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Abstract— We present a novel reset control approach to im-
prove transient performance of a PID-controlled motion system
subject to friction. In particular, a reset integrator is applied
to circumvent the depletion and refilling process of a linear
integrator when the system overshoots the setpoint, thereby
significantly reducing settling times. Moreover, robustness for
unknown static friction levels is obtained. A hybrid closed-
loop system formulation is derived, and stability follows from
a discontinuous Lyapunov-like function and a meagre-limsup
invariance argument. The working principle of the controller
is illustrated by means of a numerical example.

I. INTRODUCTION

In this paper, we present a reset control approach to
improve transient performance of a PID-controlled mechan-
ical motion system subject to friction. Especially in high-
precision positioning systems, friction is a performance lim-
iting factor. The presence of Coulomb friction may induce
non-zero steady-state positioning errors, and the presence
of the velocity-weakening (Stribeck) effect may induce so-
called hunting limit cycles [1], [2], which compromises
position accuracy as well.

In the past decades, many different control approaches
have been developed to either compensate for friction, or
to achieve high-precision positioning despite the presence
of frictional effects. Friction compensation techniques make
use of a parametric friction model in the control loop (see,
e.g., [1], [3]–[5]) or in a calibration procedure (see, e.g., [6]).
Obtaining an accurate friction model is in general a difficult
task, since it is challenging to exactly capture the physics
associated with friction into a model with limited complex-
ity, suitable for online implementation. Moreover, model
mismatches and a changing friction characteristic may lead
to over- or undercompensation of friction [3]. Non-model-
based control techniques do not aim at friction compensation,
but change the effect of friction on the closed-loop system
to obtain the desired performance. Examples are impulsive
control [7] or dithering-based controllers [8]. A drawback
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of these control schemes is that the use of impulsive control
forces may result in excitation of unmodeled, high-frequency
system dynamics.

Although several successful applications of the above
control approaches have been presented in the literature,
linear (loop-shaped) controllers are still applied in the vast
majority of industrial motion systems, due to the intuitive
design and tuning tools for such controllers, and knowledge
and experience of control practitioners. In particular, the
classical PID controller is most commonly used for frictional
systems, since the integrator action is capable of compensat-
ing for unknown static friction by integrating the position
error. However, also PID control is prone to performance
limitations. In the presence of Coulomb friction, a limitation
is the slow convergence and the resulting long settling times
[9]. Namely, an integrator action is required to escape a
stick phase by building up the control force to overcome the
(possibly unknown) static friction. However, if the position
overshoots the setpoint, the integrator buffer needs to deplete
and refill in order to change sign to overcome the static
friction again. This process takes increasingly more time with
a decreasing position error, resulting in long settling times.

In [10], a controller has been proposed to improve tran-
sient performance (besides compensating robustly for the
Stribeck effect) by employing a switched PID controller,
which resets the integrator state in such a way that a large
part of the depletion/refilling process is circumvented. The
switching mechanism relies on online identification of the
static friction, which requires exact detection of stick-slip
transitions. In practice, however, velocity measurement noise
and discrete sampling may lead to the inability of detecting
zero velocity and thus prevent such exact identification of
the static friction, which may lead in turn to small steady-
state limit cycling around the setpoint. In this work, we
present a novel reset integrator control scheme that does not
suffer from the robustness issues described above, while still
significantly improving transient performance.

Reset integrators have been used to enhance transient
performance of linear motion systems, see, e.g., [11]–[16]
but, to the best of the authors’ knowledge, not of systems
with friction (which are inherently nonlinear).

The main contributions of this paper are twofold. First, we
design a novel reset PID controller for systems with friction
that both improves transient performance with respect to a
classical PID controller, and induces robust stability with
respect to uncertainties in the static friction. Second, we
analyse stability of the resulting hybrid closed-loop system
exploiting a meagre-limsup invariance argument [17, §8.4].

This paper is organized as follows. In Section II, a
model of the considered motion system with a classical
PID controller is presented together with the reset integrator
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control law. The closed-loop dynamics are written in a hybrid
systems formalism in Section III and a stability analysis
is given in Section IV. Section V provides an illustrative
example and conclusions are presented in Section VI.
Notation: sign(·) (with a lower-case s) denotes the classical
sign function, i.e., sign(y) := y/|y| for y 6= 0 and sign(0) :=
0. Sign(·) (with an upper-case S) denotes the set-valued
sign function, i.e., Sign(y) := {sign(y)} for y 6= 0, and
Sign(y) := [−1, 1] for y = 0. For c > 0, the deadzone
function is defined as: dzc(x) := 0 if |x| ≤ c, dzc(x) := x−c
if x > c, dzc(x) := x+c if x < −c. A function f : D → R is
lower semicontinuous if lim infx→x0 f(x) ≥ f(x0) for each
point x0 in its domain D.

II. RESET CONTROL DESIGN

In this section we describe the motion system and friction
characteristic, and then the design of the reset control law.

Consider a single-degree-of-freedom mass m sliding on a
horizontal plane with position z1 and velocity z2. The goal is
to control the mass to the constant setpoint (z1, z2) = (r, 0).
The mass is subject to a control input ū and a friction force
taking values according to the set-valued mapping of the
velocity z2 ⇒ Ψ(z2), as in the dynamics:

ż1 = z2,

ż2 ∈
1

m
(Ψ(z2) + ū) .

(1)

The friction characteristic Ψ consists of Coulomb friction
with unknown static friction F̄s, and a viscous contribution
αz2, with α ≥ 0 the viscous friction coefficient, i.e.,

Ψ(z2) := −F̄s Sign(z2)− αz2. (2)

In this paper, we primarily focus on robust compensation
of unknown Coulomb friction, and on transient perfor-
mance improvement. We therefore assume that a velocity-
weakening (Stribeck) effect is absent in Ψ (in the presence
of such an effect, a velocity-dependent compensation control
term may be employed as in [10]). Let us now formulate the
control problem addressed in this paper:

Problem 1. Design a reset PID controller for input ū
in (1) that 1) globally asymptotically stabilizes the setpoint
(z1, z2) = (r, 0), for any constant r, robustly w.r.t. any
unknown static friction F̄s, and 2) improves the transient
performance w.r.t. a classical PID controller.

An integral action in the control input ū is applied because
it is able to compensate for unknown static friction F̄s (which
is typically the case in industrial motion applications). Before
presenting a reset PID controller, we first introduce the
classical PID controller to generate ū as:

ū = −k̄p(z1 − r)− k̄dz2 − k̄iz3,
ż3 = z1 − r,

(3)

where k̄p, k̄d, k̄i> 0 represent the proportional, derivative
and integral gain, respectively. We apply then the following
definitions to obtain mass-normalized system dynamics that
favor clarity in the analysis in the upcoming sections:

kp :=
k̄p
m
, kd :=

k̄d + α

m
, ki :=

k̄i
m
, Fs :=

F̄s
m
. (4)

By using (4), the resulting mass-normalized, closed-loop
dynamics given by (1) and the classical PID in (3) satisfy

ż1 = z2,

ż2 ∈ −Fs Sign(z2)− kp(z1 − r)− kdz2 − kiz3,
ż3 = z1 − r,

(5)

with the state vector z = (z1, z2, z3) ∈ R3. We select the
normalized controller gains so that they satisfy the following
assumption.

Assumption 1. The control parameters kp, kd, ki satisfy
ki > 0, kp > 0, kpkd > ki.

When Fs = 0 (a special, linear case of our setting),
this assumption is equivalent, by the Routh-Hurwitz stability
criterion, to ensuring global exponential stability of the
equilibrium z1 = r, z2 = z3 = 0 through a stabilizing PID
controller. Assumption 1 is hence not restrictive.

In [9], it is proven that the set of equilibria

A := {z = (r, 0, z3) | |z3| ≤ Fs/ki} (6)

of (5) is globally asymptotically stable under Assumption 1.
However, the PID-controlled system (5) typically results in
long settling times due to the depletion and refilling of
the integral buffer that is required to overcome the static
friction Fs upon overshoot, resulting in a change of sign of
the integrator state of the PID (which is evident in the red
dashed response of a classical PID in Fig. 3). This process
is generally slow and takes increasingly more time with a
decreasing position error, resulting in long periods of stick
and thus a poor transient performance. Note that the system
is said to be in a stick or slip phase when the state belongs
respectively to the sets

Estick := {z ∈ R3 | z2 = 0, |kiz3 + kp(z1 − r)| ≤ Fs} (7a)
Eslip := R3\Estick. (7b)

In this paper, we propose then a novel reset PID control
scheme to solve Problem 1. In particular, the proposed reset
integral controller results in a significantly faster settling
compared to the classical PID design in (3) (resulting in
(5)), and does not suffer from the robustness issues of the
switched PID controller presented in [10]. To this end, we
replace the integrator in the PID controller (3) with a reset
integrator. Only the integrator state is reset while keeping
position and velocity unchanged, i.e.,

z+1 = z1, z
+
2 = z2, z

+
3 = −z3 − 2

kp
ki

(z1 − r), (8a)

whenever z = (z1, z2, z3) is such that

kpki(z1 − r)2 + k2i (z1 − r)z3 ≤ 0

∧ −z2(kp(z1 − r) + kiz3) ≤ 0

∧ |kpki(z1 − r)2 + k2i (z1 − r)z3| ≥ ε (8b)

for some design parameter ε > 0, whose purpose is to avoid
Zeno behaviour [17, p. 28-29]. The rationale behind the reset
map for z in (8a), the nontrivial reset conditions in (8b), and
the role of ε are clarified in Section III, where we show
that, when the system enters a stick phase (see (7a)) after
the position z1 overshoots the setpoint r, conditions (8b) are
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Fig. 1. Schematic representation of a position response with the proposed
controller, including the sign of the states in x per time interval. The red
circles indicate the discrete jump instants.

satisfied. Moreover, we show in Section IV that the reset
map for z+3 preserves global asymptotic stability of the set
of equilibria (6). In Section V, it is shown that the proposed
reset integrator significantly improves transient performance,
while the resets do not increase the risk of exciting high-
frequency system dynamics, compared to the classical PID.

III. HYBRID SYSTEM FORMULATION

In this section, we rewrite the closed-loop reset control
system (5), (8) in the hybrid systems formalism of [17], and
discuss the rationale behind the proposed reset law (8).

Following [9], we introduce the coordinate transformation

x :=

σφ
v

 :=

 −ki(z1 − r)
−kp(z1 − r)− kiz3

z2

 , (9)

where σ is a generalized position error, φ is a generalized
controller state encompassing the proportional and integrator
control action, and v is the velocity of the mass. This
coordinate transformation simplifies the description of the
system, transforms any constant setpoint r to the setpoint 0,
facilitates the construction of a Lyapunov-like function for
the stability analysis in Section IV, and rewrites the stick set
in (7a) as

Estick = {x ∈ R3 | v = 0, |φ| ≤ Fs}. (10)

The generalized controller state φ represents all the nonzero
components of the control action at zero velocity (that is, the
proportional and integral terms), and the difference between
φ and the static friction Fs at zero velocity determines then
whether the system resides in a stick phase or not, see (10).

With the coordinate transformation (9), we rewrite the
closed-loop dynamics (5) with the reset law (8) in the hybrid
formalism of [17] as:

ẋ ∈ F (x) :=

 −kiv
σ − kpv

φ− kdv − Fs Sign(v)

 , x ∈ C, (11a)

x+ = g(x) :=
[
σ −φ v

]>
, x ∈ D, (11b)

where F and g are the flow and jump map. Resets are
associated to the jump set

D :=
{
x ∈ R3 | φv ≤ 0, φσ ≤ 0, |φσ| ≥ ε

}
, (11c)

t0t0t0

φ

v σ
0

0

0

0

Fs
Fs

−Fs−Fs

t1

t2

t3

t4

t2

t3

t4

Fig. 2. Phase portraits corresponding to the response in Fig. 1 (black).
The jump criteria φv ≤ 0 (left) and φσ ≤ 0 (right) are indicated in blue.
A state jump (from the red circles) follows the dashed arrows. The red line
corresponds to a different solution without overshoot, which then comes
close to the jump set but never enters it, as designed (see the zoomed box).
For clarity, we did not show the condition |φσ| ≥ ε in the figure. See Fig. 1
for times t0, . . . , t4.

whereas the flow set is given by

C := R3 \ D. (11d)

We argue now that the design of the jump set D improves
the transient performance as per item 2) of Problem 1. Recall
that we want the integrator to be reset (i.e., a jump in
the hybrid formulation in (11)) when the system satisfies
the following two conditions at the same time: 1) it enters
a stick phase, and 2) the position overshoots the setpoint.
Indeed, a reset in such conditions greatly reduces the time
for the depletion and refilling of the integrator buffer, and
consequently the stick duration. The transient performance
is improved accordingly. Let us now illustrate this through a
schematic response in Fig. 1 and 2.

1) Suppose the system has initial condition z1 < r (and
thus σ > 0) and starts in a stick phase (time interval 1
in Fig. 1). Due to the dynamics of the integrator in (5),
we have that φ > Fs will be reached, which results in
a slip phase (intervals 2 and 3 in Fig. 1). The system
enters a stick phase again (interval 4 in Fig. 1) when
v = 0 is reached and the controller state φ satisfies
0 < φ < Fs, see the black response in Fig. 2. At this
point, the condition φv ≤ 0 is satisfied.

A reset should not take place if the system enters a stick
phase without the occurrence of overshoot, see the red
response in Fig. 2. This may happen for different initial con-
ditions, tuning, or friction characteristics, although item 1)
(i.e., the system entering a stick phase) is satisfied in such
situations. For this reason, we require a second condition
(φσ ≤ 0) in the jump set D in (11c):

2) Before an overshoot of the setpoint (interval 2 in Fig. 1),
we have positive σ and φ, and thus φσ > 0. After
an overshoot (interval 3 in Fig. 1), σ changes sign so
that φσ ≤ 0. Along with item 1), we conclude that the
requirement φσ ≤ 0 in D indeed enforces that a reset
only takes place when the system enters a stick phase
after an overshoot.

Finally, the condition |φσ| ≥ ε in (11c), for some design
parameter ε > 0, prevents a jump when σ or φ are zero,
so that Zeno behavior is avoided. Note that the jump set D
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in (11c) coincides with the reset conditions in (8b) for the
original coordinates.
Remark 1. The criterion φv ≤ 0 is chosen in the jump set D
in (11c) rather than just v = 0 to detect the stick phase, since
the latter is hard to detect in practice due to velocity mea-
surement noise. Although measurement noise around zero
velocity may also render the product φv sign indefinite due
to chattering in the sign of v, the additional condition φσ ≤ 0
in D prevents the system from experiencing undesired jumps.
Indeed, after the first reset, the jump map (11b) ensures that
φσ > 0, thus x 6∈ D.
Remark 2. The jump set D in (11c) is designed based on
the new coordinates x. The states φ and σ are unmeasurable
in the case of an unknown mass m, as one can see from (9)
and (4). However, even for an unknown m, we can define
and obtain measurable states ς := mσ = −k̄i(z1 − r) and
ϕ := mφ = −k̄p(z1− r)− k̄iz3 from (9) and (4). This leads
to jump conditions that can be checked based on measurable
ς and ϕ (note that for some ε > 0, |ϕς| ≥ ε can replace
|φσ| ≥ ε since ε is a design parameter).

IV. STABILITY ANALYSIS

The set of equilibria (6) can be rewritten by the coordinate
transformation in (9) as

A = {x ∈ R3 | σ = v = 0, |φ| ≤ Fs}. (12)

In this section, we show that (12) is globally asymptotically
stable for (11), solving item 1) of Problem 1, as in the next
Theorem.

Theorem 1. Under Assumption 1, A in (12) is globally
asymptotically stable for (11).

The remainder of this section is devoted to outlining the
main steps in the stability analysis that leads to the proof of
Theorem 1. The proofs of these steps build upon the ones
presented in [9], but are significantly challenged due to the
addition of the reset control that gives rise to a hybrid (and
no longer purely continuous-time) closed-loop system. Due
to space restrictions, the proofs of the lemmas below are
omitted and will be published elsewhere.

Consider the discontinuous Lyapunov-like function V :
R3 → R defined as

V (x) :=

[
σ
v

]>[ kd
ki

−1
−1 kp

][
σ
v

]
+ min
F∈Fs Sign(v)

(φ− F )2. (13)

We start by providing some properties of solutions while
flowing, as in Lemma 1 below. To this end, we note that (11a)
(and function (13)) suggests that during flow there are three
relevant affine subsystems corresponding to the system being
in slip with nonnegative or nonpositive velocity, and being
in stick (cf. (7b) and (10)). With the definitions

A :=

[
0 0 −ki
1 0 −kp
0 1 −kd

]
, b :=

[
0
0
Fs

]
, P :=

[ kd
ki

0 −1
0 1 0
−1 0 kp

]
, (14)

these three subsystems correspond to

ξ̇ = f1(ξ) :=Aξ − b, ξ(t0) = ξ1, (15a)

ξ̇ = f0(ξ) :=
[
0 0 0
1 0 0
0 0 0

]
ξ, ξ(t0) = ξ0, (15b)

ξ̇ = f−1(ξ) :=Aξ + b, ξ(t0) = ξ−1. (15c)

For ξ = (ξσ, ξφ, ξv) ∈ R3 and |ξ|2P := ξTPξ, define also

V1(ξ) :=

∣∣∣∣[ ξσ
ξφ−Fs
ξv

]∣∣∣∣2
P

, V0(ξ) :=
∣∣∣[ ξσ0

0

]∣∣∣2
P
, V−1(ξ) :=

∣∣∣∣[ ξσ
ξφ+Fs
ξv

]∣∣∣∣2
P

.

(15d)
With these definitions in place, we can state Lemma 1 below.
Item (i) asserts essentially that it is not possible to generate
multiple solutions while they evolve in the flow set (in spite
of the differential inclusion in (11a)) because they would
coincide almost everywhere1. Item (ii) relates such a (unique)
flowing solution with the solution of one of the subsystems
(15a)-(15c). The hybrid time domain domx of a solution x
to a hybrid dynamical system is defined in [17, §2.2].

Lemma 1. For each solution x to (11), each interval Ij :=
{t : (t, j) ∈ domx} =: [tj , tj+1] with nonempty interior, and
for all t ∈ (tj , tj+1),

(i) if x̂ = (σ̂, φ̂, v̂) is a solution to (11) on [t, t′)×{j} with
t < t′ ≤ tj+1 and x̂(t, j) = x(t, j), then x̂ coincides
with x on [t, t′)× {j};

(ii) one can select k ∈ {−1, 0, 1} and T > 0 such that
the unique solution ξ = (ξσ, ξφ, ξv) to (15) with initial
condition ξk = x(t, j) coincides on [t, t+T ] with x(·, j),
and additionally V in (13) and Vk in (15d) evaluated
along ξ satisfy for all τ ∈ [t, t+ T ]:

V (ξ(τ)) = Vk(ξ(τ)) and d
dτ Vk(ξ(τ)) ≤ −c|ξv(τ)|2, (16)

with
c := 2(kpkd − ki) > 0. (17)

Exploiting Lemma 1, we present the properties of V
in (13) in Lemma 2 below. Note that the distance of a point
x ∈ R3 to the attractor A in (12) is obtained from the
definition (by considering φ,−Fs, |φ| ≤ Fs, φ > Fs) as

|x|2A :=
(

inf
y∈A
|x− y|

)2
= σ2 + v2 + dzFs(φ)2. (18)

Lemma 2. V in (13) is lower semicontinuous and enjoys
the following properties:

1) V (x) = 0 for all x ∈ A and there exists c1 > 0 such
that c1|x|2A ≤ V (x) for all x ∈ R3.

2) Each solution x satisfies for c in (17)

V (x(t2, j))− V (x(t1, j)) ≤ −c
∫ t2

t1

v(t, j)2dt, (19)

for all t1, t2 in each (flowing) interval Ij := {t : (t, j) ∈
domx} with nonempty interior, and t1 ≤ t2.

3) For all x ∈ D in (11c)

V (g(x))− V (x) ≤ 0. (20)

The properties of V in Lemma 2 imply that maximal
solutions are complete [17, §2.3], as per the next lemma.

Lemma 3. For each initial condition x̄ ∈ R3, each maximal
solution x to (11) with x(0, 0) = x̄ is complete.

With these intermediate results, A can be proven to be
globally attractive in Lemma 4 based on a meagre-limsup

1 [9, Lemma 1] proves uniqueness of solutions when C = R3, D = ∅.
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invariance principle [17, Thm. 8.11] (which applies since [17,
Ass. 6.5] is satisfied by (11) and each maximal solution
to (11) is complete by Lemma 3).

Lemma 4. A in (12) is globally attractive for dynamics (11).

We now turn to prove stability of A in (12). As in [9], we
need the auxiliary function

V̂ (x) := 1
2k1σ

2 + 1
2k2
(
dzFs(φ)

)2
+k3|σ||v|+ 1

2k4v
2, (21)

in order to prove the stability bound (23) in Lemma 6 below
for solutions traversing the directions of discontinuity of V
in (13). Indeed, because of such discontinuity on the attractor
A, an upper bound by c2|x|2A for V does not hold in R3,
unlike the lower bound in Lemma 2 (item 1), and stability of
A cannot be concluded directly from V . However, such lower
and upper bounds, together with suitable growth bounds
along solutions, can be established for V and V̂ , respectively,
in the following partition of the state space

R := {x | v(φ− sign(v)Fs) ≥ 0},
R̂ := R3\R,

as in the following lemma.

Lemma 5. For suitable positive scalars k1, k2, k3, k4 in (21),
there exist positive scalars c1, c2, ĉ1, ĉ2 such that

c1|x|2A ≤ V (x) ≤ c2|x|2A, ∀x ∈ R, (22a)

ĉ1|x|2A ≤ V̂ (x) ≤ ĉ2|x|2A, ∀x ∈ R̂, (22b)

V̂ ◦(x) := max
v∈∂V̂ (x),f∈F (x)

〈v, f〉 ≤ 0, ∀x ∈ R̂, (22c)

V̂ (g(x))− V̂ (x) = 0 ∀x ∈ R̂, (22d)

where ∂V̂ (x) denotes the generalized gradient of V̂ at x as
in [18, §1.2], F is as in (11a), and g is as in (11b).

The proof of (22a)-(22c) is carried out analogously to [9,
Lemma 3], and (22d) holds since dzFs(φ)2 = dzFs(−φ)2.

Finally, by composing the relations of Lemma 5 and
Lemma 2 for V and V̂ , the bound (23) of the following
lemma can be obtained, which establishes (uniform global)
stability (see [17, Def. 3.6]) of A in (12).

Lemma 6. Each solution x to (11) satisfies

|x(t, j)|A ≤
√
c2ĉ2
c1ĉ1
|x(0, 0)|A, (23)

for all (t, j) ∈ domx.

Using Lemma 4 and 6, we conclude that A is globally
asymptotically stable for hybrid dynamics (11). Note that,
by the nonsingular coordinate transformation in (9), this is
equivalent to item 1) of Problem 1).

V. ILLUSTRATIVE EXAMPLE

In this section, we illustrate in a simulation study the
transient performance improvements (item 2) of Problem 1)
argued in Section III for the proposed reset controller. We use
a numerical time-stepping scheme [19, Chap. 10] that is able
to correctly deal with the set-valued friction characteristic Ψ.

Let r = 0 be the constant position setpoint. First, consider
only system (5), corresponding to a classical PID controller
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Fig. 3. Simulated position response with static and viscous friction (a,b),
control force (c), evolution of the Lyapunov-like function (d), and net force
acting on the system (e).

(3). The mass m is unitary and the friction parameters are
F̄s = 0.981 N, and α = 0.5. We take kp = 18, kd = 2.5,
and ki = 40, satisfying Assumption 1. The initial conditions
are z1(0) = −0.05 m, z2(0) = z3(0) = 0, satisfying
z(0) ∈ Estick in (7a). The position response is visualized
in Fig. 3a and 3b in red, where the long periods of stick
(resulting in long settling times) are evident. The control
force ū in (3) is presented in Fig. 3c, where the depletion and
refilling process of the integrator buffer, causing long periods
of stick, is clearly visible. This process takes increasingly
more time with a decreasing position error, which results in
increasingly longer periods of stick when the position error
decreases.

Now consider (5) with the reset PID controller (8), whose
resets correspond to x ∈ D as described in Section III.
The position response is given in Fig. 3a and 3b in blue,
where the black circles indicate the instants of controller
resets (which coincide with the start of a stick period). As
it can also be observed in the control force ū in Fig. 3c, the
reset mechanism circumvents largely the depletion/refilling
process of the integrator, decreasing significantly the settling
time. When resets occur, the solution is in the stick set (10),
namely ū = mφ with |φ| ≤ Fs, and ū+ = −mφ thanks
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to (11b). An increase or decrease in ū is then visible after
each reset since the integral action still needs to overcome
the difference between φ and Fs to exit the stick phase, so |ū|
converges to F̄s. In this sense, the control strategy identifies
the unknown static friction level F̄s in an online fashion.

Fig. 3d shows the evolution of the Lyapunov-like func-
tion (13). The discontinuities in V evaluated along a solution
are not due to the reset action, because the evaluated V
remains constant across jumps with v = 0, as from (13)
and (11b). Instead, the minimization term in (13) becomes
zero instantaneously when solutions reach Estick by flow.

Finally, we illustrate that the discontinuity in the control
force caused by the proposed reset mechanism does not in-
crease the risk of exciting high-frequency system dynamics,
compared to the application of the classical PID controller.
The essential insight is that, for the linear integrator, discon-
tinuities in the net force are induced by discontinuities in the
friction force, which are experienced only when the system
enters the stick phase. We will argue in detail below that,
also for the case of the reset integrator, discontinuities in
the net force occur only when discontinuities in the friction
force occur, which again are experienced only when the
system enters the stick phase. Clearly, such discontinuities
are inherent to the frictional nature of the system and are
hence not induced by the hybrid nature of the controller.

Due to the fact that solutions to (11) are absolutely
continuous during flow by definition [17, Def. 2.6] and that
each solution x cannot exhibit more than one consecutive
jump (due to the definition of g and D in (11)), solutions
from C always enter D at a point at which v = 0 (see also
the left plot in Fig. 2). As a result, jumps only occur at zero
velocity (except for the first jump if the initial conditions
are chosen in the interior of D). Given a state x, the net
force Fnet(x) acting on the mass takes a value in the set
mφ− F̄s Sign(v)− k̄dv. Consider the case of no controller
reset and, correspondingly, a solution x∗ to only (11a) (with
C = R3) which experiences a slip-to-stick transition at time
t∗. Also consider times t∗− and t∗+ arbitrarily close to the
left and right of t∗, respectively. At t = t∗−, we have that
Fnet(x

∗(t∗−)) = mφ∗(t∗−)−F̄s sign(v∗(t∗−))−k̄dv∗(t∗−) 6= 0
indeed associated with a nonzero deceleration. At t = t∗+,
we have Fnet(x

∗(t∗+)) ∈ mφ(t∗+) − F̄s Sign(0). We have
v∗(t∗+) = 0 and |φ∗(t∗+)| ≤ Fs since x∗(t∗+) ∈ Estick, and
thus m|φ∗(t∗+)| ≤ F̄s. It then follows from the combination
of the system dynamics and the set-valued friction force law
that the actual friction force (taken from the set F̄s Sign(0))
equals −mφ∗(t∗+) and thus Fnet(x∗(t∗+)) = 0. The disconti-
nuity in Fnet thus appears as a result of the set-valued friction
force law, and is not caused by controller resets. Indeed, the
discontinuity also appears in the case of the classical PID
controller.

Therefore, the proposed hybrid PID controller achieves
a significant transient performance improvement w.r.t. a
classical PID controller, while not increasing the risk of
exciting high-frequency system dynamics.

VI. CONCLUSION

We have presented a reset integrator control strategy for
motion systems with friction that achieves, firstly, robust
global asymptotic stability of the setpoint for unknown

static friction and, secondly, improves transient performance
by reducing the settling time. Global asymptotic stability
follows from a generalized invariance principle for hybrid
dynamical systems. A numerical example shows the im-
proved convergence speed of the proposed reset integrator,
compared to a linear integrator. Future work encompasses
experimental validation of the proposed reset controller,
while also investigating the impact of microscopic frictional
effects (e.g., stiffness-like characteristics) on the transient
performance.
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