Reset integral control for improved settling of PID-based motion systems with friction

R. Beerensa, A. Bisoffib, L. Zaccarianc, W.P.M.H. Heemelsa, H. Nijmeijera, N. van de Wouwa,d

aEindhoven University of Technology, Department of Mechanical Engineering, 5600MB Eindhoven, the Netherlands
bKTH Royal Institute of Technology, Division of Decision and Control Systems, SE-10044 Stockholm, Sweden
cCNRS, LAAS, Univ. de Toulouse, 31400 Toulouse, France, and University of Trento, 38122 Trento, Italy
dUniversity of Minnesota, MN 55455, USA, and Delft University of Technology, 2600AA Delft, the Netherlands

Abstract

We present a reset control approach to improve the transient performance of a PID-controlled motion system subject to Coulomb and viscous friction. A reset integrator is applied to circumvent the depletion and refilling process of a linear integrator when the solution overshoots the setpoint, thereby significantly reducing the settling time. Robustness for unknown static friction levels is obtained. The closed-loop system is formulated through a hybrid systems framework, within which stability is proven using a discontinuous Lyapunov-like function and a meagre-limsup invariance argument. The working principle of the proposed reset controller is analyzed in an experimental benchmark study of an industrial high-precision positioning machine.

Key words: Transient performance, Hybrid control, Motion control, Friction, Stability

1 Introduction

In this paper, we present a reset integral control approach to improve settling (transient) performance of a PID-controlled mechanical motion system subject to friction. Friction is a performance-limiting factor in many high-precision positioning systems, in the sense of, e.g., achievable setpoint accuracy and settling times. Control of motion systems with friction has been an active field of research in the past decades, and many different control solutions have been developed. Several control approaches rely on developing as-accurate-as-possible friction models in order to compensate for friction in the control loop, see, e.g., [3, 11, 17] and the references therein. However, model-based friction compensation techniques may suffer from over- and undercompensation of friction due to unreliable friction measurements, uncertainties in the friction characteristic, and model mismatches. Consequently, the system may exhibit limit cycles or nonzero steady-state errors (thereby losing stability of the setpoint), as thoroughly analyzed in [21]. Non-model-based control techniques do not aim at friction compensation using a friction model, but change the response by applying specific control signals, thereby obtaining the desired performance despite the apparent friction. Examples of such techniques are impulsive control (see, e.g., [20, 25]), dithering-based techniques (see, e.g., [16, 24]), or (second-order) sliding mode control (see, e.g., [4]). In general, these non-model-based control techniques have a common disadvantage. Namely, the persistent injection of high-frequency control signals may excite unmodeled high-frequency system dynamics, which is highly undesirable in motion systems, and, therefore, these techniques are not appealing for being used in industrial applications.

Despite the existence of the above control techniques, linear controllers are still applied in the vast majority of industrial motion systems. Control practitioners are of-
ten well-trained in linear control design (loop-shaping), and the existence of intuitive tuning tools for linear controllers makes them undeniably popular. In particular, the classical proportional-integral-derivative (PID) controller is most commonly used for frictional systems, since the integrator action results in compensation of unknown static friction by integrating the position error. However, PID control is prone to performance limitations as well. Firstly, the integrator action in the presence of the velocity-weakening (i.e., Striebeck) effect may induce limit cycling (hunting), thereby losing asymptotic stability of the setpoint [3, 14]. A second limitation is the slow convergence (and resulting long settling times) in the presence of static friction, see, e.g., [7, Remark 3]. Integrator action is required to escape a stick phase by building up the control force to overcome the (possibly unknown) static friction. However, if the system overshots the setpoint, the control signal must be pointed in the reverse direction to overcome the static friction again. To this end, the integrator buffer needs to deplete and refill. Despite achieving stability of the setpoint, this process takes increasingly more time with a decreasing position error. This results in long settling times, adversely affecting the machine throughput.

In this paper, we address the second limitation in the context of PID control. In particular, we propose a reset integral control scheme that significantly improves transient performance in terms of settling time, and is applicable as an add-on to loop-shaped PID controllers, as designed for industrial motion applications. By building upon a well-known control strategy embraced by the industry, we aim at reducing the threshold for control engineers to use a nonlinear control technique in an industrial environment. Inspired by the Clegg integrator [9] and the First Order Reset Element [15], reset controllers have been used to increase performance in (linear) motion control applications (see, e.g., [1, 10, 18, 27] and [19, 26] for corresponding analysis tools), or disturbance attenuation (see [28]). To the best of the authors’ knowledge, however, reset integrators have not yet been applied to improve settling performance of nonlinear systems with friction.

The main contributions of this paper are as follows. The first one is a novel reset control design for systems with friction that both improves transient performance with respect to a classical PID controller, and achieves robust stability with respect to uncertainties in the static friction. The reset mechanism is robust to velocity measurement noise, and can be readily made robust for asymmetric static friction, if needed. Moreover, the proposed controller minimizes the risk of exciting unmodeled high-frequency dynamics, despite the presence of a discontinuous control signal, thereby addressing a major concern of control engineers in industry. The second contribution is the stability analysis of the resulting hybrid closed-loop system, which exploits a measure-limsup invariance argument [12, §8.4]. The third contribution is a demonstration of the transient performance improvements using the proposed reset control architecture by means of a case study on an industrial high-precision positioning application (a manipulation stage of an electron microscope). This paper builds upon our previous work in [5], which contains the controller design and a simulation example. In addition to [5], this paper contains a more general controller reset law, proofs, and experimental results.

The paper is organized as follows. In Section 2, a model of the considered motion system with a classical PID controller is presented together with the reset integrator control law. The closed-loop dynamics are written in a hybrid systems formalism in Section 3 and a stability analysis is given in Section 4. In Section 5, a case study on a high-precision positioning application is discussed, and conclusions are presented in Section 6.

Notation: $\text{sign}(-)$ (with a lower-case s) denotes the classical sign function, i.e., $\text{sign}(y) := y/|y|$ for $y \neq 0$ and $\text{sign}(0) := 0$. $\text{Sign}(-)$ (with an upper-case S) denotes the set-valued sign function, i.e., $\text{Sign}(y) := \{\text{sign}(y)\}$ for $y \neq 0$, and $\text{Sign}(y) := [-1,1]$ for $y = 0$. For $c > 0$, the deadzone function is defined as: $dz_c(x) := 0$ if $|x| \leq c$, $dz_c(x) := x - c$ if $x > c$, $dz_c(x) := x + c$ if $x < -c$. A function $f : D \to \mathbb{R}$ is lower semicontinuous if $\liminf_{x \to x_0} f(x) \geq f(x_0)$ for each point x_0 in its domain D. The lower right Dini derivative $D_+h(t)$ of a function h is defined as $D_+ h(t) := \liminf_{\epsilon \to 0^+} h(t + \epsilon) - h(t)$. The logical OR and AND are denoted by \lor and \land, respectively.

2. Reset integral control design

In this section, we describe the motion system with friction, and discuss the design of the reset control law.

Consider a single-degree-of-freedom mass m sliding on a horizontal plane with position z_1 and velocity z_2. The mass is subject to a control input \bar{u} and a friction force belonging to a friction set $\Psi(z_2)$ for a velocity z_2, where $z_2 \mapsto \Psi(z_2)$ is a set-valued mapping. The system dynamics are then given by the differential inclusion

$$\dot{z}_1 = z_2, \quad \dot{z}_2 \in \frac{1}{m} \left(\Psi(z_2) + \bar{u} \right). \tag{1}$$

The set-valued friction characteristic Ψ consists of Coulomb friction with unknown static friction F_s, and a viscous contribution γz_2, where $\gamma \geq 0$ is the viscous friction coefficient:

$$\Psi(z_2) := -F_s \text{Sign}(z_2) - \gamma z_2. \tag{2}$$

Since the current paper is primarily focused on robust compensation of unknown Coulomb friction and on transient performance improvement, we have assumed that a velocity-weakening (Striebeck) effect is absent in the friction characteristic Ψ (in the presence of such an effect, a velocity-dependent compensation control term may be employed as in [6]). The goal is to control the mass to the constant setpoint $(z_1, z_2) = (r, 0)$.

Let us formulate the control problem of this paper.

Problem 1 Design a reset PID controller for input \bar{u} in (1)-(2) that 1) globally asymptotically stabilizes the
setpoint \((z_1, z_2) = (r, 0)\) robustly w.r.t. any unknown static friction \(F_s\), for any constant \(r\), and 2) improves the settling time (transient performance), compared to a classical PID controller.

The presence of an integrator action in \(\dot{u}\) is motivated by the fact that it is able to compensate for an unknown static friction \(\bar{F}_s\), which is typically the case in motion applications, so that the controller can robustly deal with the Coulomb friction effect. Before presenting our proposed reset PID controller, we first introduce the classical PID controller generating \(\dot{u}\) as

\[
\dot{u} = -\bar{k}_p(z_1 - r) - \bar{k}_d z_2 - \bar{k}_i z_3, \quad \dot{z}_3 = z_1 - r, \quad (3)
\]

where \(\bar{k}_p, \bar{k}_d, \bar{k}_i > 0\) represent the proportional, derivative, and integral gains, respectively. We apply then the following definitions to obtain mass-normalized system dynamics that favor clarity in the analysis of the upcoming sections:

\[
k_p := \frac{\bar{k}_p}{m}, \quad k_d := \frac{\bar{k}_d + \gamma}{m}, \quad k_i := \frac{\bar{k}_i}{m}, \quad F_s := \frac{\bar{F}_s}{m}. \quad (4)
\]

By using (4), the resulting mass-normalized, closed-loop dynamics given by (1)-(3) satisfy

\[
\begin{align*}
\dot{z}_1 &= z_2, \\
\dot{z}_2 &\in -F_s \text{Sign}(z_2) - k_p(z_1 - r) - k_d z_2 - k_i z_3, \\
\dot{z}_3 &= z_1 - r,
\end{align*}
\]

where the state vector \(z = (z_1, z_2, z_3) \in \mathbb{R}^3\). We select the (normalized) controller gains such that the next assumption is satisfied.

Assumption 1 The control parameters \(k_p, k_d, k_i\) satisfy \(k_i > 0, k_p > 0, k_p k_d > k_i\).

When \(F_s = 0\) (a special, linear case of our setting), this assumption is equivalent, by the Routh-Hurwitz stability criterion, to ensuring global exponential stability of the equilibrium \(z_1 = r, z_2 = z_3 = 0\) through a stabilizing PID controller. Assumption 1 is hence not restrictive.

In [7], it is proven that the set of equilibria

\[
\mathcal{A} := \{ z = (r, 0, 0) \mid |z_3| \leq F_s/k_i \}
\]

of (5) is globally asymptotically stable under Assumption 1. However, the PID-controlled system (5) typically results in long settling times due to the depletion and refilling of the integral buffer that is required to overcome the static friction \(F_s\) upon overshoot, resulting in a change of sign of the integrator state of the PID (as illustrated in [5, §V and Fig. 3]). This process is generally slow and takes increasingly more time with a decreasing position error, resulting in long periods of stick and thus a poor transient performance in the sense of settling times. Note that the system is said to be in a stick or slip phase when the state belongs respectively to the sets

\[
\mathcal{E}_{\text{stick}} := \{ z \in \mathbb{R}^3 \mid z_2 = 0, |k_i z_3 + k_p(z_1 - r)| \leq F_s \} \quad (7a)
\]

\[
\mathcal{E}_{\text{slip}} := \mathbb{R}^3 \setminus \mathcal{E}_{\text{stick}}.
\]

In this paper, we propose a novel reset PID control scheme to solve Problem 1. In particular, the objective of the proposed reset integral controller is to obtain a significantly faster settling time (i.e., the time for the position error to reach and remain in a specified accuracy band) compared to the classical PID design in (3), resulting in (5). To this end, we replace the integrator in the PID controller (3) with a reset integrator. The key mechanism behind the reset integrator is that a large part of the time-consuming depletion and refilling process of the integrator buffer (needed to overcome the static friction) is circumvented, whenever the system overshoots the setpoint. The reset in (8c) below ensures that the control force after a reset points in the direction of the setpoint, as close as possible to the (unknown) static friction value. This results in the following reset PID controller:

\[
\begin{align*}
\dot{u} &= -\bar{k}_p(z_1 - r) - \bar{k}_d z_2 - \bar{k}_i z_3, \quad (8a) \\
\dot{z}_3 &= z_1 - r, \quad (8b) \\
z_3^+ &= -\alpha z_3 - (1 + \alpha)\frac{k_p}{k_i}(z_1 - r), \quad (8c)
\end{align*}
\]

where \(z_3^+\) denotes the updated value of \(z_3\) upon a reset, occurring only when the conditions (8e) below are satisfied. The design parameter \(\alpha \in [0, 1]\) enables the reset to be scaled, and its role is elaborated further in Section 5. Position \(z_1\) and velocity \(z_2\) do not change at a reset:

\[
\begin{align*}
z_1^+ &= z_1, \quad z_2^+ = z_2. \quad (8d)
\end{align*}
\]

The integrator should be reset (as in (8e) below) whenever \(i\) the system overshoots the setpoint, and \(ii\) it enters a stick phase. Resetting the integrator when the system is in stick minimizes the risk of exciting high-frequency system dynamics because the discontinuity associated with the controller reset is compensated by the set-valued friction. See [5, §V] for an elaborate analysis of this fact. Intuitively speaking, condition \(i\) is met when the position error and the proportional-integral (PI) component of the controller have opposite sign. The satisfaction of condition \(ii\) requires the detection of zero velocity, which may be hard in practice due to measurement noise. Although robust zero-velocity detection mechanisms exist, we choose to evaluate the product of the PI control force and the velocity signal in order to robustly detect hitting zero velocity (see also Remark 1 below). Finally, we introduce a design parameter \(\varepsilon > 0\) whose purpose is to avoid Zeno behavior [12, p. 28-29]. This discussion motivates the controller reset conditions:

\[
k_i (z_1 - r) (k_p (z_1 - r) + k_i z_3) \leq 0 \\
\land -z_2 (k_p (z_1 - r) + k_i z_3) \leq 0 \\
\land |k_p k_i (z_1 - r)^2 + k_i^2 (z_1 - r) z_3| \geq \varepsilon \quad (8e)
\]

In Section 3, we further elaborate on the reset map...
in (8c), the reset conditions in (8e), and the role of \(\epsilon \) by showing that the reset conditions correspond indeed to (robust) detection of overshoot and stick (see (7a)). Moreover, we show in Section 4 that the reset map in (8c) preserves global asymptotic stability of the set of equilibria (6) for \(\alpha \in [0, 1] \) and \(\epsilon > 0 \) (note that in [5] only the case \(\alpha = 1 \) was considered). Summarizing, the resulting closed-loop system with the proposed reset PID controller is given by (5), (8c)-(8e).

3 Hybrid system formulation

In this section, we rewrite the closed-loop reset control system (5), (8c)-(8e) in the hybrid systems formalism of [12] to elaborate on the design of the proposed reset law. Furthermore, the derived hybrid system is used later for the stability analysis of Section 4.

Let us start with a useful state transformation, which allows for a simpler description of the system, transforms any constant setpoint \(r \) to the setpoint 0, and facilitates the construction of a Lyapunov-like function for the stability analysis in Section 4. Following [7], this state transformation is

\[
x := \begin{bmatrix} \sigma \\ \phi \\ v \end{bmatrix} := \begin{bmatrix} -k_i (z_1 - r) \\ -k_p (z_1 - r) - k_i z_3 \\ z_2 \end{bmatrix},
\]

(9)

where \(\sigma \) is a generalized position error, \(\phi \) is the controller state encompassing the proportional and integral control actions, and \(v \) is the velocity of the mass. The state transformation in (9) rewrites the stick set in (7a) as

\[
\mathcal{E}_{\text{stick}} = \{ x \in \mathbb{R}^3 \mid v = 0, |\phi| \leq F_s \}. \tag{10}
\]

The generalized controller state \(\phi \) represents all the nonzero components of the control action at zero velocity (that is, the proportional and integral terms), and the size of \(\phi \) compared to the static friction \(F_s \) at \(v = 0 \) determines then whether the system resides in a stick phase or not, see (10).

With the state transformation (9), we rewrite the closed-loop dynamics (5) with the reset law (8c)-(8d) in the hybrid formalism of [12] as in (11) below. The reset law (8c)-(8d) expressed in the state \(x \) simply yields a scaled sign change of \(\phi \) when the reset criteria are met.

\[
\begin{align*}
x \in F(x) & := \begin{bmatrix} -k_i v \\ -k_p v - k_i v \\ \phi - k_d v - F_s \text{Sign}(v) \end{bmatrix}, \quad x \in \mathcal{C}, \tag{11a} \\
x^+ = g(x) & := \begin{bmatrix} \sigma - \alpha \phi \\ v \end{bmatrix}^T, \quad x \in \mathcal{D}, \tag{11b}
\end{align*}
\]

where \(F \) and \(g \) are the flow and jump map, respectively. Using (9), the reset conditions in (8c) transform into

\[
\mathcal{D} := \{ x \in \mathbb{R}^3 \mid \phi \sigma \leq 0, \phi v \leq 0, |\phi \sigma| \geq \epsilon \}. \tag{11c}
\]
Remark 1 To detect the stick phase, the criterion $\phi v \leq 0$ is chosen in the jump set \mathcal{D} in (11c) rather than just $v = 0$, since the latter is hard to check in practice due to velocity measurement noise. Although measurement noise around zero velocity may also render the product of measurement noise. Indeed, after the first reset, the jump map (11b) prevents the system from experiencing undesired consecutive jumps. Indeed, the after the first reset, the jump map (11b) prevents the system from experiencing undesired consecutive jumps.

Remark 2 The jump set \mathcal{D} is expressed in (11c) in terms of x. The states ϕ and φ are not measurable in the case of an unknown mass m, as one can see from (9) and (4). The same observation clearly holds for the condition in (8e). However, even for an unknown mass m, we can define from (9) and (4) the measurable states

\begin{align}
\zeta &:= m\sigma = -k_d(z_1 - r), \\
\varphi &:= m\phi = -k_p(z_1 - r) - k_z z_3.
\end{align}

This leads to jump conditions that can be checked based on the measurable states ζ and φ, in which m does not appear. Note that for some $\epsilon > 0$, $|\varphi| \geq \epsilon$ can replace $|\sigma| \geq \epsilon$ since ϵ is a design parameter.

4 Stability analysis

The set of equilibria (6) can be rewritten by the state transformation in (9) as

$$A = \{ x \in \mathbb{R}^3 \mid \sigma = v = 0, \ |\phi| \leq F_r \}.$$ (13)

In this section, we show that (13) is globally asymptotically stable for (11), solving item 1) of Problem 1, as formalized by the next theorem.

Theorem 1 Under Assumption 1, for each $\alpha \in [0, 1]$ and $\epsilon > 0$, A in (13) is globally asymptotically stable for the hybrid dynamics (11).

The remainder of this section is devoted to the proof of Theorem 1. In particular, we establish in Lemma 4 that A is Lyapunov stable for (11). The proof builds upon the results in [7], but is significantly challenged by the addition of the reset controller that gives rise to a hybrid (and no longer purely continuous-time) closed-loop system.

Consider the discontinuous Lyapunov-like function $V : \mathbb{R}^3 \rightarrow \mathbb{R}$ proposed in [7] and defined as

$$V(x) := \begin{bmatrix} \sigma \\ \dot{\varphi} \end{bmatrix}^T \begin{bmatrix} k_d & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \sigma \\ \dot{\varphi} \end{bmatrix} + \min_{F \in F_s} (\phi - F)^2. \quad (14)$$

We start by providing some properties of solutions while flowing, as in Lemma 1 below. To this end, we note that (11a) and function (14)) suggests that during flow there are three relevant affine subsystems corresponding
to the system being in slip with nonnegative or nonpositive velocity, and being in stick (cf. (7b) and (10)). With the definitions

$$A := \begin{bmatrix} 0 & -k_i \\ 1 & 0 \end{bmatrix}, \quad b := \begin{bmatrix} 0 \\ k_i \end{bmatrix}, \quad P := \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 \end{bmatrix} k_p,$$ (15)

these three subsystems are defined as

$$\dot{x} = f_1(\xi) := A\xi - b, \quad (16a)$$

$$\dot{x} = f_0(\xi) := \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad (16b)$$

$$\dot{x} = f_{-1}(\xi) := A\xi + b, \quad (16c)$$

For $\xi = (\xi_{\sigma}, \xi_{\phi}, \xi_{\varphi}) \in \mathbb{R}^3$ and $|\xi|^2 := \xi^T P \xi$, define also

$$V_1(\xi) := \left[\xi_{\sigma} - F_1 \right]^2, \quad V_0(\xi) := \left[\xi_{\sigma} \right]^2, \quad V_{-1}(\xi) := \left[\xi_{\sigma} + F_1 \right]^2.$$ (16d)

With these definitions in place, we can state Lemma 1 below. Item (i) asserts that flowing solutions to (11) are unique (in spite of the differential inclusion in (11a)), whereas item (ii) relates such a (unique) flowing solution with the solution of one of the subsystems (16a)-(16c). The solution x to a hybrid dynamical system and its hybrid time domain x are defined respectively in [12, Def. 2.6] and [12, Def. 2.3].

Lemma 1 For each solution x to (11), each interval $P := \{ t : (t, j) \in x \} := \{ t_j, t_{j+1} \}$ with nonempty interior, and for all $t \in (t_j, t_{j+1})$,

(i) if $\dot{x} = (\dot{\sigma}, \dot{\phi}, \dot{\varphi})$ is a solution to (11) on $[t, t') \times \{ j \}$ with $t < t' \leq t_{j+1}$ and $\dot{x}(t, j) = x(t, j)$, then \dot{x} coincides with x on $[t, t') \times \{ j \}$;

(ii) one can select $k \in \{ -1, 0, 1 \}$ and $T > 0$ such that the unique solution $x(t, j, \xi) = (\xi_{\sigma}, \xi_{\phi}, \xi_{\varphi}) \rightarrow (16)$ with initial condition $\xi_k = x(t, j)$ and $t_0 = t$, coincides on $[t, t + T]$ with $x(t, \cdot, j)$ and, additionally, V_1 in (14) and V_{-1} in (16d) evaluated along ξ satisfy for all $\tau \in [t, t + T]$:

$$V(\xi(\tau)) = V_k(\xi(\tau)) \quad \text{and} \quad \frac{d}{d\tau} V_k(\xi(\tau)) \leq -c(\xi_{\sigma}(\tau))^2,$$ (17a)

with

$$c := 2(k_p k_d - k_i) > 0.$$ (18)

Proof. The proof of Lemma 1 is based on the proofs of [7, Lemma 1 and Claim 1]. Note that $c > 0$ in (18) by Assumption 1.

Item (i). The proof of this item is carried out analogously to [7, Proof of Lemma 1] for each of the nonempty intervals $[t, t') \times \{ j \}$.

Item (ii). For each possible initial condition $(\sigma, \phi, \varphi) := x(t, j)$, k in item (ii) is selected based on Table 1. The proof is then carried out analogously to [7, Appendix A] by substituting into (11) the solution x to the k-th affine subsystem $\dot{x} = f_k(\xi)$ among (16a)-(16c) and verifying that (11) holds for ξ. Moreover, by
evaluating V and V_k along the same ξ, and finally by differentiating V_k(ξ(·)) w.r.t. time, we obtain (17). □

Exploiting Lemma 1, we are ready to present the properties of V in (14) in Lemma 2 below. We will use fact that the distance of a point x ∈ R^3 to the attractor A in (13) is obtained from the definition as

\[|x|^2_A := \left(\inf_{y \in A} |x-y| \right)^2 = \sigma^2 + v^2 + dz_F(\phi)^2, \quad (19) \]

by separating the cases φ < -F_s, |φ| ≤ F_s, φ > F_s.

Lemma 2 V in (14) is lower semicontinuous (lsc) and enjoys the following properties:

1. V(x) = 0 for all x ∈ A and there exists c_1 > 0 such that c_1|x|^2_A ≤ V(x) for all x ∈ R^3.
2. Given c in (18), each solution x satisfies

\[V(x(t_2, j)) - V(x(t_1, j)) \leq -c \int_{t_1}^{t_2} v(t, j)^2 dt \quad (20) \]

for all t_1, t_2 in each (flow) interval I := \{t: (t, j) ∈ dom x\} with nonempty interior, and t_1 ≤ t_2.
3. For all x ∈ D in \((11c)\) it holds that

\[V(g(x)) - V(x) ≤ 0. \quad (21) \]

Proof. Based on Assumption 1, the proof of V being lsc and of item (1) is identical to [7, Proof of Lemma 2].

Item (2). To prove this item, we use [13, Thm. 9] with the variant in [13, Sec. 5 (point a)], as in the following Fact 1. The statement is specialized for an integrable function l, so that the standard integral can replace the upper integral in [13, Thm. 9], as noted after [13, Def. 8].

Fact 1 [13] Given t_2 > t_1 ≥ 0, suppose that h is lower semicontinuous and that l is locally integrable in [t_1, t_2]. If D_x h(τ) ≤ l(τ) for all τ ∈ [t_1, t_2], then h(t_2) - h(t_1) ≤ \int_{t_1}^{t_2} l(τ) dτ.

By the preliminary Fact 1, (20) in item (2) is a mere application of Fact 1 for h(·) = V(x(·, j)) and l(·) = -cv(·, j)^2 where x = (σ, φ, ν) is a solution to (11). So, we need to check that the assumptions of Fact 1 are verified. We already established above that V(·) is lsc. Solutions x to (11) are such that for each j ∈ Z_{>0}, t ↦ x(t, j) is locally absolutely continuous by [12, Def. 2.4 and 2.6]. Then, because the composition of a lsc and a continuous function is lsc [22, Exercise 1.40], the Lyapunov-like function V in (14) evaluated along the flow portion of a solution to (11) is lsc in t. Because of the local absolute continuity of flowing portions of solutions, \(-cv(·, j)^2\) is locally integrable.

Finally, it was proven in item (ii) of Lemma 1 that on P^1, the solution x to (11) coincides with the solution ξ to one of the three affine systems in (16) (numbered k) on [t, t + T]. Moreover, that same item states that V(ξ(·)) coincides in [t, t + T] with the function V_k(ξ(·)) in (17), which is differentiable, hence V(x(·, j)) is at least differentiable from the right at t and the lower right Dini derivative coincides with the right derivative. In particular, we established in (17) that this right derivative is upper bounded by \(-cv(·, j)^2\).

Item (3). For all x ∈ D in \((11c)\), V(g(x)) - V(x) = \min_{F \in F_x} Sign(v) (-αφ - F)^2 - \min_{F \in F_x} Sign(v) (φ - F)^2 where for each v, the set F_x(Sign(v)) is compact. Then, by evaluating the different cases for v and φ. The in- equality in (21) follows from (22) since 0 ≤ α ≤ 1 and 0 ≤ v ≤ 0 in the jump set D.

The properties of V in Lemma 2 imply that maximal solutions are complete [12, §2.3], as per the next lemma.

Lemma 3 For each initial condition x ∈ R^3, each maximal solution x to (11) with x(0, 0) = x is complete.

Proof. The proof is based on [12, Prop. 6.10], which can be applied since (11) satisfies the so-called hybrid basic conditions [12, Ass. 6.5]. Condition (VC) of [12, Prop. 6.10] holds for every ξ ∈ C \cup D, otherwise we would contradict completeness in [7, Lem. 1]. Therefore, each solution x satisfies exactly one of [12, Prop. 6.10, (a)- (c)]. Note that (20) and (21) imply together that

\[V(x(t, j)) ≤ V(x(0, 0)) \quad (23) \]

for each (t, j) ∈ dom x. If [12, Prop. 6.10, (b)] is verified (that is, lim_{x→sup, dom x} x(t, sup, dom x) = +∞), then also V grows unbounded because of the lower bound of V in Item 1 of Lemma 2. But this is a contradiction of (23), so we can exclude [12, Prop. 6.10, (b)] for each solution. Also [12, Prop. 6.10, (c)] can be excluded since C \cup D is R^3 in (11). Then only [12, Prop. 6.10, (a)] remains, i.e., each solution x is complete. □

We can now prove global attractivity of A in (13) through a meagre-limsup invariance principle [12, Thm. 8.11] in the next lemma.

Lemma 4 The set of equilibria A in (13) is globally attractive for dynamics (11).

Proof. [12, Thm. 8.11] is applicable because [12, Ass. 6.5] is satisfied by (11). Note that, since each maximal solution x to (11) is complete by Lemma 3, the conclusions of [12, Thm. 8.11] will hold for each
maximal solution \(x\) once we verify that each such \(x\) satisfies the meagre-limsup conditions (a)-(b) below. More specifically, introduce the continuous functions \(x \mapsto \ell_k(x) := v^2\) and \(x \mapsto \ell_d(x) := 1\). Then, [12, Thm. 8.11] holds if:

(a) if \(\text{sup, dom } x = \infty\), then \(t \to \ell_d(x(t,j(t)))\) is weakly meagre (as defined on [12, p. 178]), where \(j(t) := \min\{t,j\in\text{dom } x\} j\).

(b) for each maximal solution \(x^*\) to (11), if \((t,j) \in \text{dom } x^*\), then \(\ell_d(x^*(t,j)) = 0\).

Let us check condition (\(a\)). Lemma 2 (items 2-3) implies, for each solution \(x\) and a generic \((t,j) \in \text{dom } x\), that
\[
V(x(t,j)) - V(x(0,0)) \leq -c \int_{t}^{\infty} \varphi(\tau,j(\tau))^2 \, d\tau,
\]
by splitting into flow intervals and jumps. We then have
\[
\int_{t}^{\infty} \ell_\alpha(x(\tau,j(\tau))) \, d\tau \leq \sqrt{\frac{c}{2}} \sqrt{\frac{c}{2}} \int_{t}^{\infty} \varphi(\tau,j(\tau))^2 \, d\tau \leq \frac{c}{2} \int_{t}^{\infty} \varphi(\tau,j(\tau))^2 \, d\tau
\]
by Lemma 2 (item 1). By letting \(t \to +\infty\), this means that \(t \to \ell_d(x(t,j(t)))\) is absolutely integrable on \(\mathbb{R}_{\geq 0}\) and is hence weakly meagre (see [12, p. 178]).

Let us check condition (\(b\)). For all maximal solutions \(x^*\) to (11), there are no \((t,j) \in \text{dom } x^*\) since \(x^*\) cannot exhibit two or more consecutive jumps (by the definitions of \(\varphi\) and \(\mathcal{D}\)), if both \((t,j) \in \text{dom } x^*\) and \((t,j) \in \text{dom } x^\star\) then \(x^*(t,j) \in \mathcal{D}\) and \(x^\star(t,j) \in \mathcal{C}\). So, condition (\(b\)) is vacuously satisfied.

Since (\(a\)) and (\(b\)) above hold, then [12, Thm. 8.11] concludes that for each solution \(x\), \(\Omega(x) \subset \{x \in \mathbb{R}^n \mid v = 0\}\), where \(\Omega(x)\) is the \(\omega\)-limit set of solution \(x\) [12, Def. 6.17] and \(\mathbb{R}^n\) denotes the closure of the range of \(x\). Due to the properties of \(\Omega(x)\) in [12, Prop. 6.21], its weak invariance implies that for each solution \(x\), \(\Omega(x)\) is not merely a subset of \(\{x \in \mathbb{R}^n \mid v = 0\}\), but it is actually \(\Omega(x) \subset A\) (indeed, if it were \(\sigma \neq 0\) or \(|\sigma| > F_\gamma\) in \(\Omega(x)\), each solution from such a point \(\chi = (\sigma,\phi,0)\) would eventually exhibit a nonzero velocity component, thereby contradicting weak invariance). Convergence of each complete solution \(x\) to \(\Omega(x) \subset A\) therefore implies global attractivity of \(A\).

Finally, we now turn to proving stability of \(A\) in (13). As in [7], we need the auxiliary function
\[
\hat{V}(x) := \frac{1}{2} k_1 \sigma^2 + \frac{1}{2} k_2 \left(\text{d}z_{F_\gamma}(\phi) \right)^2 + k_3 |v| + \frac{1}{2} k_4 v^2,
\]
in order to prove stability through bound (26), in spite of the discontinuity of \(V\) in (14). Indeed, because of such discontinuity at points in the attractor \(A\), an upper bound of the type \(c_2|x|^2\) for \(\hat{V}(x)\) does not hold in \(\mathbb{R}^3\), unlike the lower bound in Lemma 2 (item 1), and stability of \(A\) cannot be concluded directly from \(V\). However, such lower and upper bounds, together with suitable growth bounds along solutions, can be established for \(V\) and \(\hat{V}\), respectively, in the following partition of the state space \(R := \{x \mid v(\phi - \text{sign}(v)F_\gamma) \geq 0\}\) and \(\bar{R} := \mathbb{R}^3 \setminus R\), as characterized in the next lemma.

Lemma 5 For suitable positive scalars \(k_1, k_2, k_3, k_4\) in (24), there exist positive scalars \(c_1, c_2, \hat{c}_1, \hat{c}_2\) such that
\[
c_1 |x|^2_{A} \leq \hat{V}(x) \leq c_2 |x|^2_{A}, \quad \forall x \in R,
\]
\[
\hat{c}_1 |x|^2_{A} \leq \hat{V}(x) \leq \hat{c}_2 |x|^2_{A}, \quad \forall x \in \bar{R},
\]
\[
\hat{V}(x) := \max_{y \in \partial \hat{V}(x), y \in F(x)} \langle y, f \rangle \leq 0, \quad \forall x \in \bar{R},
\]
\[
\hat{V}(g(x)) - \hat{V}(x) \leq 0 \quad \forall x \in \bar{R},
\]
where \(\partial \hat{V}(x)\) denotes the generalized gradient of \(\hat{V}\) at \(x\) as in [8, §1.2], \(F\) is as in (11a), and \(g\) is as in (11b).

Proof. Equations (25a)-(25b) are proved analogously to [7, (19a)-(19b)]. This is also true for (25c), since the flow map \(F\) is the same as well. Finally, (25d) holds since \((\text{d}z_{F_\gamma}(\phi)) \leq (\text{d}z_{F_\gamma}(\phi))^2\) for \(\alpha \in [0,1]\).

By composing the relations of Lemma 5 and Lemma 2 for \(\hat{V}\) and \(\hat{V}\), the bound (26) of the next lemma can be obtained, which establishes (uniform global) stability (see [12, Def. 3.6]) of \(A\) in (13).

Lemma 6 Given the scalars \(c_1, c_2, \hat{c}_1, \hat{c}_2\) in (25), each solution \(x\) to (11) satisfies
\[
|x(t,j)|_A \leq \sqrt{\frac{c_2}{c_1}} \sqrt{\frac{c_2}{c_1}} |x(0,0)|_A \quad \forall (t,j) \in \text{dom } x.
\]

Proof. The proof is the natural extension to the hybrid case of the proof of [7, Proof of Item 2] of Prop. 1, Eq. (21). In particular, one considers the two mutually exclusive Case (i) (i.e., \(x(t,j) \not\in R\) for all \((t,j) \in \text{dom } x\)) and Case (ii) (i.e., there exists \((t,j) \in \text{dom } x\) such that \((x(t,j) \in R\) and applies (25) and Lemma 2, items 1-3.

Remark 3 Since \(A\) is compact, and the hybrid system (11) satisfies the hybrid basic conditions [12, Ass. 6.5], the stability and global attractivity results proven above imply uniform global asymptotic stability for (11) in terms of a class-KL estimate. They also imply global robust KL asymptotic stability of \(A\) for (11) [12, Thm. 7.21] and semiglobal practical robust asymptotic stability of \(A\) [12, Thm. 7.12 and Lemma 7.20].

5 Experimental case study

In this section, we demonstrate the working principle and the effectiveness of the proposed reset controller on an industrial high-precision positioning stage. The considered stage represents a sample manipulation stage of an electron microscope [23]. In particular, we show 1) the robust stability properties of the controller in the presence of unknown static friction and measurement noise, 2) that the transient performance is indeed improved w.r.t. the classical PID controller, as in item 2 of Problem 1, and 3) how the tuning of the reset controller affects performance.

5.1 Experimental setup

The experimental setup is presented in Fig. 2. The setup consists of a Maxon RE25 DC servo motor \(\circ\) connected to a spindle \(\bigcirc\) via a coupling \(\bigcirc\) that is stiff in the rotational direction while being flexible in the translational direction. The spindle drives a nut \(\bigcirc\), transforming the rotary motion of the spindle to a transla-
tional motion of the attached carriage (5), with a ratio of 7.96 · 10−5 m/rad. The position of the carriage is measured by a linear Renishaw encoder (6) with a resolution of 1 nm (and peak noise level of 4 nm). The desired position accuracy to be achieved is 10 nm, as specified by the manufacturer.

For frequencies up to 200 Hz, the system dynamics can be well described by (1) for which Theorem 1 applies when interconnected with the reset PID controller. In this case, z1 represents the position of the carriage. The mass $m = 172.6$ kg consists of the transformed inertia to the spindle (with an equivalent mass of 171 kg), and of the mass of the carriage (1.6 kg).

The friction force for Ψ in (1) is mainly induced by the bearings supporting the motor and the spindle (see (7) and (8) in Fig. 2), and by the contact between the spindle and the nut. Since the system is rigid and behaves as a single mass for frequencies up to 200 Hz, these friction forces can be summed up to provide a single net friction characteristic as Φ in (1). For illustrative purposes only, the net friction characteristic is experimentally identified and visualized in Fig. 3. It can be observed that the setup shows dominantly static Coulomb friction with static friction values of 32.7 N and 33.1 N for positive and negative motions, respectively, indicating a small level of asymmetry in the friction characteristic. On the other hand, it also shows a small Strubeck effect. The Strubeck effect, however, is insignificant as compared to the static friction, and does not require an additional compensation term in \bar{u}. As we will show below, the closed-loop with a (reset) PID controller results in asymptotic stability of the position setpoint, instead of hunting limit cycling (which may occur in the presence of a more pronounced Strubeck effect). This indicates that the considered system controlled by either the classical PID controller or the proposed reset controller has some robustness to small Strubeck effects. We emphasize that we do not use any of this information on the friction characteristic in our controller.

5.2 Reset controller tuning

The purpose of the experimental case study is to demonstrate the transient performance benefits that can be obtained with the proposed reset controller, in terms of settling time, relative to the classical PID controller.

Fig. 2. Experimental setup of a nano-positioning motion stage.

The PID controller gains $\bar{k}_p = 10^7$ N/m, $\bar{k}_d = 2 \cdot 10^3$ N·s/m, and $\bar{k}_i = 10^8$ N·m/(s·s) are obtained by well-known linear loop-shaping techniques often applied in industry. The proposed reset integrator does not require additional tuning constraints other than the “linear” stability conditions in Assumption 1 (indeed necessary for the special case $F_s = 0$) that are equivalent to $k_1 > 0$, $k_p > 0$, and $\frac{k_d(k_i + \gamma)}{m} > k_i$. The latter holds since $\gamma > 0$ and the PID controller gains above satisfy $\frac{k_d}{k_p} > k_i$.

Let us now explain the role of the tuning parameter α. Most importantly, $\alpha \in [0, 1]$ directly affects the transient performance (a larger α leads to a faster convergence). Additionally, α accommodates the developments in Sections 2-4 for symmetric friction to possible asymmetries in the experimental friction characteristics. On the one hand, α closer to one yields a larger reset and a correspondingly shorter stick duration. Choosing α as large as possible is thus favorable for the transient performance improvement, and we will show the implications of the value for α on the transient performance in the next subsection. On the other hand, a smaller α results in a relaxed reset, hence a longer stick duration, which enhances robustness for frictional asymmetry as explained in detail in the next remark.

Remark 4 A smaller α yields robustness to an asymmetric friction characteristic. If the static friction value in the positive direction of motion is significantly larger than the static friction value in the negative direction of motion, the integrator has to build up a larger control force in the positive direction. It may then happen that after the reset ensuing the beginning of a stick phase, the value for the proportional and integral action exceeds the static friction value, resulting in an immediate escape from the stick phase and possibly unstable behavior. In other words, a controller reset (with α large) combined with asymmetric friction may lead to overcompensation, compromising the stability of the setpoint as analyzed in [21].

The last tuning parameter ϵ comes from the criterion $|\varphi| \geq \epsilon$ which replaces $|\sigma| \geq \epsilon$ in D, as noted in Remark 2. The purpose of $|\varphi| \geq \epsilon$ is to prevent a discrete jump when the measurable states ς or φ in (12) are zero, so that Zeno behavior is avoided. For practical implementation, we redefine this criterion to the more intuitive criteria $|\varsigma| \geq \eta_1$, $|\varphi| \geq \eta_2$, with $\eta_1, \eta_2 > 0$. We
5.3 Transient performance comparison

We now demonstrate the transient performance benefits of the proposed reset controller. According to standard operation of the nano-positioning stage in an electron microscope, a fourth-order reference trajectory is applied to the stage so that it moves by one millimeter in one second. After the trajectory has ended, the stage has a nonzero positioning error due to the presence of friction. This is the starting point of our window of interest during the experiments, and from this point on, the goal is to control the system towards a specified position error accuracy of 10 nm using the proposed reset controller. In particular, we show the relative improvement in terms of settling time (i.e., the required time for the position error to reach and remain in the error band of 10 nm), as compared to the underlying classical PID controller without resets.

The responses for the position error $z_1 - r$ and the corresponding scaled control force $\bar{u}/(4k_i)$ are presented in Fig. 4 for the classical PID and the reset PID (with different values of α). All experiments are performed with the same initial conditions. Variations in the position errors and time instants of the initial stick phases between the presented responses are due to the fact that the friction characteristic is slightly different for each experiment, due to, e.g., small temperature changes as a result of continuous system operation. Since the setup operates on a very small position error regime, even minor changes in the friction may have a significant impact on the response. It can be observed in Fig. 4 that the application of the reset controller (see the three bottom plots for different values of α) results in shorter stick periods and hence decreased settling times, as compared to the classical PID controller (see the top plot). In particu-
ular, in the presented responses, the desired accuracy is achieved at respectively, 56.7, 25.3 and 8.4 seconds corresponding to values for \(\alpha \) of 0.3, 0.8 and 1. Unlike the reset one, the classical PID controller (with the same controller gains), did not reach the desired accuracy within the maximal measurement window of 120 seconds.

We emphasize that false resets are not triggered due to the robust design of the jump set \(D \) (and its implementable version \(D^* \)) with respect to velocity measurement noise, as pointed out in Remark 1. The inset in the second subplot in Fig. 4 shows that indeed a reset is triggered as soon as the velocity hits zero (characterizing the start of a stick phase, as in (7a)). After the reset has occurred, the velocity signal keeps crossing zero during the stick phase, due to noise, but undesired multiple resets are prevented by the robust design of the reset conditions, in accordance with Remark 1.

5.4 Microscopic frictional effects

Due to the low position error levels in the operating conditions of the setup, microscopic frictional effects that are present in the friction characteristic are significant compared to the static friction effect in this particular application. The experimental results above show that the proposed control strategy also exhibits some robustness against these effects, although not formally analyzed in the presented stability result in Section 4.

Frictional creep

A controller reset occurs some time after the beginning of a macroscopic stick phase. This effect is caused by microscopic frictional creep (see, e.g., [2, Chap. 2]) at the start of (and during) a macroscopic stick phase (see the inset in the first subplot of Fig. 4), thereby not allowing for a reset because of the nonzero velocity. Hitting \(v = 0 \) (so that \(\psi v \leq 0 \) in \(D^* \) is satisfied) can be detected only when the microscopic creep stops. This is illustrated by the inset in the second subplot of Fig. 4, where we highlight the velocity signal during such a period of creep. A nonzero velocity is indeed observed during creep, and the controller is reset only as soon as the velocity signal hits zero (indicated by the black dashed horizontal line). The reset delay associated to creep allows then the integrator buffer to deplete, which, in turn, causes a milder reset. This milder reset further motivates us to choose \(\alpha = 1 \) despite the (minor) asymmetry in the friction characteristics (see Fig. 3).

Frictional stiffness effects

A second phenomenon caused by microscopic frictional effects are the small stick-to-stick jumps in the position error response upon resets, see the inset in the third subplot of Fig. 4. This phenomenon can be explained by the presence of stiffness-like characteristics in the friction, see e.g., [3, Sec. 2.1]. To illustrate this, note that the magnitude of these stiffness-like effects can be estimated by dividing the difference in the control force associated with a controller reset, by the resulting change in position. This results in values between \(8 \cdot 10^6 \) and \(7 \cdot 10^6 \) N/m. Although these estimated stiffness coefficients are very large, the associated effect is significant due to the low position errors in the operating conditions. Note that the system still resides in the stick phase in macroscopic sense after the controller reset. In this case, these effects are not unfavourable, as they force the system towards the setpoint. On the other hand, the position error after such a jump is smaller, so that it takes more time for the integrator to compensate for the static friction.

Acknowledgement: The authors greatly acknowledge David Fresen for his assistance with the experimental part of this work.

6 Conclusions

We proposed a novel reset integrator control strategy for motion systems with friction that achieves, firstly, robust global asymptotic stability of the setpoint for unknown static friction and, secondly, improves transient performance by reducing the settling time. The reset conditions are designed so that a controller reset is correctly triggered despite measurement noise, and does not increase the risk of exciting high-frequency system dynamics. Global asymptotic stability of the setpoint is proven based on a generalized invariance principle for hybrid dynamical systems. An experimental case study on a high-precision positioning application shows the improved settling time when using the proposed reset controller, as compared to its classical PID counterpart.

References

