, system (1) is t-matched flow uni-
formly incrementally asymptotically stable with respect to δ (δ-
tFUIS) when (1) is δ-UIS and i) and ii) of Definition 4 also hold
when the requirements |t − t′|<ε are strengthened to t′= t. �

Definition 5 is closely related3 to [18, Definition 2.9], such
that the following theorem is closely related to Theorem 3.12

3Instead of imposing “closeness” for all (t, j) ∈ dom φ1 , in [18, Defini-
tion 2.9], only the time instants (t, j1 (t)) are covered, with j1 the minimal
integer such that (t, j1 ) ∈ dom φ1 , and more generic distance functions are
considered here.

of that paper, even though a different extended hybrid system is
considered compared to [18].

Theorem 1: Let δ ∈ D. The following statements are equiv-
alent: i) system (3) is δ-UtGAS, see Definition 1; ii) system (1)
is δ-tFUIS. �

Theorem 1 shows that δ-tFUIS of system (1) is equivalent to
δ-UtGAS of the extended system (3), similarly to what is done
for continuous-time systems in [1]. As a next step, the δ-UtGAS
property of system (3) can be established using the following
Lyapunov-based conditions.

Proposition 2: Suppose that there exist δ ∈ D, U : Cf ∪
Df ∪ Gf (Df ) → R≥0 , which is locally Lipschitz on an open
set containing Cf ∪ Df ∪ Gf (Df ), α1 , α2 ∈ K∞ and a contin-
uous positive-definite function σ such that the following condi-
tions hold:

i) for any (x1 , x2) ∈ Cf ∪ Df ∪ Gf (Df ), α1(δ(x1 , x2))
≤ U(x1 , x2) ≤ α2(δ(x1 , x2));

ii) for any (x1 , x2) ∈ Cf , ζ ∈ ∂U(x1 , x2), and f ∈ Ff (x1 ,
x2),〈ζ, f〉 ≤ −σ (U(x1 , x2));

iii) for any (x1 , x2) ∈ Df and g ∈ Gf (x1 , x2), U(g) ≤
U(x1 , x2);

iv) any maximal solution to (1) is t-complete. �
Then, system (3) is δ-UtGAS.
Condition iii) of Proposition 2 implies that the Lyapunov

function should not increase when jumps occur that emanate
from the sets D × C,C × D, and D × D. Our experience is that
these conditions are not overly restrictive. In fact, a constructive
method to design such Lyapunov functions for a subclass of
(piecewise linear) hybrid systems is provided in [32].

The combination of Proposition 2 and Theorem 1 provides
Lyapunov-based sufficient conditions for flow incremental sta-
bility. We remark that the conditions of Proposition 2 can be
relaxed when minimal or maximal (average) interjump times
can be guaranteed, cf., [32, Th. 2].

C. Case Study: Event-Triggered Control

Consider the plant ẋ = f(x, u), where x ∈ Rn is the state,
u ∈ Rm is the control input and f : Rn × Rm → Rn is continu-
ous. We design the feedback law u = k(x) with k : Rn → Rm

continuous, which we sample and hold using zero-order-hold
devices. Hence, the input applied to the plant is u = k(x̂)
with ˙̂x = 0 for all t ∈ (ti , ti+1), x̂(t+i ) = x(ti), where ti ,
i ∈ I ⊆ N0 , are the sampling instants. The sequence {ti}i∈I
is generated by an event-triggering condition, which means that
sampling occurs whenever a state-dependent criterion is satis-
fied, see [26] for more information. In particular, we consider the
rule, which triggers a transmission when ‖x̂ − x‖ ≥ ρ, where
ρ > 0 is a design parameter. This type of triggering law was
originally proposed in [33].

The overall system is modeled by the hybrid system

ẋ = f(x, k(x + e))
ė = −f(x, k(x + e))

}

when ‖e‖ ≤ ρ, and

x+ = x
e+ = 0

}

when ‖e‖ ≥ ρ (7)
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where e := x̂ − x denotes the sampling-induced error. System
(7) verifies the hybrid basic conditions, see Section II.

We assume that the feedback law u = k(x) ensures the ex-
istence of a Lyapunov function for incremental input-to-state
stability of the system ẋ = f(x, k(x + e)), which implies that
this system is incrementally input-to-state stable, see [1], as
formalized in the following assumption.

Assumption 1: There exist a continuously differentiable fun-
ction V : Rn × Rn → R≥0 , αV , αV , γ ∈ K∞, aV > 0 such
that the following conditions hold.

i) For any x1 , x2 ∈ Rn , αV (‖x1 − x2‖) ≤ V (x1 , x2) ≤
αV (‖x1 − x2‖).

ii) For any x1 , x2 , e1 , e2 ∈ Rn , 〈∇V (x1 , x2), (f(x1 , k(x1
+ e1)), f(x2 , k(x2 + e2)))〉 ≤−aV V (x1 , x2)+γ(‖e1−
e2‖). �

Assumption 1 can always be ensured when the plant is lin-
ear time-invariant, stabilizable, and detectable for instance. A
nonlinear example is provided at the end of this section.

The next proposition states that the event-triggered control
system (7) is δ-FUIS with δ defined as, for any x1 , e1 , x2 ,
e2 ∈ Rn

δ(x1 , e1 , x2 , e2) = max
{

V (x1 , x2) − a−1
V γ(2ρ), 0

}

(8)

where V, aV , γ come from Assumption 1.
Proposition 3: If Assumption 1 holds, then system (7) is

δ-FUIS with δ given in (8). �
Proposition 3 means that the incremental (input-to-state)

stability property of the continuous-time system ẋ = f(x,
k(x)) guaranteed by Assumption 1 is practically preserved
for the event-triggered controlled system (7), in the sense of
Definition 4, where the adjustable parameter is ρ.

Example 1: Consider the following system, which is similar
to the example in [1, Sec. VI.A]: ẋ1 = −βx1 + sat(x2)sat(x3),
ẋ2 = −σx2 + σx3 , and ẋ3 = u, where u = −x3 , β = 8

3 , σ =
10, and sat(s) = s for |s| ≤ 1 and sat(s) = s

|s| for |s| ≥ 1. The

induced system (7) verifies Assumption 1 with4 V (x, x′) = 1
2

(λ1(x1 − x′
1)

2 + λ2(x2 − x′
2)

2 + λ3(x3 − x′
3)

2), where λ1 =
0.0043, λ2 = 0.0017, λ3 = 0.0058, for any x = (x1 , x2 , x3)
and x′ = (x′

1 , x
′
2 , x

′
3), αV (s) = 1

2 mini∈{1,2,3} λis
2 , αV (s) =

1
2 maxi∈{1,2,3} λis

2 , γ(s) = 0.8674s2 for any s ≥ 0, and aV =
1. As a result, we can apply Proposition 3 to conclude that
the event-triggered control implementation of the feedback law
u = −x3 ensures that the corresponding system (7) is δ-FUIS
with δ given in (8) for any ρ > 0. �

D. Flow Incremental Stability With Time Mismatch

The Lyapunov conditions of flow incremental stability in
Section IV-B imply that the distance δ between solutions de-
creases when compared at the same continuous-time instant,
i.e., no time mismatch is needed and δ-tFUIS is shown. When
δ is the Euclidean distance, system (1) may be δ-FUIS but not
δ-tFUIS because of the “peaking phenomenon,” see, e.g., [23] in
the context of tracking control. To study δ-FUIS in this case, we
may resort to an auxiliary distance function ρA defined below,

4The values of λ1 , λ2 , λ3 , and γ were obtained using YALMIP [34].

which overcomes this issue, such that ρA-tFUIS may be estab-
lished (using the results in Section IV-B) leading to δ-FUIS.
Indeed, the theorem stated below provides conditions when ρA-
tFUIS implies δ-FUIS.

To construct such ρA motivated by [23], [32], we define

A :=
{

(x1 , x2) ∈ (C ∪ D ∪ G(D))2 : ∃k1 , k2 ∈ N0 ,

G
k1 (x1) ∩ G

k2 (x2) �= ∅
}

,

where G(x) := G(x) for x ∈ D and G(x) := ∅ for all x /∈ D,

G
k+1

(x) is inductively defined with G
k+1

(x) = G(G
k
(x))

and G(x)0 = x. We consider the distance function ρA(x1 , x2)
= inf(y1 ,y2 )∈A

∥
∥
(
x1 − y1 , x2 − y2

)∥
∥, which clearly satisfies

ρA ∈ D. When A is an invariant set to (3) (this condition can
hold while invariance of the set of points where x1 = x2 is not,
see, e.g., [23]), we can expect that solutions starting nearby
A will at least stay close to it over jumps, even though they
may be diverge from the set A during flows. Consequently, no
“peaking phenomenon” is expected in the distance ρA when
two solutions converge toward each other, see [23]. The next
theorem shows that ρA-tFUIS implies δ-FUIS, where we recall
that TC (x) is the tangent cone to C at x, see Section II.

Theorem 2: Consider system (1), let δ be the Euclidean dis-
tance and suppose that the following hold:

i) G(D) ∩ D = ∅ and G is single-valued;
ii) ∀x ∈ C ∩ D, F (x) ∩ TC (x) = ∅;

iii) ∀x ∈ C ∩ G(D), −F (x) ∩ TC (x) = ∅;
iv) D is bounded.

If system (1) is ρA-tFUIS, then it is δ-FUIS. �
Property ii) of Theorem 2 [combined with i) and iv)] implies

that when a solution φ is located in a small neighborhood of D at
hybrid time (t, j), then it will experience a jump at time (t′′, j)
with |t − t′′| small. This observation is exploited to construct
the times (t′, j′) as in Definition 4, when t′ > t is selected. The
cases where t′ < t holds are investigated by extending solutions
backward in time and exploit property iii).

The combination of conditions i) and iv) in Theorem 2 im-
plies that solutions to (1) will satisfy a minimal interjump time
and greatly simplifies the geometry of the set A; in particular,
these imply that A \ {(x, y) : x = y ∈ C ∪ D} is a compact
set, which is exploited in the proof of this theorem. We expect
that these conditions can be relaxed. Conditions ii) and iii) of
Theorem 2 imply that solutions to (1) cannot both flow and jump
from the same point in the state space, and the same holds for
the solution in the backward direction of time.

Remark 5: Conditions ii)–iv) of Theorem 2, as well as the
selection of δ as the Euclidean distance, are exploited to find a
uniform bound on the time-mismatch between the jumps of two
solutions. If D ∩ C is a smooth manifold, such a bound could
also be obtained by requiring that all solutions to the differential
inclusion ẋ ∈ F (x) traverse this manifold transversally. In this
manner, unbounded D and other functions δ ∈ D could also be
considered. �

V. JUMP INCREMENTAL ASYMPTOTIC STABILITY

The notion of incremental stability presented in Section IV
concentrates on the incremental behavior of solutions along
the continuous-time axis and ignores the number of jumps the
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solutions have experienced. We propose in this section a sym-
metric definition emphasizing the discrete time, while ignoring
the amount of continuous time during which two solutions have
been flowing so far.

A. Definition

Similar to flow incremental asymptotic stability, we define
below the symmetric notion of jump incremental asymptotic
stability.

Definition 6: Given δ ∈ D, system (1) is jump uniformly
preincrementally asymptotically stable with respect to δ
(δ-JUpIS) if the following conditions hold.

i) For any ε > 0, there exists s > 0 such that for any pair of
maximal solutions (φ1 , φ2) with δ(φ1(0, 0), φ2(0, 0)) <
s it holds that, for all (t, j) ∈ dom φ1 , there exists (t′, j) ∈
dom φ2 such that δ(φ1(t, j), φ2(t′, j)) < ε.

ii) For any ε > 0 and r > 0, there exists J ≥ 0 such that for
any pair of maximal solutions (φ1 , φ2) with δ(φ1(0, 0),
φ2(0, 0)) < r it holds that, for all (t, j) ∈ dom φ1
with j ≥ J , there exists (t′, j) ∈ dom φ2 such that
δ(φ1(t, j), φ2(t′, j)) < ε.

System (1) is jump uniformly incrementally asymptotically
stable with respect to δ (δ-JUIS) when, in addition, any maximal
solution φ to (1) is j-complete. �

In item i) of Definition 6, the distance between two solutions
is evaluated at the discrete time j, without imposing any con-
ditions on the continuous time in contrast with Definition 4. It
has to be noted that the solutions φ1 and φ2 in items i) and ii) of
Definition 6 are evaluated at the same discrete time j, and not at
(different) j and j′, respectively, with |j − j′| < ε as the reader
might expect. That is justified by the fact that when ε < 1,
|j − j′| < ε implies j = j′ since j, j′ ∈ N0 . Since the satisfac-
tion of items i) and ii) of Definition 6 for any ε ∈ (0, 1) implies
their satisfaction for any ε ≥ 1, there is no loss of generality in
evaluating φ1 and φ2 at the same discrete time j. We emphasize
again that item ii) of Definition 6 is a uniform attractivity prop-
erty, as the constant J is the same for all maximal solutions φ1
and φ2 with δ(φ1(0, 0), φ2(0, 0)) < r, given ε, r > 0.

Similar observations as for Definition 4 can be made. For
instance, when there exists a pair of maximal solutions (φ1 , φ2)
with supj dom φ1 = ∞ and supj dom φ2 < ∞, the system can
never be δ-JUpIS for any δ ∈ D, which implies that either
all maximal solutions are j-complete or all have a time do-
main that is bounded in the j-direction for the system to be
δ-JUpIS.

Remark 6: The existence of (t′, j) as in Definition 6 implies
inf(t ′,j )∈dom φ2 δ(φ1(t, j), φ2(t′, j)) < ε. We then derive that the
formulation of δ-JU(p)IS in Definition 6 can be formulated in
terms of KL-functions. Namely, given δ ∈ D, the system (1) is
δ-JUpIS if and only if there exists β ∈ KL such that for any pair
(φ1 , φ2) of maximal solutions and any (t, j) ∈ dom φ1

inf
(t ′,j )∈dom φ2

δ(φ1(t, j), φ2(t′, j)) ≤ β(δ(φ1(0, 0), φ2(0, 0)), j)

(9)
holds and (1) is δ-JUIS if and only if, in addition, all maximal
solutions φ are j-complete. �

B. Lyapunov Conditions

To provide conditions for jump incremental stability, similar
to the results in Section IV-B for flow incremental stability, we
define an extended hybrid system and relate jump incremental
stability of (1) to a uniform asymptotic stability property of the
extended system. We first introduce the function F (x) = F (x)
when x ∈ C and F (x) = ∅ otherwise.

In analogy to (3), we define the hybrid system

(ẋ1 , ẋ2) ∈ Fj (x1 , x2) (x1 , x2) ∈ Cj(

x+
1 , x+

2

) ∈ Gj (x1 , x2) (x1 , x2) ∈ Dj
(10)

where

Cj := (C × C) ∪ (C × D) ∪ (D × C)
Dj := D × D

Fj (x1 , x2) := co
{(

F (x1), 0
) × (

0, F (x2)
)}

Gj (x1 , x2) := (G(x1), G(x2)) (11)

for x1 , x2 ∈ Rn . The x1 and x2 subsystems are essentially
copies of system (1). To study δ-JUIS, however, the jumps
of the corresponding solutions have to be synchronized. This
motivates the construction of Fj , that allows flow for either sub-
system whenever possible, but when it has reached D and can no
longer flow, it “waits” (the flow map is zero for this subsystem),
until the other subsystem also reaches D. Subsequently, both
subsystems can jump in synchrony following Gj . The convex
hull in the construction of Fj ensures that the (10) verifies the
hybrid basic conditions. The relation between solutions to (10)
and (1) are provided in the following two lemmas.

Lemma 3: The following statements hold.
i) Consider any two j-complete solutions φ1 , φ2 to (1).

There exists a solution φ to (10) such that for every
(t, j) ∈ dom φ1 , there exists (t′, j) ∈ dom φ2 such that

φ(t + t′, j) = (φ1(t, j), φ2(t′, j)). (12)

ii) Given any solution φ to (10), there exist two solutions
φ1 , φ2 to (1) such that for every (t̄, j) ∈ dom φ, there exist
(t, j) ∈ dom φ1 and (t′, j) ∈ dom φ2 , such that t + t′ = t̄
and (12) holds. �

Lemma 4: All maximal solutions φ to (1) are j-complete if
and only if all maximal solutions φ to (10) are j-complete. �

Analogously to our analysis of δ-FUIS of system (1) in
Section IV-B, we characterise δ-JUIS in terms of stability prop-
erties of the extended system (10).

Theorem 3: Let δ ∈ D. The following statements are equiv-
alent: i) system (10) is δ-Uj GAS; ii) system (1) is δ-JUIS. �

We now present Lyapunov-based conditions for the latter
system property, which, by Theorem 3, also provides sufficient
conditions for δ-JUIS.

Proposition 4: Suppose that there exist δ ∈ D, U : Cj ∪
Dj ∪ Gj (Dj ) → R≥0 , which is locally Lipschitz on an open
set containing Cj ∪ Dj ∪ Gj (Dj ), α1 , α2 ∈ K∞, and a contin-
uous positive-definite function σ such that the following hold:

i) for any (x1 , x2) ∈ Cj ∪ Dj ∪ Gj (Dj ), α1(δ(x1 , x2)) ≤
U(x1 , x2) ≤ α2(δ(x1 , x2));

ii) for any (x1 , x2) ∈ Cj , ζ ∈ ∂U(x1 , x2), and f ∈
Fj (x1 , x2), 〈ζ, f〉 ≤ 0;
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iii) for any (x1 , x2) ∈ Dj and g ∈ Gj (x1 , x2), U(g) −
U(x1 , x2) ≤ −σ(U(x1 , x2));

iv) any maximal solution to (1) is j-complete.
Then, system (10) is δ-Uj GAS. �
It is possible to relax the conditions of Proposition 4 when

solutions to (10) satisfy a persistent jump condition [20],
or minimal or maximal (average) interjump time properties,
cf., [32].

C. Example: Bouncing Ball

Consider the bouncing ball system with state x = (p, v),
where p is the position and v is the velocity, F (x) = {(v,−g)},
G(x) = {−εx}, C = [0,∞) × R, D = {0} × (−∞, 0], with
ε ∈ (0, 1) the restitution coefficient and constant g > 0 denoting
the gravitational acceleration.

Let E(x) = 1
2 v2 + gp denotes the sum of the kinetic and

potential energy for a ball with state x. We define the distance
function δ used to investigate jump incremental stability as

δ(x1 , x2) = |E(x1) − E(x2)| (13)

for any x1 , x2 ∈ C ∪ D and note that δ belongs to D.
We now verify that the conditions of Proposition 2. Define

U(x1 , x2) = 1
2 δ2(x1 , x2) = 1

2 (E(x1) − E(x2))2 for x1 , x2 ∈
R, such that item i) of Proposition 4 holds with α1(s) =
α2(s) = 1

2 s2 and U is locally Lipschitz. With Fj (x1 , x2) =
{(βv1 ,−βg, (1 − β)v2 ,−(1 − β)g) : β ∈ [0, 1]}, we find, for
ζ ∈ ∂U

〈∂U, f〉 = (E(x1) − E(x2))(g, v1 ,−g,−v2)T

(βv1 ,−βg, (1 − β)v2 ,−(1 − β)g) = 0 (14)

for any f ∈ Fj (x1 , x2) and x ∈ Cj , since ∂U = {(E(x1) −
E(x2))(g, v1 ,−g,−v2)T }. Hence, item ii) of Proposition 4 is
satisfied. Let x1 , x2 ∈ Dj . By definition of the jump set and
jump map, U(Gj (x1 , x2)) = U(G(x1), G(x2)) = 1

4 ((εv1)2 −
(εv2)2)2 = ε4U(x1 , x1). Hence, item iii) of Proposition 4 holds
with σ(s) = (1 − ε4)s for s ≥ 0.

Finally, all maximal solutions φ to the bouncing ball sys-
tem are complete and Zeno as observed in [20], these are j-
complete. Hence, Proposition 4 proves that the extended hybrid
system (10) is δ-Uj GAS. With Theorem 3, we conclude that the
bouncing ball system is δ-JUIS.

Remark 7: With this design of δ, we have proved incremental
stability of the Poincaré return map (cf., [30]) with the Poincaré
section taken at D. �

VI. RELATIONS BETWEEN THE DEFINITIONS

In this section, we analyze the relations between
Definitions 3, 4, and 6. First, a system, which is δ-FU(p)IS,
is not necessarily δ-JU(p)IS and vice versa, as demonstrated by
the next two examples.

Example 2 (δ-FUIS but not δ-JUpIS): Consider the hybrid
systems, with parameters ρ > 0 and N ∈ N>0 , given by

(ẋ, σ̇) ∈ (−x, [0, ρ]) (x, σ) ∈ C
(x+ , σ+) = (min{x, 1}, σ − 1) (x, σ) ∈ D

(15)

where C = {(x, σ) : x ∈ [0, 1] and σ ∈ [0, N ]} and D =
{(x, σ) : x ∈ [1,∞) and σ ∈ [1, N ]}. This system is δ-FUIS
with δ : (x1 , σ1 , x2 , σ2) �→ ‖x1 − x2‖, see [19, Example 1] for
a proof. Nonetheless, it cannot be δ-JUpIS as some maximal
solutions are j-complete (consider those for which σ̇ = ρ

2 for
instance) and some have a time domain that is bounded in the
j-direction (when σ remains constant on flows). As a conse-
quence, item i) of Definition 6 does not hold. �

Example 3 (δ-JUIS but not δ-FUpIS): Consider the system
ẋ = −1 when x ∈ [1,∞) and x+ = 1

2 x when x ∈ [0, 1], which
is JUIS with respect to the Euclidean distance according to
[19, Example 2], and suppose, in order to attain a contra-
diction, that it is FUpIS with respect to the Euclidean dis-
tance. As a consequence, for r > 1 and ε ∈ (0, r

2 ), there ex-
ists T ≥ 0 such that the statement in item ii) of Definition 4
holds. Let φ1 and φ2 be two maximal solutions with φ1(0, 0) =
(α + 1

2 )r and φ2(0, 0) = αr where α > 1 is a parameter we
are free to select. We see that ‖φ1(0, 0) − φ2(0, 0)‖ = r

2 < r.
Moreover, since αr > 1, dom φi = ([0, φi(0, 0) − 1] × {0}) ∪
({φi(0, 0) − 1} × N>0) for i ∈ {1, 2}. We select α suffi-
ciently large such that φ1(0, 0) − 1 = (α + 1

2 )r − 1 ≥ T . Let
t = φ1(0, 0) − 1 and j ∈ N0 be such that (t, j) ∈ dom φ1 . Ac-
cording to item ii) of Definition 4, there exists (t′, j′) ∈ dom φ2
such that |t − t′| < ε. Note that t′ ≤ φ2(0, 0) − 1 by defini-
tion of dom φ2 . Consequently, |t − t′| = φ1(0, 0) − 1 − t′ ≥
φ1(0, 0) − φ2(0, 0). We deduce that r

2 = φ1(0, 0) − φ2(0, 0) ≤
|t − t′| < ε. This contradicts the fact that ε ∈ (0, r

2 ). As a con-
sequence, the system is not FUpIS with respect to the Euclidean
distance, although it is JUIS with respect to this distance. �

The proposition below shows the connections between
Definition 3 and Definitions 4–6.

Proposition 5: Let δ ∈ D. The following statements hold.
i) If system (1) is δ-UpIS, then it is both δ-FUpIS and

δ-JUpIS.
ii) If system (1) is δ-UIS, then it is either δ-FUIS or δ-JUIS.

iii) If system (1) is both δ-FUpIS and δ-JUpIS, it is not
necessarily δ-UpIS. �

Item iii) of Proposition 5 is due to the fact that the hybrid
time domains of the solutions play a very important role for
δ-UIS. Indeed, a system may very well be both δ-FUpIS and
δ-JUpIS, and not δ-UpIS (for some δ ∈ D), because two (maxi-
mal) solutions, which have close initial conditions according to
the distance δ do not have “close” hybrid time domains.

VII. CONSISTENCY WITH DEFINITIONS FOR

CONTINUOUS-TIME AND DISCRETE-TIME SYSTEMS

The proposition below shows that the proposed definitions are
consistent with the definitions of incremental stability available
in the literature for continuous-time systems.

Proposition 6: Consider the continuous-time system ẋ ∈
F (x), where x ∈ Rn , and F : Rn ⇒ Rn is outer semicontinu-
ous and locally bounded on Rn , and F (x) is convex for each
x ∈ Rn . Suppose that any maximal solution is complete and that
there exist δ ∈ D and β ∈ KL such that any pair of maximal
solutions (x1 , x2) verifies for all t ≥ 0

δ(x1(t), x2(t)) ≤ β(δ(x1(0), x2(0)), t). (16)
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Then, the hybrid system (1) with C = Rn , G(x) = {x} and
D = ∅, for x ∈ Rn , is δ-FUIS and δ-UIS. �

Proposition 6 states that if a continuous-time system is incre-
mentally stable in the sense that (16) holds,5 then this property
is preserved when this system is embedded as a hybrid system
of the form (1). Note that the choice of G in Proposition 6 has
no impact on the result.

The following proposition states an equivalent result for
discrete-time systems. Incremental stability of discrete-time
systems is investigated in [25] for instance.

Proposition 7: Consider the discrete-time system x+ ∈
G(x), where x ∈ Rn , G : Rn ⇒ Rn is outer semicontinuous
and locally bounded on Rn , and nonempty for all x ∈ Rn . Sup-
pose that this system is incrementally asymptotically stable with
respect to δ ∈ D, in the sense that there exist β ∈ KL such that
any pair of maximal solutions (x1 , x2) verifies for all k ∈ N0

δ(x1(k), x2(k)) ≤ β(δ(x1(0), x2(0)), k). (17)

Then, the hybrid system (1) with F (x) = {x} , C = ∅, and
D = Rn , for x ∈ Rn , is δ-JUIS and δ-UIS. �

VIII. CONCLUSION

We have proposed definitions of uniform incremental stability
for hybrid systems based on the graphical closeness of solutions,
which are applicable both to complete and noncomplete solu-
tions. In this context, defining incremental stability with respect
to the hybrid time appeared to be very restrictive, motivating two
alternative incremental stability notions. The latter can be seen
as closeness of the graphs of hybrid solutions when the time
domain is projected onto either the continuous-time domain or
the discrete-time domain, respectively. Hence, these definitions
are relevant in hybrid systems where either the continuous time
or the discrete time is dominant. We have investigated the rela-
tionship between the presented definitions and showed that they
are consistent with the definitions for incremental stability for
continuous-time and discrete-time systems.

By introducing extended systems whose solutions capture any
pair of solutions and keeping either the continuous time or dis-
crete time synchronised, we enable the usage of set-stability re-
sults to investigate incremental stability. We have then presented
Lyapunov-based sufficient conditions for both the incremental
stability notions in terms of these extended systems. Various
examples are given that illustrate the merits of the incremen-
tal stability definitions as well as the Lyapunov-based sufficient
conditions. In particular, a case study on event-triggered control
shows the applicability of our findings for systems where con-
tinuous time is dominant, and using the bouncing ball system
with Zeno-behavior, we have illustrated the definition and Lya-
punov conditions for incremental stability when discrete time is
most prominent.

Including time-varying input signals in hybrid systems and in-
vestigating incremental stability and incremental input-to-state
stability for such systems is subject to future research. We are
convinced that the present study provides a key stepping stone

5Property (16) generalizes the definition in [1] to non-Euclidean functions δ,
cf., [4].

to investigate incremental stability for such systems as well.
Given the successful application of incremental stability theory
for continuous-time and discrete-time systems, we expect that
the presented results provide essential tools to address, e.g., syn-
chronisation, tracking control, and observer design problems for
hybrid systems.

APPENDIX

PROOFS

Proof of Proposition 1: First, it is shown that for any maxi-
mal solution φ, supj dom φ is either 0 or ∞. Then, it is shown
that supj dom φ = ∞ implies supt dom φ = 0. With these two
results, the proposition is proved.

Assume, for the sake of contradiction, that there exists a maxi-
mal solution φ to (1) for which supj dom φ is finite and nonzero.
Then, there exists a hybrid time (t̃, j̃) ∈ dom φ for which (t̃, j̃ +
1) ∈ dom φ. Consider the two maximal solutions φ1 , φ2 to
(1) defined as φ1(t, j) = φ(t + t̃, j + j̃) for (t, j) ∈ dom φ1 :=
{(t, j) ∈ R≥0 × N0 : (t + t̃, j + j̃) ∈ dom φ} and φ2(t, j) =
φ(t + t̃, j + j̃ + 1) for (t, j) ∈ dom φ2 := {(t, j) ∈ R≥0 ×
N0 : (t + t̃, j + j̃ + 1) ∈ dom φ}. Then, supj dom φ1 = 1 +
supj dom φ2 . As all maximal solutions are complete (since
system (1) is assumed to be δ-UIS), for all Θ there exists
(t1 , j1) ∈ dom φ1 , with t1 + j1 > Θ and j1 = supj dom φ1 . We
then observe that (t′, j1) /∈ dom φ2 for all t′ ∈ R≥0 . Conse-
quently, a contradiction with item ii) of Definition 3 is attained,
such that system (1) cannot be δ-UIS. We have proved that
supj dom φ is either 0 or ∞ for all maximal solutions φ to
system (1).

Now, for the sake of contradiction, assume there exists a solu-
tion φ to (1) with supj dom φ = ∞ and supt dom φ �= 0. Then,

we can select times (t̃j1 , j̃) ∈ dom φ and (t̃j2 , j̃) ∈ dom φ with
t̃j2 < t̃j1 . Consider the maximal solutions φ3(t, j) = φ(t + t̃j1 ,

j + j̃) for (t, j) ∈ dom φ3 := {(t, j) ∈ R≥0 × N0 : (t + t̃j1 ,

j + j̃) ∈ dom φ} and φ4(t, j) = φ(t + t̃j2 , j + j̃) for (t, j) ∈
dom φ4 := {(t, j) ∈ R≥0×N0 : (t + t̃j2 , j + j̃) ∈ dom φ}. As
supj dom φ = supj dom φ3 = ∞, for all Θ, there exists (t, j) ∈
dom φ3 , with t + j > Θ, such that (t, j) ∈ dom φ3 and (t, j +
1) ∈ dom φ3 . However, (t′, j + 1) /∈ dom φ4 for |t′ − t| <
|t̃j1 − t̃j2 |. Hence, if ε > 0 is selected smaller than |t̃j1 − t̃j2 |,
then item ii) of Definition 3 cannot hold. A contradiction is
attained, such that we have proved that for all solutions φ to (1),
supj dom φ = ∞ implies supt dom φ = 0.

As a consequence, for all solutions φ to (1), either
supj dom φ = 0 or supt dom φ = 0 holds and, since all so-
lutions are complete, these cases imply supt dom φ = ∞ or
supj dom φ = ∞, respectively. If there exist one maximal solu-
tion φ1 for which supj dom φ1 = 0 and a second maximal solu-
tion φ2 for which supt dom φ2 = 0, then item ii) of Definition 3
cannot hold. Therefore, either supj dom φ = 0 for all maximal
solutions φ, or supt dom φ = 0 for all maximal solutions φ. �

Proof of Lemma 1: In order to prove item i) of Lemma 1, we
define the sequences {tj}j∈I and {t′j}j∈I′ such that6 dom φ1
=

⋃

j∈I [tj , tj+1] × {j} and dom φ2 =
⋃

j∈I′ [t′j , t
′
j+1]×{j},

6The last continuous-time interval of dom φ1 will be open on the right if
j̃ = supj dom φ1 is finite and supt dom φ1 = tj̃+1 = ∞.



4104 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 63, NO. 12, DECEMBER 2018

with I = {0, 1, . . . , supj dom φ1} and I′ = {0, 1, . . . , supj

dom φ2}.
We define φ with the following reasoning. Let t0 = 0 and

t̄1 = min(t1 , t′1), such that no jumps have occurred yet for the
solutions φ1 and φ2 on [t0 , t1). We define φ(t, j) = (φ1(t, 0),
φ2(t, 0)) for (t, j) ∈ [0, t1 ] × {0}. For j = 1, we consider two
cases. If t1 = t1 , then a jump of φ1 occurs at (t1 , 0), and we
define φ(t, 1) = (φ1(t, 1), φ2(t, 0)) for (t, 1) ∈ [t1 , t2 ], where
we set t2 = min(t2 , t′1). In the opposite case t1 = t′1 < t1 , we
take φ(t, j) = (φ1(t, 0), φ2(t, 1)) for (t, j) ∈ [t1 , t2 ] × {1} and
define t2 = min(t1 , t′2). We note that in both cases, φ is a so-
lution to (3) in the time domain [t0 , t1 ] × {0} ∪ [t1 , t2 ] × {1}.
In order to repeat this argument and extend the description of φ
iteratively, we require to know, for the last known time instant
(t, j) ∈ dom φ, how many jumps of φ1 and φ2 have occurred. We
use counters for this purpose and denote them by j1(j) and j2(j),
for j ∈ {0, 1, . . . , supj dom φ}, respectively. In this manner, we
obtain the iterative definition

(

t0 , j1(0), j2(0)
)

=
(

0, 0, 0
)

and,
for k ∈ I := {0, 1, . . . , supj dom φ1 + supj dom φ2 − 1}

(

tk+1 , j1(k + 1), j2(k + 1)
)

=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

(

tj1 (k)+1 , j1(k) + 1, j2(k)
)

if tj1 (k)+1 ≤ t′j2 (k)+1(

t′j2 (k)+1 , j1(k), j2(k) + 1
)

if tj1 (k)+1 > t′j2 (k)+1 .

(18)
The time instants {tk}k∈I correspond to jumps of either φ1
or φ2 . In the construction above, we only increase the counter
j1(k) with 1 if the jump time (tk+1 , k) corresponds to a jump
of φ1 , otherwise, we only increase j2(k). Since both φ1 and φ2
are t-complete, the sequence above is defined for any k in I.

In view of (18), tk+1 ≤ tj1 (k)+1 . Since t0 = t0 = 0 and
j1(k + 1) = j1(k) + 1 occurs simultaneously with tk+1 =
tj1 (k)+1 , we deduce that tk ≥ tj1 (k) for all k ∈ I. Hence, we
find [tk , tk+1] × {j1(k)} ⊂ dom φ1 and analogously, we de-
rive [tk , tk+1] × {j2(k)} ⊂ dom φ2 . Consequently, we define
the hybrid arc φ as

φ(t, j) = (φ1(t, j1(j)), φ2(t, j2(j))) (19)

for all (t, j) ∈ dom φ :=
⋃

j∈I [tj , tj+1] × {j}. We observe that
(18) yields the sequence of continuous times {tj}j∈I obtained

by sorting {tj}j∈I ∪ {t′j}j∈I′ . Hence, dom φ =
⋃

j∈I [tj , tj+1]
× {j} is a hybrid time domain (see Section II).

We now show that (19) is a solution of (3) by checking
the properties given in Section II.7 Clearly, φ(0, 0) ∈ Cf ∪ Df

as φ1(0, 0), φ2(0, 0) ∈ C ∪ D. In addition, for those j
where tj+1 > tj , we observe that d

dt φ(t, j) = ( d
dt φ1(t, j1(j)),

d
dt φ2(t, j2(j))) holds for almost all t ∈ [tj , tj+1]. Hence,
d
dt φ(t, j) ∈ Ff (φ(t, j)) holds for almost all t ∈ [tj , tj+1] by
construction of Ff . Furthermore, if tj+1 = tj1 (j )+1 < ∞, we
observe that, first, φ(tj+1 , j)∈Df as φ(tj+1 , j)=(φ1(tj1 (j )+1 ,
j1(j)), φ2(tj1 (j )+1 , j2(j))) ∈ D × (C ∪ D) and, second, that

φ(tj+1 , j+1) = (φ1(tj+1 , j1(j + 1)), φ2(tj+1 , j2(j + 1)))

= (φ1(tj+1 , j1(j)+1), φ2(tj+1 , j2(j))) (20)

7Note that system (3) satisfies the hybrid basic conditions.

such that we find φ(tj+1 , j + 1) ∈ (G(φ1(tj+1 , j1(j))), {φ2
(tj+1 , j2(j))}) ⊆ Gf (φ(tj+1 , j)). Analogously, we can prove
that if tj+1 = t′j2 (j )+1 < ∞, then φ(tj+1 , j) ∈ Df and φ(tj+1 ,

j+1)∈({φ1(tj+1 , j1(j))}, G(φ2(tj+1 , j2(j))))⊆Gf (φ(tj+1 ,
j)). Hence, φ(tj+1 , j + 1) ∈ Gf (φ(tj+1 , j)) and φ(tj+1 , j)
∈ Df holds for all j ≥ 0 with j + 1 ∈ I. Consequently, φ is a
solution to (3).

To conclude the proof of item i) of Lemma 1, given φ1 , φ2 ,
we select φ, j1 , j2 as above mentioned and we observe that
for every (t, j) ∈ dom φ1 , we can select a j such that j =
j1(j) and (t, j′) = (t, j2(j)) ∈ dom φ2 . Hence, the statement
(6) is attained from the observation that j = j1(j) + j2(j),
which holds as j1(0) = j2(0) = 0 and j1(j + 1) + j2(j + 1) =
j1(j) + j2(j) + 1 for all j, in view of (18).

To prove item ii) of Lemma 1, consider a solution φ and
introduce the sequence of jump times {tj}I , with I = {0, 1,
. . . , supj dom φ}. For every j ∈ I, let j1(j) denote the cardi-
nality of the set

{j ∈ {1, . . . , j} : φ(tj , j) ∈ (G(φ1(tj , j − 1)),

{φ2(tj , j − 1)})} (21)

where φ = (φ1 , φ2) and let j2(j) denote the cardinality of the
set

{j ∈ {1, . . . , j} : φ(tj , j) ∈ ({φ1(tj , j − 1)},
G(φ2(tj , j − 1)))}. (22)

As G(x) �= {x} for all x ∈ D since all maximal solution to
(1) are t-complete by assumption, we observe that for any
j ∈ {1, . . . , j} either φ(tj , j) ∈ (G(φ1(tj , j − 1)), {φ2(tj , j −
1)}) or φ(tj , j) ∈ ({φ1(tj , j − 1)}, G(φ2(tj , j − 1))) holds,
but not both. Hence, with (21) and (22) we observe that
j = j1(j) + j2(j).

The hybrid time domain dom φ and the functions j1 , j2 de-
fined previously allows us to define the hybrid time domains

dom φ1 = {(t, j) : (t, j) = (t, j1(j)), (t, j) ∈ dom φ} (23)

dom φ2 = {(t, j) : (t, j) = (t, j2(j)), (t, j) ∈ dom φ} (24)

and using the hybrid arc φ, we define the hybrid arcs

φ1(t, j) = φ1(t,min{j : j1(j) = j, (t, j) ∈ dom φ}) (25)

for (t, j) ∈ dom φ1

φ2(t, j) = φ2(t,min{j : j2(j) = j, (t, j) ∈ dom φ}) (26)

for (t, j) ∈ dom φ2 . Observe that dom φ1 and dom φ2 are hybrid
time domains and φ1 , φ2 are solutions to (1). For any (t, j) ∈
dom φ1 , we can select some j ∈ I such that j = j1(j). Taking
j′ = j2(j), item ii) of Lemma 1 follows from j = j1(j) + j2(j)
obtained above. �

Proof of Lemma 2: To prove the only if-statement, we sup-
pose, for the sake of contradiction, that there exists a maximal
solution φ to (3) such that supt dom φ = T < ∞ while all max-
imal solutions φ to (1) satisfy supt dom φ = ∞. Let φ1 , φ2 be
maximal solutions to (1) as in item ii) of Lemma 1. Introducing
J = supj dom φ, we distinguish the case (T, J) ∈ dom φ from
the case (T, J) /∈ dom φ.
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If (T, J) ∈ dom φ, then we consider j, j′ with J = j + j′,
such that φ(T, J) = (φ1(T, j), φ2(T, j′)), in view of Lemma 1,
item ii). As the solutions φ1 , φ2 can be continued from
time (T, j) and (T, j′), respectively, we conclude that ei-
ther (T, j + 1) ∈ dom φ1 , or (T, j′ + 1) ∈ dom φ2 , or there
exist s̄ > 0 such that for s ∈ [0, s], (T + s, j) ∈ dom φ1 and
(T + s, j) ∈ dom φ2 . In the first and second option, we con-
clude that φ(T, j) ∈ Df , and φ is not maximal, yielding a con-
tradiction. Given the third option, we observe that φ can be
extended with φ(t, J) = (φ1(t, j), φ2(t, j′) for t ∈ [T, T + s],
contradicting supt dom φ = T . Hence, a contradiction is found
for every option where (T, J) ∈ dom φ holds.

If (T, J) /∈ dom φ we can select a sequence of hybrid times
(Ti, Ji) ∈ dom φ, with limi→∞ Ti = T and limi→∞ Ji = J .
Applying item ii) of Lemma 1 for each of these hybrid times,
we can further select sequences {ji}i∈N , {j′i}i∈N , such that
ji + j′i = Ji , (Ti, ji) ∈ dom φ1 and (Ti, j

′
i) ∈ dom φ2 .

1) If J = ∞, either limi→∞ ji = ∞ or limi→∞ j′i = ∞. The
first case limi→∞ ji = ∞ implies that supt dom φ1 ≤ T ,
since otherwise, there exists some (τ, κ) ∈ dom φ1 , with
τ > T and some i for which ji > κ holds, yielding a con-
tradiction as two hybrid times (Ti, ji) and (τ, κ) can never
be contained in the same hybrid time domain dom φ1
as Ti ≤ T < τ and ji > κ. Hence, limi→∞ ji = ∞ im-
plies supt dom φ1 ≤ T and similarly, we observe that
limi→∞ j′i = ∞ implies supt dom φ2 ≤ T . In both cases,
a contradiction is attained.

2) If J < ∞, we observe that dom φ ∩ (R≥0 × {J}) =
[T̃ , T ) × {J} for some T̃ ∈ [0, T ), and there does
not exists an absolutely continuous function z :
[a, b] → C satisfying ż(t) = Ff (z(t)) for almost all t ∈
[a, b], with [T̃ , T ) ⊂ [a, b] and z(t) = φ(t, J), cf., [20,
Proposition 2.10]. By (A2) of the hybrid basic conditions,
F is convex-valued, outer semicontinuous and locally
bounded relative to C, such that the same properties hold
for Ff and Cf and we can infer limi→∞ ‖φ(Ti, Ji)‖ =
∞, where we exploited that Cf is a closed set.
However, in that case either lim

i→∞
‖φ1(Ti, ji)‖ = ∞

and supt dom φ1 = T, or limi→∞ ‖φ2(Ti, j
′
i)‖ = ∞ and

supt dom φ2 = T , obtaining a contradiction.
In all cases, a contradiction is found, proving only if.
To prove the if-statement, we suppose, for the sake of

contradiction, that there exist a maximal solution φ1 to (1),
where supt dom φ1 = T < ∞, while all maximal solutions φ
to (3) satisfy supt dom φ = ∞. We select φ2 = φ1 and con-
struct φ such that (6) holds. Let J = supj dom φ1 and introduce
{tj}j∈{0,1,...,J +1} such that dom φ1 =

⋃

j∈{0,1,...,J }[tj , tj+1] ×
{j}. We define the set dom φ =

( ⋃

j∈{0,1,...,J }[tj , tj+1] ×
{2j}) ∪ ( ⋃

j∈{0,1,...,J }{tj+1} × {2j + 1}) and note that this
is indeed a hybrid time domain. On this domain, we define

φ(t, j) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

(

φ1(t, 1
2 j), (φ1(t, 1

2 j))
)

for j ∈ {0, 2, . . . , 2J}
(

φ1(t, 1
2 (j + 1)), (φ1(t, 1

2 (j − 1)))
)

for j ∈ {1, 3, . . . , 2J − 1}
(27)

that is a solution to (3), which can be extended as all maximal
solutions to (3) are t-complete. Denoting this extension as φ

e

and applying item ii) of Lemma 1, we find solutions φe
1 , φ

e
2

that are extensions of φ1 since supt dom φe
1 = supt dom φe

2 =
supt dom φ = ∞, contradicting that φ1 is maximal. A contra-
diction is found, proving the if-statement. �

Proof of Theorem 1: We first study the implication i) ⇒ ii).
Assuming system (3) is δ-UtGAS, by Definition 1, all maximal
solutions to (3) are t-complete. Consequently, from Lemma 2,
we infer all maximal solutions to (1) are t-complete.

We prove that the system is δ-tFUIS as stated in Defini-
tion 5 by first showing that item i) of Definition 4 holds for
t′ = t. Given any ε > 0, select s > 0 as in item i) of Def-
inition 1, which can be done given item i) of Theorem 1.
Consider two maximal solutions φ1 and φ2 to (1) such that
δ(φ1(0, 0), φ2(0, 0)) < s. Introducing the solution φ to sys-
tem (3) given by item i) of Lemma 1, we observe that for
any (t, j) ∈ dom φ1 , there exists (t, j′) ∈ dom φ2 such that
φ(t, j + j′) = (φ1(t, j), φ2(t, j′)). From item i) of Definition
1, we deduce that δ(φ1(t, j), φ2(t, j′)) = δ(φ(t, j + j′)) < ε
(since δ(φ1(0, 0), φ2(0, 0)) = δ(φ(0, 0)) < s). Hence, item i)
of Definition 4 holds with t′ = t, as imposed by Definition 5

To infer item ii) of Definition 4, consider any pair ε, r with
ε > 0 and r > 0. Let T > 0 satisfy item ii) of Definition 1.
We consider two maximal solutions φ1 and φ2 to (1) such that
δ(φ1(0, 0), φ2(0, 0)) < r and we construct φ using item i) of
Lemma 1. For any (t, j) ∈ dom φ1 with t ≥ T , there exists
(t, j′) ∈ dom φ2 such that δ(φ1(t, j), φ2(t, j′)) = δ(φ(t, j +
j′)). Since t ≥ T , δ(φ1(t, j), φ2(t, j′)) = δ(φ(t, j + j′)) < ε
follows from item ii) of Definition 1. Hence, item ii) of Defini-
tion 4 holds when t′ = t is selected.

We now concentrate on the converse implication and assume
that item ii) of Theorem 1 holds. Consequently, as (1) is δ-tFUIS,
all its maximal solutions φ are t-complete, such that we deduce
from Lemma 2 that any maximal solution φ to (3) is t-complete
as well.

To prove item i) of Definition 1, we assume for the sake of
contradiction that (3) is not stable with respect to δ, i.e., there
exists ε > 0 such that, for all s > 0 there exists a solution φ to
(3) and time instant (t, j) ∈ dom φ such that

δ(φ(0, 0)) < s and δ(φ(t, j)) ≥ ε. (28)

Given this solution φ and hybrid time (t, j) ∈ dom φ, let
φ1 , φ2 , (t, j) ∈ dom φ1 , (t, j′) ∈ dom φ2 be selected as in item
ii) of Lemma 1. Substituting (6) in (28) and using φ(0, 0) =
(φ1(0, 0), φ2(0, 0)) then yields

δ(φ1(0, 0), φ2(0, 0)) < s and δ(φ1(t, j), φ2(t, j′)) ≥ ε. (29)

For the considered ε, s can be chosen arbitrarily, which contra-
dicts Definition 5 since item i) of Definition 4 cannot hold with
t′ = t. This contradiction proves that δ-tFUIS of (1) implies
stability with respect to δ of (3).

To prove item ii) of Definition 1 we assume, for the sake of
contradiction, that there exists ε, r > 0 such that for all T > 0,
there exists a solution φ to (3) such that

δ(φ(0, 0)) < r and δ(φ(t, j)) ≥ ε (30)
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for some (t, j) ∈ dom φ such that t > T . Let φ1 , φ2 , (t, j) ∈
dom φ1 , (t, j′) ∈ dom φ2 with j + j′ = j be selected as in
item ii) of Lemma 1. Substituting (6) in (30) and us-
ing (φ1(0, 0), φ2(0, 0)) = (φ1(0, 0), φ2(0, 0)) then yields j =
j + j′, δ(φ1(0, 0), φ2(0, 0)) < r and δ(φ1(t, j), φ2(t, j′)) ≥ ε.
Since for all T > 0, we can find solutions φ1 , φ2 such that the
above inequalities hold for some (t, j), (t, j′) with t > T , a
contradiction with item ii) of Definition 4 is attained if t = t′ is
selected in that definition, as imposed by Definition 5. Hence,
system (3) is uniformly in t globally attractive with respect to
δ. We have proved the implication ii)⇒i), concluding the proof
of the Theorem. �

Proof of Proposition 2: Let φ be a solution to (3). Let (t, j) ∈
dom φ and 0 = t0 ≤ t1 ≤ · · · ≤ tj+1 = t satisfy dom φ ∩
([0, t] × {0, 1, . . . , j}) =

⋃

i∈{0,1,...,j}[ti , ti+1] × {i}. Accord-
ing to item ii) of Proposition 2 and since U is locally Lip-
schitz, we have, for each i ∈ {0, 1, . . . , j} and for almost
all s ∈ [ti , ti+1] (see [27] for more details), d

ds U(φ(s, i)) ≤
−σ

(

U(φ(s, i))
)

. By integrating both sides of this inequality, we

obtain U(φ(ti+1 , i)) − U(φ(ti , i)) ≤ − ∫ ti + 1

ti
σ

(

U(φ(s, i))
)

s.

Since U does not increase at jumps along φ according to
item iii) of Proposition 2, for any (t, j) ∈ dom φ, U(φ(t, i)) ≤
U(φ(0, 0)) − ∑j

i=0

∫

ti
ti + 1 σ

(

U(φ(s, i))
)

s. We derive that
system (3) is δ-UtGpAS by following the same arguments as
the proof of [20, Th. 3.18]. From item iv) of Proposition 2
and Lemma 2, we deduce that any maximal solution to (3) is
t-complete, such that system (3) is δ-UtGAS. �

Proof of Proposition 3: The desired result is attained by in-
voking Theorem 1. For this purpose, we first use Proposition 2
to establish that the extended system (3) for system (7) is
δ-UtGAS. Let U(q1 , q2) = δ(q1 , q2) for any q1 = (x1 , e1) ∈
Rn × Rn and q2 = (x2 , e2) ∈ Rn × Rn . The function U is
locally Lipschitz on Rn × Rn since V is continuously dif-
ferentiable on Rn × Rn according to Assumption 1. Item
i) of Proposition 2 is verified with α1 = α2 = I. Let
q1 = (x1 , e1) ∈ C and q2 = (x2 , e2) ∈ C with C = {(x, e) :
‖e‖ ≤ ρ}. We distinguish three cases. First, if V (x1 , x2) − a−1

V

γ(2ρ) < 0, then U(q1 , q2) = 0 and, noting Ff(q1 , q2) =
{(f(q1), f(q2))}, we find 〈ζ, (f(q1), f(q2))〉 = 0 = −σ(U(q1 ,
q2)) for any ζ ∈ ∂U(q1 , q2) and any positive definite func-
tion σ. When V (x1 , x2) − a−1

V γ(2ρ) > 0, let ζ ∈ ∂U(q1 , q2),
〈ζ, (f(q1), f(q2))〉 ≤ −aV V (x1 , x2) + γ(‖e1 − e2‖) in view
of item ii) of Assumption 1. Since q1 , q2 ∈ C, max{‖e1‖, ‖e2‖}
≤ ρ and γ(‖e1 − e2‖) ≤ γ(2ρ). Consequently, 〈ζ, (f(q1),
f(q2))〉 ≤ −aV U(q1 , q2). When aV V (x1 , x2) − γ(2ρ) = 0,
we similarly derive that 〈ζ, (f(q1), f(q2))〉 ≤ −aV U(q1 , q2) =
0. Therefore, according to [35, Lemma II.1], item ii) of Proposi-
tion 2 holds with σ = aV I. Item iii) of Proposition 2 is satisfied
since the x variable does not change at jumps according to (7)
and the expression of U only depends on x1 and x2 . Finally,
any maximal solution to (7) is t-complete according to [36,
Th. 5] (here ‖e‖ plays the role of γ(‖e‖) in [36], which is locally
Lipschitz and not continuously differentiable everywhere, still
the proof of [36, Th. 5] applies under minor changes). Hence,
item iv) of Proposition 2 holds according to Lemma 2. As a
consequence, the conditions of Proposition 2 are verified. �

Proof of Lemma 3: To prove item i), consider two j-
complete solutions φ1 , φ2 and introduce two sequences of con-
tinuous times {t1j }j∈N0 , {t2j }j∈N0 such that dom φi =

⋃

j∈N0

[tij , t
i
j+1] × {j}, i = 1, 2. Let t∗ = supj∈N0

t1j+1 + t2j+1 and
dom φ =

⋃

j∈N0
[t1j + t2j , t

1
j+1 + t2j+1] × {j}, and observe that

this set is a hybrid time domain (as defined in Section II) with
supj dom φ = ∞ and supt dom φ = t∗.

In the following, we define continuous functions τ1 , τ2 :
[0, t∗] → R≥0 such that the hybrid arc

φ(t, j) = (φ1(τ1(t), j), φ2(τ2(t), j)). (31)

is a solution to (10). For this purpose, consider the signal v :
[0, t∗] → {0, 1}2 given as

v(t) =

{

(1, 0), t1j + t2j ≤ t ≤ t1j+1 + t2j
(0, 1), t1j+1 + t2j ≤ t ≤ t1j+1 + t2j+1

(32)

for j ∈ N0 and let (τ1(t), τ2(t)) =
∫ t

0 v(s)ds.
For i = 1, 2, we find that for each j ∈ N0 , {τi(t) : t ∈ [t1j +

t2j , t
1
j+1 + t2j+1]} = [tij , t

i
j+1] such that we can conclude

{(τi(t), j) : (t, j) ∈ dom φ} = dom φi. (33)

We observe that the function φ : dom φ → R2n given by

φ(t, j) =
(

φ1(τ1(t), j)
φ2(τ2(t), j)

)

(34)

is a solution to (10), as it satisfies the conditions stated in
Section II: i) φ(0, 0) ∈ Cj ∪ Dj , as τ1(0) = τ2(0) = 0, ii) for

any j ∈ N0 and almost all t ∈ [t1j + t2j , t
1
j+1 + t2j ],

dφ(t,j )
dt

= ( dφ1 (τ1 (t),j )
dt , dφ2 (τ2 (t),j )

dt ) = ( dφ1 (τ1 ,j )
dτ1

, 0) ∈ (F (φ1(τ1 , j)),
0) ⊂ Fj(φ(t, j)), and for almost all t∈ [t1j+1 +t2j , t

1
j+1 +t2j+1],

dφ(t,j )
dt = ( dφ1 (τ1 (t),j )

dt , dφ2 (τ2 (t),j )
dt ) = (0, dφ2 (τ2 ,j )

dτ2
)∈(0, F (φ2

(τ2(t), j))) ⊂ Fj (φ(t, j)) and iii) for any (t, j) ∈ dom φ
such that (t, j + 1) ∈ dom φ, φ(t, j + 1) = (φ1(τ1(t), j +
1), φ2(τ2(t), j + 1)) ∈ (G(φ1(τ1(t), j)), G(φ2(τ2(t), j))) =
Gj (φ(t, j)). By (33), for each (t, j) ∈ dom φ1 , we can select
(t̄, j) ∈ dom φ such that τ1(t̄) = t. Selecting t′ = τ2(t̄), (12)
follows from (31).

To prove ii), we consider any solution φ to (10) and in-
troduce the jump time sequence {t̄j}j∈N0 such that dom φ =
⋃∞

j=0[t̄j , t̄j+1] × {j}. Since φ is a solution, dφ
dt ∈ Fj (φ(t, j))

for almost all t ∈ Ij := {t : (t, j) ∈ dom φ} and any j ∈ N0 .
Hence, by (10), and since Fj (q) is the convex hull of (F (q1), 0)
and (0, F (q2)), there exists a function α1 : [0, supt dom φ] →
[0, 1] such that

dφ(t, j)
dt

∈ (α1(t)F (φ1(t, j)), (1 − α1(t))F (φ2(t, j))) (35)

for almost all t ∈ Ij = {t : (t, j) ∈ dom φ} and all j ∈ N0 .
Introducing μ1 , μ2 : [0, supt dom φ] → R≥0 as μ1(t) =

∫ t

0 α1

(s)ds and μ2(t) = t − μ1(t), from (35) we deduce dφi (t,j )
dt ∈
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F (φi(t, j))
dμi

dt , i = 1, 2 and, consequently

dφi(t, j)
dμi

∈ F (φi(t, j)). (36)

Furthermore, the sets dom φi = {(t, j) : t = μi(t̄), (t̄, j) ∈
dom φ}, i = 1, 2, are hybrid time domains as μ1 , μ2 are con-
tinuous, nondecreasing functions. Introducing τ+

i (t̄) = min{t :
t = τi(t̄), (t̄, j) ∈ dom φ}, i = 1, 2, we define

φ1(t, j) = φ1(τ
+
1 (t), j) and φ2(t, j) = φ2(τ

+
2 (t), j). (37)

We remark that if μ+
1 (·) is discontinuous at t̃, such that t̄+ :=

limt↘t̃ μ+(t) differs from t̄− := limt↗t̃ μ+(t), then we observe
that μ̇(t) = α(t) = 0 for t ∈ [t̄−, t̄+]. Hence, for every j ∈ N0 ,
the function t �→ φ1(t, j) = φ1(μ

+
1 (t), j) is absolutely continu-

ous and, similarly, we obtain that t �→ φ2(t, j) = φ2(μ
+
2 (t), j)

is absolutely continuous.
To conclude this proof, we observe that (37) defines two so-

lutions to the hybrid system (1), since, first, φ1(0, 0), φ2(0, 0) ∈
C ∪ D as φ(0, 0) ∈ Cj ∪ Dj , second, (36) holds, and third, for
all (t, j) ∈ dom φi , i = 1, 2, such that (t, j + 1) ∈ dom φi , it
holds that φi(t, j + 1) ∈ G(φi(t, j)) by the design of Gj . �

Proof of Lemma 4: To prove the only if-statement, we sup-
pose, for the sake of contradiction, that there exists a maximal
solution φ to (10) such that supj dom φ = J < ∞while all max-
imal solutions φ to (1) satisfy supj dom φ = ∞. Let φ1 , φ2 be
maximal solutions to (1) as in item ii) of Lemma 3. Introducing
T = supt dom φ, we distinguish two cases.

If T = ∞, there has to exist a sequence (Ti, J) ∈ dom φ such
that limi→∞ Ti = T . By applying item ii) of Lemma 3, for each
of these hybrid time instants (i.e., for every i ∈ N0), we find
that there exists (ti , J) ∈ dom φ1 , (t′i , J) ∈ dom φ2 such that
ti + t′i = Ti . Since limi→∞ Ti = ∞, we find either limi→∞ ti =
∞, such that (ti , J) ∈ dom φ1 implies dom φ1 is bounded in the
j-direction, or limi→∞ t′i = ∞ and dom φ2 is bounded in the j-
direction. Hence, a contradiction is obtained with the assumption
that supj dom φ1 = supj dom φ2 = ∞.

If T �= ∞, we observe that the solutions φ1 , φ2 to (1) sat-
isfy supj dom φ = ∞. Given (T, J) and considering item ii) of
Lemma 3, let t̄, t̄′ be such that φ(T, J) = (φ1(t̄, J), φ2(t̄′, J))
and T = t̄ + t̄′. We define TJ = max{t : (t, J) ∈ dom φ1}
and T ′

J = max{t : (t, J) ∈ dom φ2} and note that these max-
ima exist since supj dom φ1 = supj dom φ2 = ∞ by assump-
tion. Observing t̄ ≤ TJ , t̄′ ≤ T ′

J and T ≤ TJ + T ′
J , we de-

fine an extension to φ for hybrid times (t, j) ∈ dom φe :=
dom φ ∪ [T, TJ + T ′

J ] × {J} ∪ {TJ + T ′
J } × {J + 1} as

φe(t, j) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t, j)
for j ≤ J and t ≤ T

(φ1((t − T ) + t̄, J), φ2(t̄′, J))
for j = J and T ≤ t ≤ t̄′ + TJ

(φ2(TJ , J), φ2(t − TJ , J))
for j = J and t̄′ + TJ ≤ t ≤ TJ + T ′

J

(φ1(TJ , J + 1), φ2(T ′
J , J + 1))

for j = J + 1 and t = TJ + T ′
J .

As φe is a solution to (10), φ is not a maximal solution and
a contradiction is attained. As in both cases a contradiction is
found, the only if-statement is proved.

To prove the if-statement, suppose, for the sake of contradic-
tion, that all maximal solutions φ to (10) satisfy supj dom φ =
∞ and there exist some maximal solution φ1 to (1) for which
supj dom φ1 = J �= ∞.

Define the hybrid time domain dom φ = {(t, j) ∈ R≥0 ×
N0 : ( t

2 , j) ∈ dom φ1} and for (t, j) ∈ dom φ, we define the
hybrid arc

φ(t, j) =
(

φ1

(
t

2
, j

)

, φ1

(
t

2
, j

))

(38)

and observe that φ is a solution to (10). By assumption, we
can extend this solution to obtain φe with supj dom φe = ∞.
From (10), we find that there exists an integrable function α1 :
[0, supt dom φe ] → [0, 1] such that dφe (t,j )

dt = (α1(t)F̄ (φ1e

(t, j)), (1 − α1(t))F̄ (φ1e(t, j))) for some j such that (t, j) ∈
dom φe and almost all t ∈ [0, supt dom φe ]. Introducing
τ1(t) =

∫ t

0 α1(s)ds and the hybrid time domain dom φ1e =
{(t, j) ∈ R≥0 × N0 : t = τ1(t̄), (t̄, j) ∈ dom φ1} we can de-
fine the function φ1e(t, j) = φ1e(τ+(t), j), with τ+

1 (s) =
min{t : τ1(t) = s}. It can be observed that φ1e(t, j) is a so-
lution to (1). Since φ1e(t, j) = φ1(t, j) for (t, j) ∈ dom φ1 ⊂
dom φ1e and supj dom φ1e = supj dom φ = ∞, we conclude
that φ1e is an extension of φ1 and φ1 is not maximal, yielding a
contradiction. This contradiction proves the if-statement. �

Proof of Theorem 3: The proof of this Theorem follows the
same steps as the proof of Theorem 1 by relying on Lemmas 3
and 4 and is omitted for the sake of brevity. �

Proof of Proposition 4: The proof of this proposition is
omitted and follows the same steps as Proposition 2. �

Proof of Proposition 5: Suppose system (1) is δ-UpIS with
δ ∈ D. Item i) of Definition 3 immediately implies the satisfac-
tion of items i) in Definitions 4 and 6.

Let ε, r > 0, and take Θ as in item ii) of Definition 3. Define
T = Θ, and let (φ1 , φ2) be a pair of maximal solutions to system
(1). For all (t, j) ∈ dom φ1 with t ≥ T , it holds that t + j ≥ Θ
by definition of T . We then know from item ii) of Definition 3
that there exists (t′, j) ∈ dom φ2 with |t − t′| < ε such that
δ(φ1(t, j), φ2(t′, j)) < ε. Hence, item ii) of Definition 4 holds.
The same reasoning is used to prove that item ii) of Definition 6
is verified. This ensures item i) of Proposition 5 holds.

From the above, item ii) of Proposition 5 is also verified.
Indeed, if system (1) is δ-UIS, it is necessarily δ-UpIS and
thus δ-FUpIS and δ-JUpIS in view of item i) of Proposition 5.
In addition, since any maximal solution φ to (1) is com-
plete, for all maximal solutions φ either supt dom φ = ∞ or
supj dom φ = ∞ or both. Note that we cannot have maximal
solutions φ1 , φ2 with supt dom φ1 = ∞ and supt dom φ2 < ∞,
and supj dom φ1 < ∞ and supj dom φ2 = ∞ as the system
would not be δ-FUpIS and δ-JUpIS respectively, as explained
after Definitions 4 and 6. Hence, the system is either δ-FUIS or
δ-JUIS.

Let us now prove item iii) of Proposition 5. We construct a
system which is both δ-JUpIS and δ-FUpIS with a given δ but
which is not δ-UpIS. Let

τ̇ = 1, for τ ∈ [0, 1] τ+ = 0, for τ = 1. (39)
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Fig. 1. Hybrid time domains of the maximal solutions to (45) initialized
at φ1 (0, 0) = 0 (blue solid lines) and at φ2 (0, 0) = 1 (magenta dashed
lines).

Let δ(τ1 , τ2) = 0 for any τ1 , τ2 ∈ R, and (φ1 , φ2) be a pair
of maximal solutions to (45). For any (t, j) ∈ dom φ1 , there
exists (t, j′) ∈ dom φ2 (since any maximal solution to (45) is t-
complete) and δ(φ1(t, j), φ2(t, j′)) = 0. We deduce that system
(45) is δ-FUIS in view of the particular form of δ. We similarly
derive that system (45) is δ-JUIS. However, this system is not
δ-UpIS. Indeed, consider item i) of Definition 3 and let ε = 1

4
and φ1 and φ2 be two maximal solutions with φ1(0, 0) = 0
and φ2(0, 0) = 1. We note that δ(φ1(0, 0), φ2(0, 0)) = 0 < r
for any r > 0. For ( 1

2 , 0) ∈ dom φ1 , there does not exist (t′, 0) ∈
dom φ2 such that | 12 − t′| < ε as required in item i) of Definition
3. Indeed, dom φ2 = ({0} × {0}) × ([0, 1] × {1}) × · · · so the
only time t′ such that (t′, 0) ∈ dom φ2 is t′ = 0 but | 12 − t′| =
1
2 > 1

4 = ε. An illustration of the hybrid time domains of φ1
and φ2 is given in Fig. 1. Consequently, system (45) is both
δ-FU(p)IS and δ-JU(p)IS, but not δ-(p)UIS. �

Proof of Proposition 6: Consider hybrid system (1) with
the data given in Proposition 6. For any pair of maximal
solutions (φ1 , φ2), dom φ1 = dom φ2 = R≥0 × {0}. For any
(t, 0) ∈ dom φ1 = dom φ2

δ(φ1(t, 0), φ2(t, 0)) ≤ β(δ(φ1(0, 0), φ2(0, 0)), t) (40)

in view of (16), from which we deduce that items i) and ii) of
Definition 3 hold (by respectively taking s such that β(s, 0) < ε
and (t′, j) = (t, j), and Θ such that β(r,Θ) < ε). Therefore, the
hybrid system is δ-UpIS and thus δ-FUpIS according to Propo-
sition 5. The system is δ-UIS and δ-FUIS since the solutions are
t-complete. �

Proof of Proposition 7: Consider hybrid system (1) with the
data given in Proposition 7. For any pair of maximal solutions
(φ1 , φ2), dom φ1 = dom φ2 = {0} × N0 . For any (0, j)∈dom
φ1 =dom φ2 , δ(φ1(0, j), φ2(0, j))≤β(δ(φ1(0, 0), φ2(0, 0)), j)
in view of (17), from which we deduce that items i) and ii) of
Definition 3 hold (by respectively taking s such that β(s, 0) < ε
and (t′, j) = (0, j), and Θ such that β(r,Θ) < ε). Therefore,
the hybrid system is δ-UpIS and thus δ-JUpIS according to
Proposition 5. The system is δ-UIS and δ-JUIS since the solu-
tions are j-complete. �

Proof of Theorem 2: Let δ be the Euclidean distance and let
ε > 0 be given. Applying [37, Th. 4], we find that there exists
s > 0 such that for any pair of maximal solutions (φ1 , φ2) to
(1), the conditions ‖φ1(0, 0) − φ2(0, 0)‖ < s and

∀(t, j) ∈ dom φ1 ,∃(t, j′) ∈ dom φ2 such that

ρA(φ1(t, j), φ2(t, j′)) < s (41)

imply that, for all (t, j) ∈ dom φ1 , there exists (t′, j′′) ∈ dom φ2
with |t − t′| ≤ ε and ‖φ1(t, j) − φ2(t′, j′′)‖ ≤ ε, as required
in item i) of Definition 4. Since system (1) is ρA-tFUIS, in
view of item i) of Definition 4, we can find a scalar s̄ > 0
such that ‖φ1(0, 0) − φ2(0, 0)‖<s̄ (trivially implying ρA(φ1(0,
0), φ2(0, 0)) < s̄) implies that (59) is satisfied. Conse-
quently, if ‖φ1(0, 0) − φ2(0, 0)‖ ≤ min(s, s̄), then item i) of
Definition 4 holds.

To prove item ii) of Definition 4, we take ε, r > 0 and se-
lect s as above. With [37, Lemma 5], we can show that there
exists some positive scalar s̃ ≤ s such that for every pair
of maximal solutions φ̃1 , φ̃2 with ρA(φ̃1(t, j), φ̃2(t, j′)) < s̃
for all (t, j) ∈ dom φ̃1 and some (t, j′) ∈ dom φ̃2 , there ex-
ists t̃ ∈ [0, 1] and (t̃, j̃) ∈ dom φ̃1 , (t̃, j̃′) ∈ dom φ̃2 such that
‖φ̃(t̃, j̃) − φ̃2(t̃, j̃′)‖ ≤ s.

Now, select T̄ such that ‖φ1(0, 0) − φ2(0, 0)‖ ≤ r, (which
trivially means ρA(φ1(0, 0), φ2(0, 0)) ≤ r) implies ρA(φ1(t, j),
φ2(t, j′)) ≤ s̃, with (t, j) ∈ dom φ1 and (t, j′) ∈ dom φ1 and
t ≥ T̄ (such T̄ exists by ρA-tFUIS). With the selection of s̃
as above and observing that solutions φ1(t, j), φ2(t, j′) from
time (T, j) and (T, j′) can be extended by reparameterizing
solutions φ̃1 , φ̃2 as above, we find that there exists some
T̃ ≤ T̄ + 1, (T̃ , J̃) ∈ dom φ1 and (T̃ , J̃ ′) ∈ dom φ2 such that
‖φ1(T̃ , J̃)−φ2(T̃ , J̃ ′)‖≤s and ρA(φ1(t, j), φ2(t, j′))≤s hold
for all (t, j) ∈ dom φ1 , (t, j′) ∈ dom φ2 with t ≥ T̃ . Hence, the
design of s as above implies that item ii) of Definition 4 holds for
T = T̄ +1 and δ the Euclidean distance, concluding the proof.�

REFERENCES

[1] D. Angeli, “A Lyapunov approach to incremental stability properties,”
IEEE Trans. Autom. Control, vol. 47, no. 3, pp. 410–421, Mar. 2002.

[2] V. Fromion, S. Monaco, and D. Normand-Cyrot, “A link between input–
output stability and Lyapunov stability,” Syst. Control Lett., vol. 27,
pp. 243–248, 1996.
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