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Abstract— We consider a linear control system, where the
sensors communicate to the controller via a wireless network
in which the probability of successful data transmissions is
an increasing function of the selected radio signal power. We
tackle the problem of jointly selecting the transmission power
at every transmission time as a function of the state, much like
in event-triggered control systems, and of designing a controller
in order to minimize an average quadratic cost. Our proposed
power scheduler and corresponding control policy are shown
to outperform the optimal control policy when the radio signal
power is constant at all times, while using at most the same
average transmission power. For this result to hold, the function
relating the transmission power to the probability of successful
transmission must be convex in the region of interest. We call
such a policy LQ-power consistent.

I INTRODUCTION

Communication is a key component of automatic control

systems especially when considering complex cyber-physical

systems, connecting many physical and cyber agents. In fact,

the quality of communication between sensors, controllers

and actuators, highly affects the control quality [1]. Fast

wireless communication has opened the door for many

control applications, and the recent developments in wireless

communication technologies, e.g., 5G, bring even further op-

portunities. In some recent applications, such as platooning,

wireless communication of control data is the most suitable

option [2], [3]. The area of networked control systems [4]–[6]

refers exactly to the study of these control loops, where data

is exchanged through a (wireless) communication network.

Although communication over a wireless network can

facilitate the implementation of the control scheme, it brings

many design difficulties due to the underlying uncertainties

and complexities [7]. The limited bandwidth of the commu-

nication channels and the restrictions on power consump-

tion of receiving and transmitting nodes are some of these

challenges, which need to be carefully accounted for. In a

wireless network of sensors and controllers, which usually

consists of several small battery-powered devices distributed
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Fig. 1: Networked control system and the dependency of the

successful transmissions on the radio signal power

in a large area, the power consumption management plays

a crucial role in the operation time of the system [8]. In

particular, the reliability of the data transmission can be

increased by transmitting with a higher power. However, this

results in high power consumption and consequently, reduces

the power efficiency of the system. In addition, a higher

transmission power increases the probability of interference

with the other wireless-based communication devices and,

therefore, may decrease the overall performance of the

system. It is thus of importance to balance reliability and

efficiency/performance. In this context, an important related

challenge is to design the controller and the transmission

power policy so that the desired control objectives are met

by using the least possible transmission power.

A possible transmission power allocation strategy is to

have a time-dependent policy, which consists in increasing

the transmission power based on the time elapsed since the

last successful transmission. In [9], the mean square stability

and linear quadratic performances are guaranteed for linear

wireless networked control systems (WNCS) by designing a

time-dependent power scheduling policy, while the average

transmission power is minimized. The transmission power

can be also scheduled based on the status of the communi-

cation network at every time instant [10]. However, in control

systems, we advocate that better efficiencies can be achieved

by employing state-dependent power scheduling policies.

In [11], [12], the power scheduling policy is state-dependent

and a weighted sum of control and transmission power costs

is minimized. Nevertheless, an important question remains

open: are we sure that these strategies outperform a constant

power scheduling policy, i.e. one that assigns the same power

at any given time instant? In other words, is it worth to make

the power scheduling policy state-dependent? The goal of

this paper is to provide the answers to these questions.

We consider a WNCS where the transmission radio signal

power can be determined by a scheduler at every time, see
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Fig. 1. The plant is linear time-invariant and has discrete-time

dynamics. The control objective is to minimize an average

quadratic performance of the system. Inspired by the idea

of event-triggered control (ETC) e.g. [13], [14], we propose

a transmission power scheduling policy, which adapts to the

current state of the plant, like in [11], [12]. Then, the optimal

controller associated with the proposed power scheduling

policy is proved to be the linear certainty equivalent con-

troller, where the state expectation is determined based on a

Kalman filter. Finally, provided that the function relating the

transmission power to the transmission probability is convex

in the region of interest, as illustrated in Fig. 2, we show that

our novel strategy is LQ-power consistent. By this we mean

that the proposed strategy (i.e., transmission power policy

and controller) results in a better average optimal quadratic

performance than that of the constant power scheduling

policy, while requiring an equal or less average transmission

power.

The notion of LQ-power consistency is motivated by

similar works in the literature [15]–[17], which provide

ETC policies that outperform periodic control for the same

average transmission rate. The main contribution of this

paper is to show that a similar result can also be obtained

by considering power, rather than average-transmission rate.

Note that this result is of a different nature with respect to

previous works in the field [9]–[12]. This novelty is expected

to bridge the gap between the theory of event-triggered

control and its applications. In particular, our results might

help to significantly increase the battery life in applications

with stand-alone battery-powered communicating devices in

sensor and control networks.

Notation: P[a|b] denotes the conditional probability den-

sity function (pdf) of a random variable a given the informa-

tion set b and N (ȳ, Y ) indicates a multi-variate Gaussian pdf

with mean ȳ and covariance Y . By Pr(.), �(A) and tr(A),
we denote the probability of an event, the spectral radius

and the trace of the square matrix A, respectively. Moreover,

N0 :=N∪{0} in which N is the set of natural numbers.

II PROBLEM SETTING

We introduce the networked control system setting in Sec-

tion II-A. Then, we discuss some required properties of the

communication network characteristic curve in Section II-B.

Finally, we state the considered problem in Section II-C.

II-A Networked control system setting

Consider a discrete-time linear time-invariant (LTI) system

xk+1=Axk+Buk+wk, (1)

where xk∈R
n, uk∈R

m and wk are the state, the control in-

put and the disturbance, respectively, at discrete time k∈N0.

Let {wk∈R
n|k∈N0} be a sequence of i.i.d. Gaussian ran-

dom variables with zero mean and covariance W =E[wkw
ᵀ
k ]

at every k∈N0. We assume W to be positive definite and

the pair (A,B) to be stabilizable. The performance of the

Fig. 2: The network characteristic curve describing the

probability pk=f(δk) of successful data transmission versus

the radio signal power δk. We assume f :R�0→ [0, 1] to be

an increasing convex function on [0, δ̄], where δ̄ is a limit

on the transmission power. Since this limit is always present

this region is called the region of interest.

system is measured by the average quadratic cost

J=lim sup
T→∞

1

T
E

[ T−1∑
k=0

xᵀ
kQxk+uᵀ

kRuk

]
, (2)

where Q and R are positive semi-definite and positive

definite matrices with appropriate dimensions, respectively,

and (A,Q
1
2 ) is assumed to be observable.

The sensor data is transmitted to the controller through

a wireless communication network (see Fig. 1), where the

probability of successful data transmission depends directly

on the power of the radio signal by which the data is

transmitted [9]–[12]. Let σk∈{0, 1} be a binary variable

indicating if there is a successful transmission at time k∈N0

or not. In particular, σk=1 represents successful data trans-

mission at time k∈N0, while σk=0 indicates a packet drop.

Furthermore, let us consider δk∈R�0 as the level of the

radio signal power. Accordingly, we have

pk :=Pr(σk=1)=f(δk), (3)

where f :R�0→ [0, 1] is a known continuous function.

Hence, f describes the probability of successful data trans-

mission with respect to the power of the radio signal. As

depicted in Fig. 1, we consider that there is a power scheduler

collocated with the sensors of the system, which determines

the power of the radio signal at every time step. We also

consider that the network sends an acknowledgment signal

to the scheduler at every k∈N about the status of the

transmission attempt at time k−1. We assume that the power

consumption by the scheduler for the data reception is much

lower than that is used for the data transmission. Therefore,

the power consumption for receiving the acknowledgment

signal by the scheduler can be neglected. Now given the

above mentioned setup, the information available to the radio

signal power scheduler and to the controller at every k∈N0

are

Fk :=
{
xt|t∈{0, . . . , k}}∪{

σt, δt|t∈{0, . . . , k−1}}, (4)

and

Jk :=
{
xt|t∈{0, . . . , k}∧σt=1

}
, (5)

respectively. Accordingly, we can consider (joint) con-

trol and power scheduling policies as uk=μk(Jk)
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and δk=ηk(Fk), respectively, for appropriate mappings

μk :Jk→R
m and ηk :Fk→R�0. Moreover, let Δ(μ,η) :=

lim supT→∞
1
T E[

∑T−1
k=0 δk] be the average radio sig-

nal power consumption of combined time-varying power

scheduling δk=ηk(Fk) and control uk=μk(Jk) policies.

The average quadratic cost (2) associated to this combined

power scheduling and control policies is denoted by J(μ,η).

II-B Characteristic curve of the communication network

Let δ̄ be the maximum power that we can assign to the

radio signal at every k∈N0. Then, based on the network

characteristic curve, we denote by p̄=f(δ̄)∈(0, 1] the high-

est achievable successful data transmission probability. In

standard wireless networks, the characteristic curves usually

are convex from (δk, pk)=(0, 0) up to a certain point and

then they become concave and converge to pk=1 as δk→∞
(see Fig. 2) [18]. These are often called convex-concave

curves. In our work, make the following assumption on this

network characteristic curve.

Assumption 1: The function f : [0, δ̄]→ [0, p̄] is increasing

and convex on [0, δ̄] and f(0)=0. �
The condition f(0)=0 indicates that zero transmission

power results in zero successful transmission probability. The

convexity of f on [0, δ̄] is a crucial property in the upcoming

analysis and design. We discuss the case when Assumption 1

does not hold in Section VI.

II-C Problem statement

The next definition formalizes the admissible ranges of

transmission power and successful transmission probability

at every k∈N0.

Definition 1: The admissible ranges of successful

transmission probability and transmission power are

S :=(pmin, p̄) and C :=(δmin, δ̄), respectively, where

pmin :=inf{p|�(
√
1−pA)<1, p∈(0, p̄)},

and δmin :=f−1(pmin).
The ranges in Definition 1 characterize the values of

the transmission probability and of the transmission power

ensuring mean square stability of the linear WNCS given in

Section II-A. This will be discussed more after Proposition 1,

where we present the optimal controller and its correspond-

ing average quadratic cost for the networked control system

when the transmission power is constant at all times [19].

Proposition 1: Consider the admissible regions C and S
for system (1) and a control loop in which the radio signal

power is constant at all times, i.e. δk=c∈C and there-

fore, pk=p=f(c)∈S for all k∈N0. Then the following

statements hold.

i) The control policy μ∗ :=(μ∗
0, μ

∗
1, . . . ), where

μ∗
k(Jk) :=Kx̂k|k (6)

minimizes the average quadratic cost (2), where

K :=−(BᵀPB+R)−1BᵀPA,

P :=AᵀPA+Q−Kᵀ(BᵀPB+R)K,
(7)

and
x̂k+1|k=Ax̂k|k+Buk,

x̂k|k=

{
xk, if σk=1,

x̂k|k−1, otherwise.

(8)

ii) The control loop is mean square stable, i.e., for any

given initial condition x0, there exists a d∈ [0,∞) such

that sup{E[xᵀ
kxk]|k∈N0}�d, and its corresponding average

quadratic cost (2) is given by

J(μ∗,c) := tr(PW )+

∞∑
i=0

(
1−f(c)

)i+1
tr(AiWAᵀiY ), (9)

where Y :=Kᵀ(BᵀPB+R)K. �
The optimal control approach toward this problem results

in a model-based state estimation (8) by the controller in case

of data dropout, like in [12]. It is worthwhile to mention that

when A is not Schur, then the optimal average quadratic cost

given in (9) is bounded if �
(
(1−f(c))A2

)
<1. This justifies

the addmissible ranges given in Definition 1.

Our objective in this work is to construct a joint controller

and transmission power policy (μ, η), which outperforms

the constant power policies given in Proposition 1, in the

following sense.

Definition 2: (LQ-power consistent policy) For a fixed

c∈C, where C is given in Definition 1, a combined

radio signal power scheduling and control policy, i.e.,

η=(η0, η1, . . . ), μ=(μ0, μ1, . . . ) such that δk=ηk(Fk),
uk=μk(Jk) and Δ(μ,η)�c, is said to be an LQ-power
consistent policy if it results in a lower average quadratic

cost (2) than the optimal cost of the constant power schedul-

ing policy, when δk=c at all k∈N0. In other words, if

for a fixed c∈C, δk=ηk(Fk) and uk=μk(Jk) are such

that J(μ,η)<J(μ∗,c), while Δ(μ,η)�c, where J(μ∗,c) is given

in (9), then (μ, η) is called an LQ-power consistent policy.

�
In other words, the goal is to construct an LQ-power

consistent policy.

III EVENT-BASED POWER SCHEDULING POLICY

Although the scheduler has access to the exact

value of the state vector at every k∈N0, it can also

implement a copy of the model-based state estima-

tor (8) at every k∈N0. We introduce ek|k−1 :=xk− x̂k|k−1

and Θk|k−1 :=E[ek|k−1e
ᵀ
k|k−1|Jk−1] as the predicted state

estimation error and its covariance, where they both can

indeed be computed by the scheduler. Then, we propose the

model-based power scheduling policy

δk=f−1
(Pk(ek|k−1, λk)

)
, (10)

for any k∈N0, where f−1 : [0, p̄]→ [0, δ̄] indicates the inverse

function of f , which exists in view of Assumption 1, and

Pk(ek|k−1, λk) := p̄
(
1−exp(−λk

2
eᵀk|k−1Θ

−1
k|k−1ek|k−1)

)
,

(11)

where λk∈R�0 is the tunning parameter of our power

scheduler, which directly affects the successful data trans-

mission probability. Based on the network characteristic
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curve, Pk(ek|k−1, λk) is the successful transmission prob-

ability at every k∈N0 and

P̄k(λk) :=

∫
Rn

Pk(ek|k−1, λk)P[ek|k−1|Jk−1]dek|k−1 (12)

is introduced as the expected successful transmission prob-
ability of (10) at every k∈N0. It is worthwhile to mention

that the power scheduling policy (10) is such that the radio

signal power is upperbounded by δ̄=f−1(p̄), which is in

line with Assumption 1.
To employ the power scheduling policy (10), we have to

determine Θk|k−1 and then to regulate λk in order to have

a desired expected successful transmission probability, i.e.

P̄k(λk), at every time step. For this purpose, the next lemma

states the properties of the state estimation error pdf when

the power scheduler is operating based on (10).
Lemma 1: Consider that the power scheduler follows (10).

Then the predicted state estimation error ek|k−1 follows a

sum of Gaussians distribution at every time step k∈N0.

Moreover, if at a given time step k∈N0 we denote this sum

of Gaussians distribution by

P[ek|k−1|Jk−1]=

t∑
j=1

αj
kN (0,Θj

k|k−1) (13)

for a given t∈N, where αj
k>0, j∈{1, . . . , t}

with
∑t

j=1 α
j
k=1 and {Θ1

k|k−1, . . . ,Θ
t
k|k−1} is a

sequence of symmetric positive definite matrices,

then Θk|k−1=
∑t

j=1 α
j
kΘ

j
k|k−1 and

P[ek+1|k|Jk−1, σk=1, xk]=N (0,W ),

P[ek+1|k|Jk−1, σk=0]=
1

Q̄k(λk)

t∑
j=1(

α̃j
kN (0, Θ̃j

k+1|k)+ α̂j
k(λk)N

(
0, Θ̂j

k+1|k(λk)
))

,

(14)

where Q̄k(λk) :=
∑t

j=1

(
α̃j
k+ α̂j

k(λk)
)
, α̃j

k :=(1− p̄)αj
k and

α̂j
k(λk) := p̄αj

kdet(I+λkΘ
−1
k|k−1Θ

j
k|k−1)

− 1
2 ,

Θ̃j
k+1|k :=AΘj

k|k−1A
ᵀ+W,

Θ̂j
k+1|k (λk) :=AΘj

k|k−1(I+λkΘ
−1
k|k−1Θ

j
k|k−1)

−1Aᵀ+W.

Moreover, the expected successful transmission probabil-

ity (12) at all k∈N0 is given by

P̄k(λk)=1−Q̄k(λk). (15)

�
Lemma 1 not only provides the pdf of the state estimation

error, but it also gives us the relationship between λk and the

expected successful transmission probability at every k∈N0,

see (15). The control designers usually have a better insight

between stability/performance and the expected successful

data transmission probability at every k∈N0. Therefore, (15)

becomes a useful equation for determining λk in order to

guarantee a certain expected successful transmission proba-

bility at every k∈N0. Hence, for a given p∈S , the solution

of the following nonlinear equation

P̄k(λk)=p, (16)

where P̄k(λk) follows (15), results in an appropriate

λk∈R�0 needed by the power scheduling policy (10).

Lemma 1 also expresses an important feature of the power

scheduler (10): any failure in the data transmission doubles

the number of Gaussian terms of the state estimation error

pdf (except the special situation in which p̄=1, which keeps

the distribution a single Gaussian at all times). On the

other hand, a successful transmission resets the number of

Gaussian terms to one, see (14).

The following lemma states another key feature of the

power scheduling policy (10): Employing (10) results in a

smaller average state estimation error covariance at every

time k∈N0 for a given expected successful transmission

probability P̄k(λk)=p∈S in comparison with the constant

power scheduler in which δk=f−1(p).
Lemma 2: Consider that at a given time-step k∈N0, the

pdf of the predicted state estimation error follows (13)

and that the power scheduling policy (10) is employed

where λk∈R�0 is determined by solving (16) for a

given p∈S \{0, p̄}. Let the expected updated state estimation

error covariance at the time-step k, i.e. E[Θk|k], be denoted

by Φvp and that resulting from the constant power scheduler

δk=f−1(p) be denoted by Φcp. Then Φvp<Φcp. �

IV MAIN RESULTS

In the following theorem, we provide the main result

of the paper. It states that the linear certainty equivalent

controller (6) is optimal for the power scheduling policy (10)

and together they result in an LQ-power consistent solution

according to Definition 2.

Theorem 1: Suppose that Assumption 1 holds and let C
and S be admissible sets according to Definition 1. Moreover,

assume c∈C is a given radio signal power level and p=f(c)
is its corresponding successful transmission probability. Then

the following statements hold:

i) The optimal LQG controller is linear and determined

based on (6) and (8) when the power scheduling policy (10)

is employed at all k∈N0, where λk∈R�0 is determined by

solving (16) for the given successful transmission probability

p=f(c)∈S .

ii) The combination of the controller (6), (8), and the

power scheduling policy (10), where λk∈R�0 is deter-

mined by solving (16) for fixed p=f(c)∈S \{0, p̄} at

all k∈N0, results in a lower average quadratic cost than

when δk=c=f−1(p) at all k∈N0, while requiring an equal

or less average transmission power. In other words, it is LQ-

power consistent in the sense of Definition 2. �
As we can see in Theorem 1, although the proposed state-

dependent power scheduling (10) is different from the one

determined in [12], it results in an optimal controller with

the same structure. It is worth mentioning that the power

scheduling policy (10) causes an explosion in the number

of Gaussian terms, which might result in long computation

times for the determination of Θk|k−1 and λk. However,

when we desire to set the expected successful transmission

probability P̄k(λk) to a constant value at all times (as this

is the case in Theorem 1), then the values of λk just depend
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Fig. 3: The considered network characteristic curve in sim-

ulation

3000 3010 3020 3030 3040 3050 3060 3070 3080 3090 3100
-5

0

5

3000 3010 3020 3030 3040 3050 3060 3070 3080 3090 3100
0

0.5

1

Fig. 4: Behaviour of both power scheduling policies with

respect to time when k∈Y :={3000, . . . , 3100}, dashed red

lines refer to the constant power scheduling policy and solid

blue lines refer to the power scheduling policy (10). (a) The

trajectory of ek|k with respect to time. (b) The transmission

power consumption of both policies. The dash-dotted line

refers to the average communication power of the power

scheduling policy (10) throughout Y .

on the number of time steps elapsed since the last successful

transmission. Therefore, the series of the values of λk

in between every two consequitive successful transmission

times, i.e., {λsi+1, . . . , λsi+1
}, where σsi =1, for all i∈N0,

is time-invariant and the scheduler can compute it offline,

keep it in memory and set the values of λk in every time

step based on that without the need for resolving (16).

V SIMULATION RESULTS

Consider a scalar system where A=1.05, B=1, W =1.

Moreover, Q=1, R=0.1 are the parameters of the cost

function (2). The LQG control gain for this system is de-

termined as K=−0.9626. Furthermore, as shown in Fig. 3,

the network characteristic curve is considered to be linear

for δk∈ [0, δ̄], where δ̄=1 is the largest power we can assign

to the radio signal, which results in p̄=0.8 as the highest

achievable successful transmission probability at every time

step. In order to guarantee the mean-square stability of

the system, the minimum transmission probability at every

time step is pmin=1−1/A2=0.0930 as in Definition 1,

which is associated with δmin=0.1162 based on the network

characteristic curve.

As the first step, we consider c=0.4375, which results

in p=0.35 as the expected successful transmission probabil-

ity at every time step and implement both the power schedul-

ing policy (10) and the constant power scheduling with the

optimal controller (6), where x0=0. The trajectory of ek|k

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10
State-dependent power scheduler (10)
Constant power scheduler

Fig. 5: Trade-off curves between the average quadratic per-

formance and the average transmission power consumption

for a control loop operating based on the power scheduling

policy (10) and the constant power scheduling policy.

when k∈Y :={3000, . . . , 3100} is shown in Fig. 4(a). As we

know, the performance of the system directly depends on ek|k
and, as we see in Fig. 4(a), the power scheduling policy (10)

has a better performance in the attenuation of ek|k. Moreover,

the communication power consumption of both policies with

respect to time is shown in Fig. 4(b), which indicates that

they both require the same average transmission power.

As a next step, for every c∈ [2δk,min, δ̄), we implement

the base policy introduced in Proposition 1 for 100 Monte-

Carlo runs, each for 20000 time steps and with zero initial

condition. The average quadratic performance is shown with

respect to the constant communication power by the red

dashed line in Fig. 5. Then for every c∈ [2δk,min, δ̄), which

is associated with a p∈ [2pk,min, p̄), we implement the same

Monte-Carlo runs, however, assuming that the power sched-

uler is operating based on (10), where λk at every time step

is regulated to guarantee the average transmission probability

of p by solving (16). The trade-off curve associated to

this condition is shown by the blue solid line in Fig. 5.

Every point on this curve is connected by a dotted line to a

point on the curve related to the constant power scheduling

policy. In principle, these connected points are associated

with the condition in which the expected successful trans-

mission probability of both scheduling polices are the same

at every k∈N0. Based on these plots in Fig. 5, we can easily

conclude the LQ-power consistency of the power scheduling

policy (10) together with the linear controller (6) based on

Definition 2.

VI PERFORMANCE-POWER TRADE-OFF CURVE FOR

DIFFERENT NETWORK CHARACTERISTIC CURVES

Theorem 1 is valid as far as Assumption 1 holds, i.e.,

the characteristic curve of the communication network is

convex on [0, δ̄]. However, this condition may not be valid

in all wireless communication networks and therefore, we

cannot argue the LQ-power consistency of (6) and (10) for

all networked control systems defined in Section II-A. In this

section, we discuss the LQ-power consistency of (6) and (10)

based on the trade-off curve between the average quadratic

cost and the average transmission power consumption for

different shapes of the network characteristic curve.
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Fig. 6: Comparison of the trade-off curves between

the average quadratic cost and the average communica-

tion power consumption for different shapes of f . Con-

sider ε∈(0, δ̄−δmin) as a small positive scalar. Red crosses

indicate the none LQ-power consistent region when f is non-

convex on [0, δ̄].

Suppose that the dashed red line in Fig. 6 demonstrates

the trade-off curve for a linear system when the transmis-

sion power is constant at all times, consistently with what

we observed in the example of Section V in Fig. 5. If

we employ (6) and η̂p=(δ0, δ1, . . . ), where all δk, k∈N0,

follow (10) for a constant expected successful transmission

probability p∈S , then J(μ∗,η̂p)<J(μ∗,c), where c=f−1(p)
for any arbitrary f as the network characteristic curve.

However, based on the shape of f on [0, δ̄], several conditions

may occur for the average transmission power consumption,

i.e. Δ(μ∗,η̂p).

By using the Jensen’s inequality, we can show that for

a linear f , Δ(μ∗,η̂p)=c and for a convex f , Δ(μ∗,η̂p)<c.
Therefore, in these situations, the trade-off curves are always

below the curve related to the constant power scheduling

policy for every linear system (1), as illustrated in Fig. 6.

This indicates the LQ-power consistency of (6) and (10) for

all linear and convex network characteristic curves. Now,

suppose that f be a concave function, then Δ(μ∗,η̂p)>c
(again by resorting to the Jensen’s inequality) and we cannot

argue the LQ-power consistency of (6) and (10) for all linear

system based on Definition 2. Furthermore, for a convex-

concave or any general f , we cannot even compare the values

of Δ(μ∗,η̂p) and c. In these situations, by running Monte-

Carlo simulations, we can find the trade-off curves related

to a given linear system and a network characteristic curve

for both constant power scheduler and power scheduling

policy (10). Then, for the values of c∈C in which the trade-

off curve associated with (10) is below that of the constant

power scheduling policy (the region of the blue line with no

crosses in Fig. 6), (6) and (10) is LQ-power consistent based

on Definition 2.

VII CONCLUSIONS

We investigated the problem of communication power

scheduling in a networked control framework, where the

data successful transmission probability directly depends on

the radio signal power. We introduced the notion of LQ-

power consistency, which refers to combined time-varying

power scheduling and control policies that result in a lower

average quadratic cost than the optimal cost of any constant

power scheduler, while it consumes less or at most equal

average transmission power. We proposed a controller and

a power scheduler which depends on the state estimation

error percieved by the controller and proved that they are

LQ-power consistent given the condition that the network

characteristic curve is convex in the region of interest.
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