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a b s t r a c t

In this article, we consider the design of an event-triggered ℓ2-control policy, for a setting where
a scheduler is arbitrating state transmissions from the sensors to the controller of a discrete-time
linear system. We start by introducing a periodic time-triggered ℓ2-controller for different transmission
time-periods with a given ℓ2-gain bound using the minimax game-theoretical approach. After that,
we propose an ℓ2-consistent event-triggered controller in the sense that it guarantees at least the
same ℓ2-gain bound as the designed periodic time-triggered ℓ2-controller, however with a larger,
or at most equal, average inter-transmission time. In practice, for typical disturbances, the proposed
event-triggered scheme can lead to significant gains, both in terms of communication savings and
disturbance attenuation, compared to periodic time-triggered policies, which is illustrated through a
numerical example.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

The advent of new communication technologies, such as 5G,
ill further facilitate the rapid expansion of networked control
ystems (NCS) in many (industrial) branches of our society in
he years to come. In NCSs, sensors, controllers and actuators
ommunicate through shared communication networks. Appli-
ations include vehicle platooning, cloud-based control, smart
rids, and robot swarms. In configurations where communica-
ion between agents happens periodically, the well-developed
heory of sampled-data control (Chen & Francis, 2012) can be
sed to guarantee stability and performance of these systems.
owever, periodic communication for control applications can
e rather resource-inefficient. In fact, control applications re-
uire large bandwidth for high communication frequencies and,
hen relying on wireless technologies, can lead to a large power
onsumption, which can be prohibitive when using battery pow-
red communication devices. Therefore, managing and reducing
he communication between sensors, controllers and actuators is
rucial in many networked control applications.
Event-triggered controllers (ETCs) have been proposed in the

iterature as an alternative to periodic time-triggered controllers
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in order to decrease the communication load in NCSs, while
at the same time preserving stability and performance require-
ments see, e.g., Åström and Bernhardsson (2002), Behera et al.
(2018), Heemels et al. (2012), Heemels et al. (2008), Lunze and
Lehmann (2010), Molin and Hirche (2014), Nowzari et al. (2019)
and Tabuada (2007) and the references therein. In a loop with
an ETC, data transmissions between agents (sensors, controllers,
actuators) are triggered based on well-defined events such as
abrupt changes in the value of data or when estimation errors
exceed certain thresholds. A large number of studies has been
carried out so far in this research area with promising results
in reducing the communication burden of the control loops, see,
e.g., Antunes and Heemels (2014), Araujo et al. (2014), Mas-
trangelo et al. (2019), Mazo and Tabuada (2008), Postoyan et al.
(2011), Weerakkody et al. (2016) and Wu et al. (2013). In some
studies, ETCs are designed in order to guarantee stability of the
system (Mamduhi et al., 2017; Mazo & Tabuada, 2008; Pos-
toyan et al., 2011). Others also provide guarantees on an average
quadratic cost of the event-triggered control-loops (Antunes &
Heemels, 2014; Araujo et al., 2014; Asadi Khashooei et al., 2018;
Balaghi I. & Antunes, 2017; Balaghi I. et al., 2018; Brunner et al.,
2018; Goldenshluger & Mirkin, 2017).

Another important performance criterion for control-loops is
the ℓ2- or L2-gain, which captures the worst-case disturbance
attenuation level from an exogenous input to a performance
output of the control loop for discrete-time or continuous-time
systems, respectively. In a networked control configuration with
communication limitations, the setup as depicted in Fig. 1 is of
interest, where a feedback controller K attenuates the effect of

the disturbance input w on the performance output z of the
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Fig. 1. The state feedback ℓ2-controller with a resource-constraint communica-
tion network. G, K , S and N refer to the plant, the controller, the scheduler and
he network, respectively.

lant G. Here, a scheduler S determines the time instances when
he measured state should be communicated to the controller
hrough a communication network N . The event-triggered sched-
ler should be designed together with an appropriate controller
o guarantee a certain ℓ2- or L2-gain bound for the closed-loop
ystem, while the available communication network should be
ble to handle the required data transmissions.
In recent years, researchers took different approaches in or-

er to design event-triggered ℓ2- or L2-controllers. In particular,
onditions for the L2-stability of the proposed event-triggered
ransmission policies in a sampled-data control system configu-
ation are given in Peng and Han (2013) and Yan et al. (2015),
y constructing Lyapunov–Krasovskii functionals. In Kishida et al.
2017), finite-gain L2-stability is guaranteed for an uncertain
inear system by jointly designing an event-triggered mechanism
n updating the control inputs and a self-triggered mechanism
n determining the next sampling time of the sensors. The expo-
ential stability and L2-gain analysis of a NCS, where the sensor
o controller and the controller to actuator communications are
oth based on event-triggered mechanisms, is studied by using
he delay system approach in Hu and Yue (2013). Moreover,
here are some other studies establishing the L2-stability of the
ystems with ETCs (Wang & Lemmon, 2009; Yu & Antsaklis, 2013)
r providing guaranteed values for the ℓ2-gain of discrete-time
inear systems with an ETC (Heemels et al., 2013). In addition,
n ETC is designed for output-feedback linear systems by consid-
ring the L∞-gain of the closed-loops in Donkers and Heemels

(2010). For nonlinear systems, ETCs are proposed in Abdelrahim
et al. (2017) and Dolk et al. (2017) that guarantee a finite Lp-gain
or closed-loop systems and prevent the Zeno behaviour in data
ransmissions.

In principle, employing an ETC in NCSs is beneficial only if it
esults in a better performance in comparison to time-triggered
eriodic control when both transmit with the same average trans-
ission rate. This concept was first introduced in Antunes and
sadi Khashooei (2016) and referred to as consistency. In recent
ears, consistent ETCs in the sense of average quadratic cost
ave been proposed in both centralized and decentralized NCS
onfigurations, see, e.g., Asadi Khashooei et al. (2018), Balaghi I.
t al. (2018), Brunner et al. (2018) and Goldenshluger and Mirkin
2017), see also an early result for scalar systems in Åström and
ernhardsson (2002).
We can also extend the notion of consistency to event-

riggered ℓ2- or L2-control loops. Accordingly, an ETC is called
ℓ2- or L2-consistent if it guarantees the same ℓ2- or L2-gain
ound as any periodic time-triggered ℓ2- or L2-controller, how-

ever, with a smaller or at most the same average transmission
rate (Balaghi I. et al., 2019). In spite of all works previously
mentioned in the context of event-triggered ℓ2- or L2-control,
the design of an ℓ2- or L2-consistent ETC has not received much
attention so far. In fact, we are only aware of two very recent
references related to our work, see Balaghi I. et al. (2019) and Mi
and Mirkin (2019). Our previous work (Balaghi I. et al., 2019)

differs from the present paper as it focusses on designing a fixed, S

2

a priori given, transmission sequence, and not a policy, while Mi
and Mirkin (2019) derive an ETC with similar L2-consistent
properties as the one we present in this paper. However, they
are given for continuous-time systems (and thus L2-gain), and,
most importantly, follow a very different approach based on
the Youla parametrization, whereas we consider discrete-time
systems and follow a game-theoretical approach. As both results
are developed independently and follow different approaches for
different settings, they are of independent interest.

To be precise, in this work, for a given fixed transmission time
period, we design a periodic time-triggered ℓ2-controller for any
feasible ℓ2-gain bound, following a game-theoretical approach.
Then, we design an ETC guaranteeing an equal ℓ2-gain bound as
that of the designed periodic time-triggered ℓ2-controller, how-
ever, with a larger (or at least equal) average inter-transmission
time. In fact, based on our proposed ETC, when the realization of
the disturbance input follows the worst-case scenario, then the
proposed ETC triggers data transmissions periodically. However,
when the disturbance input deviates from the worst-case sce-
nario, then our proposed ETC is able to skip data transmissions
thereby guaranteeing a larger average inter-transmission time
than the time period of the periodic controller, while they both
guarantee the same ℓ2-gain bound for the system.

Implicit in the NCS of interest in the current work it that (pos-
sibly large) packets of information are sent to the controller (and
there is no error in the transmitted values) and it is the objective
of the scheduler to keep the number of transmissions (average
communication rate) as small as possible, while guaranteeing
certain performance objectives. An alternative perspective, also
considered in the literature (see, e.g., Ishii & Francis, 2002), is to
keep the communication frequency constant, but reduce the size
of the packets to be transmitted (and thus there is a discrepancy
between the actual measurements and the transmitted quantized
value) and thereby also realize a small bit rate. The problem
of interest in this line of research is to determine the accuracy
(or the number of bits) of each communicated data packet on
the relation of a given control objective or to find the minimal
number of bits needed in order to realize a certain objective.
Although not considered in this paper, there are also some recent
works, where this idea is jointly employed with event-triggered
transmission mechanisms, which can at the same time reduce the
communication frequency as is investigated, for instance, in Ab-
delrahim et al. (2019), Ling (2020) and Tallapragada and Cortés
(2016), all also the references therein, to achieve exponential and
input-to-state stability for linear systems, respectively.

The remainder of this paper is organized as follows. The prob-
lem of interest is introduced in Section 2 and an ℓ2-consistent
ETC is proposed in Section 3. The effectiveness of the novel ETC
in decreasing the communication load is demonstrated through
a numerical example in Section 4. Finally, Section 5 presents
concluding remarks. The proofs of lemmas and theorems can be
found in the Appendix.

Notation. For r, s ∈ N0 := N ∪ {0}, we define Ns
r = {t ∈

N0|r ⩽ t ⩽ s} and ℓd2 as the Hilbert space of square summable
sequences w := {wk}k∈N0 , where wk ∈ Rd for all k ∈ N0, and∑

∞

k=0 wT
kwk ≺ ∞. The ℓ2-norm of w ∈ ℓd2 is given by ∥w∥ℓ2 :=√∑

∞

k=0 ∥wk∥
2, where ∥wk∥

2
= wT

kwk. Moreover, ⌊x⌋ indicates the
floor of an x ∈ R, and for matrices A, and B, we define diag(A, B)
or the corresponding block diagonal matrix.

. Problem setting

We introduce the NCS with periodic communication in Sec-
ion 2.1 and the NCS with event-triggered communication in
ection 2.2. The problem of interest is stated in Section 2.3.
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.1. Networked control system with periodic communication

Consider the system architecture in Fig. 1 in which the plant
is given by a discrete-time linear time-invariant (LTI) system

k+1 = Axk + Buk + Dwk, (1)

where xk ∈ Rn, uk ∈ Rm, wk ∈ Rd are the state, the control in-
ut and the disturbance, respectively, at discrete time k ∈ N0.
et w ∈ ℓd2 and assume that the disturbance generator at every
ime step has access to all the state vectors from the initial up to
he current time-step. Therefore, wk = Tk(Ek), where

k := {xi|i ∈ Nk
0}, (2)

or some mapping Tk : Ek → Rd, k ∈ N0. Moreover, let δk = 1
f xk is transmitted to the controller at time k ∈ N0 and let δk = 0,
therwise. For the periodic transmission policy with a given time
eriod τ ∈ N, we set δk = π τ

k , where

τ
k :=

{
1, if k is zero or an integer multiple of τ

0, otherwise.
(3)

hen any periodic control policy can be formulated as

k := Rπτ
k (Fπτ

k ), (4)

here at every k ∈ N0,
πτ
k := {xi|i ∈ Nk

0 ∧ π τ
i = 1} (5)

s the information set available for the controller and Rπτ
k : Fπτ

k
Rm is an appropriate mapping. Although we use here this gen-

ral definition, in practice, the periodic control policies of interest
see Lemmas 1 and 2) will only depend on the last transmitted
tate. Therefore, the controller does not need to store all the
eceived state vectors in memory (which can possibly require a
arge memory). The goal of an ℓ2-controller is to attenuate the
ffect of the disturbance input wk on the performance output

k :=
[
(Exk)T (Fuk)T

]T (6)

f the system, where we assume that F has full column rank.
et ETE = Q and without loss of generality we can now as-
ume FTF = I . Therefore, ∥zk∥2

= xTkQxk + uT
kuk at every k ∈ N0.

e need the following assumptions and the definition of global
symptotic stability in the sequel.

ssumption 1. It holds that

(i) (A, B) is stabilizable and (Q
1
2 , A) is observable,

(ii) D is full column rank. □

Note that these assumptions are rather standard in the
2-control context (see also Point 3. after Theorem 1).

efinition 1 (Global Asymptotic Stability Aliyu, 2017). The sys-
em (1) with w = (0, 0, . . . ) and a given control input policy is
said to be globally asymptotically stable (at equilibrium point
xe = 0), if

(i) the control loop is Lyapunov stable, i.e., for every ζ ≻ 0,
there exists a δ ≻ 0 such that for all initial states x0 ∈ Rn

with ∥x0∥ ⩽ δ, it holds that ∥xk∥ ⩽ ζ for every k ∈ N0,
(ii) the corresponding state trajectory xk converges to xe = 0

as time goes to infinity, i.e., limk→∞ xk = 0. □

Next, we formally define the concept of τ -periodic
ℓ2- controller for the system (1).

Definition 2 (τ -Periodic ℓ2-Controller Aliyu, 2017). Given γ ∈ R≻0
and τ ∈ N, a periodic control policy Rπτ

k : Fπτ
k → Rm, k ∈ N0, for

the system (1) and (6), where Fπτ follows (5), such that
k c

3

(i) the closed-loop control system given by (1) and (4) is
globally asymptotically stable when w = (0, 0, . . . ),

(ii) when x0 = 0,1 then for all w ∈ ℓd2,

∥z∥2
ℓ2

− γ 2
∥w∥

2
ℓ2

⩽ −ϵ∥w∥
2
ℓ2

(7)

holds for some positive ϵ (independent of w),

is referred to as a τ -periodic ℓ2-controller with ℓ2-gain bound γ .
oreover, the infimum value of γ ∈ R≻0 for which a τ -periodic

2-controller exists with ℓ2-gain bound γ is called the infimal
2-gain of (1) and (6), and is denoted by γ ∗

τ . □

Let us define

:= ∥z∥2
ℓ2

− γ 2
∥w∥

2
ℓ2

, (8)

for all w ∈ ℓd2. Based on (7), when w = (0, 0, . . . ), the designed
τ -periodic ℓ2-controller should result in J to be equal or less than
ero for x0 = 0. However, when w ̸= (0, 0, . . . ), then J should
always be strictly less than zero. Before designing a τ -periodic
ℓ2-controller with ℓ2-gain bound γ , one should evaluate the
existence of such a controller for the given value of γ ∈ R≻0,
i.e., decide if γ ≻ γ ∗

τ . However, for a given γ ∈ R≻0, a τ -periodic
ℓ2-controller with ℓ2-gain bound γ exists if and only if, for x0 = 0,
the following minimax optimization problem results in a non-
positive value, i.e. J∗ ⩽ 0, where

J∗ = min
{uk=Rπτ

k (Fπτ
k )}k∈N0

max
{wk=Tk(Ek)}k∈N0

J. (9)

This can be concluded from the arguments in Başar and Bern-
hard (2008). Therefore, the infimal ℓ2-gain of the closed-loop
system with τ -periodic transmission is the infimum value of
the set of γ ∈ R≻0 for which the minimax problem (9) has a
non-positive value. Moreover, if for a given γ ∈ R≻0, J∗ is non-
positive, then the optimal control policy determined based on (9)
is a τ -periodic ℓ2-controller in the sense of Definition 2. In the
following two lemmas, we provide a τ -periodic ℓ2-controller
with ℓ2-gain bound γ by solving the minimax problem (9).
Lemma 1 considers the special case τ = 1 and Lemma 2 provides
the results for general τ ∈ N.

Lemma 1 (1-Periodic ℓ2-Controller). Let Assumption 1 hold. Then

(i) there exists a γ̂ ∈ R≻0 such that for every γ ≻ γ̂ , the Ricatti
equation

M = ATMH−1A + Q , (10)

where H = I + (BBT
− γ −2DDT)M, has a positive definite so-

lution M and γ 2I − DTMD ≻ 0. Moreover, the infimum value
of γ̂ for which the above holds coincides with the infimal
ℓ2-gain of 1-periodic ℓ2-controllers, i.e. γ ∗

1 .
(ii) for any γ ≻ γ ∗

1 , the control policy

u∗

k = Kxk, (11)

where

K = −BTMH−1A, (12)

is a 1-periodic ℓ2-controller with ℓ2-gain bound γ .
(iii) for any γ ≻ γ ∗

1 and τ = 1, the performance index (8) is upper
bounded as

J ⩽
∞∑
k=0

[
(uk − u∗

k)
TΦ1(uk − u∗

k)

− (Dwk − Dw∗

k )
TΨ1(Dwk − Dw∗

k )
]
,

(13)

for Φ1 = (I − BTMH−1B)−1, where Φ1 ⩾ I ,

1 We can easily investigate the condition with an unknown initial condition
y adding one extra time to the time-horizon and considering the initial
ondition as the disturbance of the previous time (Başar & Bernhard, 2008).
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Ψ1 = γ 2D(DTD)−1(DTD)−1DT
− M, where Ψ1 ≻ 0, and

w∗

k = γ −2DTM(I − γ −2DDTM)−1(Axk + Buk). □ (14)

Before considering the general condition in Lemma 2, where
τ ∈ N, let us introduce another time variable ι ∈ N0, where
ι = ⌊

k
τ
⌋ and define the following augmented control and distur-

ance inputs at every ι ∈ N0,

Uι := [uT
ιτ , . . . , u

T
(ι+1)τ−1]

T,

Wι :=
[
(Dwιτ )T, . . . , (Dw(ι+1)τ−1)T

]T
.

(15)

emma 2 (τ -Periodic ℓ2-controller for τ ∈ N). Let Assumption 1
old. Then

(i) there exists a γ̂ ∈ R≻0 such that for every γ ≻ γ̂ , (10) has a
positive definite solution M and γ 2I− D̄T

τ M̄τ D̄τ ≻ 0 for which
M̄τ = diag(Iτ−1 ⊗ Q ,M) and

D̄τ =

⎡⎢⎣ D 0 0
AD D 0

. . .

Aτ−1D Aτ−2D D

⎤⎥⎦
τ×τ

.

Moreover, the infimum value of γ̂ for which the above holds
coincides with the infimal ℓ2-gain of τ -periodic ℓ2-controllers
for τ ∈ N, i.e. γ ∗

τ .
(ii) for any γ ≻ γ ∗

τ , the control policy

u∗

k =Kx̂k|k, (16)

where K follows (12) and

x̂k+1|k = H−1Ax̂k|k, x̂k|k =

{
xk, if π τ

k = 1
x̂k|k−1, otherwise,

(17)

is a τ -periodic ℓ2-controller with ℓ2-gain bound γ .
(iii) consider

U∗

ι = [u∗T
ιτ , . . . , u∗T

(ι+1)τ−1]
T,

W ∗

ι =
[
(Dwιτ )∗T, . . . , (Dw(ι+1)τ−1)∗T

]T
,

(18)

where u∗

k follows (16) for all k ∈ N0, and

w∗

k =

{
S̄h(Axk + Buk), if h = τ − 1
S̄h(Axk + Buk) + Πh+1Ũk+1, otherwise,

(19)

where h = k − ιτ , h ∈ N
τ−1
0 ,

S̄h = γ −2DTΘh+1V−1
h , Vh = I − γ −2DDTΘh+1,

Πh = γ −2DT(I − γ −2DDTΘh)−TZh,

Θh+1 =

{
Q + ATΘh+2V−1

h+1A, if h ∈ N
τ−2
0

M, if h = τ − 1,

Zh =

{[
ATΘh+1V−1

h B ATV−T
h Zh+1

]
, if h ∈ N

τ−2
0

ATM(I − γ −2DDTM)−1B, if h = τ − 1,

(20)

and Ũk+1 = [uT
k+1 . . . uT

(ι+1)τ−1]
T. Then, for any γ ≻ γ ∗

τ , the
performance index (8) is upper bounded as

J ⩽
∞∑
ι=0

[(Uι − U∗

ι )
TΦτ (Uι − U∗

ι )

− (Wι − W ∗

ι )
TΨτ (Wι − W ∗

ι )],

(21)

where Φτ := Y0, for all τ ∈ N, and Y0 is determined based on
the following backward iteration

Y−1
h =

[
I 0

−1

]
−

[
BT 0

¯

]
X

[
B 0

¯T

]
, (22)
0 Yh+1 0 Bh+1 0 Bh+1

4

for all h ∈ N
τ−2
0 , where Y−1

τ−1 = I − BTMH−1B,

X =

[
MH−1 H−1

H−1 M−1(H−1
− I)

]
,

and for all h ∈ N
τ−1
0 ,

B̄h = −

⎡⎢⎢⎣
K

K (H−1A)
...

K (H−1A)τ−1−h

⎤⎥⎥⎦ . (23)

Moreover,

Ψτ := diag
(
γ 2D(DTD)−1(DTD)−1DT

− Θ1

, . . . , γ 2D(DTD)−1(DTD)−1DT
− M

)
. □

Lemmas 1 and 2 do not only provide a τ -periodic ℓ2-controller
for (1), (6), and a given τ ∈ N but also introduce upper bounds
for J in (13) and (21) that will be useful in the design of a NCS
with event-triggered communication in Section 3, as we will see.

Remark 1. It is important to mention that Lemmas 1 and 2
still hold without any change if at every time-step k ∈ N(ι+1)τ−1

ιτ ,
the disturbance generator has access also to the control inputs
from k up to (ι+1)τ −1, i.e., the information set available for the
disturbance generator follows

Ek = {xi|i ∈ Nk
0} ∪ {uk, . . . , u(ι+1)τ−1}. (24)

Moreover, the disturbance input policies w∗

k given in (14) and (19)
are the worst-case disturbance scenarios, when the disturbance
generator has access to the information set (24) at all times.

2.2. Networked control system with event-triggered communication

The NCS we are interested in has the same plant G as in (1) and
the information set of the disturbance generator also follows (2)
(or (24)). However, data transmission to the controller follows a
state-dependent mechanism, which is called an event-triggered
transmission policy, and we can formulate it as

δk = µk(Hk) ∈ {0, 1}, (25)

where

Hk := {xi|i ∈ Nk
0} ∪ {δi|i ∈ N

k−1
0 } (26)

is the information set available for the scheduler at k ∈ N0. Then,
any appropriate control policy is defined as

uk = Rµ

k (F
µ

k ), (27)

where

Fµ

k := {xi|i ∈ Nk
0 ∧ µi(Hi) = 1} (28)

is the information set available for the controller at k ∈ N0 based
on an event-triggered scheduling policy defined in (25) and
Rµ

k : Fµ

k → Rm is a suitable mapping. Similarly to the peri-
odic control case, in practice, the event-triggered scheduling
and control policies of interest (see, e.g., the proposed one in
Section 3) will only depend on a few members Hk and Fµ

k ,
respectively. Therefore, the controller does not need to store
all the received state vectors (and thus does not need a large
memory). We call an event-triggered scheduler and its related
controller an ETC, which is denoted by η = (µ,Rµ). Further-
more, we introduce the average transmission rate associated
with an event-triggered scheduling policy µ and a disturbance
sequence w ∈ ℓd2 as f̄η(w) = lim supT→∞

1
T

∑T−1
t=0 µt (Ht ) and the

average inter-transmission time as Ω̄η(w) = 1/f̄η(w). Next, we
efine the concept of an event-triggered ℓ2-controller.
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efinition 3 (Event-triggered ℓ2-Controller Yan et al., 2015). Given
∈ R≻0, an ETC η = (µ,Rµ) for the system (1) and (6) satisfying

hat

(i) the closed-loop control system (1) and (27) is globally
asymptotically stable when w = (0, 0, . . . ),

(ii) under the assumption of zero initial condition J ⩽ 0 for
all w ∈ ℓd2, where J follows (8),

is referred to as an event-triggered ℓ2-controller with ℓ2-gain
ound γ . Moreover, the infimum value of γ ∈ R≻0, where (i)
nd (ii) hold for an ETC η designed for (1) and (6) is called the

infimal ℓ2-gain of the event-triggered control loop and is denoted
by γ ∗

η . □

Remark 2. One could define condition (ii) in Definition 2 exactly
in the same way as in Definition 3. However, in this case, γ 2I −
¯ T

τ M̄τ D̄τ ⩾ 0 would be the necessary condition for the existence
of a τ -periodic ℓ2-controller for a given ℓ2-gain bound γ and

∈ N, while γ 2I− D̄T
τ M̄τ D̄τ ≻ 0 is the sufficient condition for the

xistence of the proposed τ -periodic ℓ2-control policies in (11)
nd (16). The current condition (ii) of Definition 2 is important to
etermine γ 2I−D̄T

τ M̄τ D̄τ ≻ 0 as both the necessary and sufficient
onditions for the existence of a τ -periodic ℓ2-controller for a
iven ℓ2-gain bound γ and τ ∈ N. It is also important to mention
hat based on Definitions 2 and 3, event-triggered ℓ2-controllers
ave to satisfy a weaker condition than τ -periodic ℓ2-controllers.
owever, since ϵ in Definition 2 is allowed to be arbitrarily small,
his difference in definitions is negligible.

.3. Problem statement

The τ -periodic ℓ2-controllers with ℓ2-gain bound γ deter-
ined in Lemmas 1 and 2 periodically update their state esti-
ates based on the full-state measurements of the sensors. In

his way, these controllers can guarantee a desired disturbance
ttenuation level γ for all disturbance inputs. For every τ -periodic
2-controller given in Lemmas 1 and 2 we can propose an event-
riggered ℓ2-controller counterpart η, which guarantees the same
isturbance attenuation level γ for the system. However, based
n the realization of the disturbance inputs, its scheduler can
kip some of these periodic data transmissions needed by the τ -
eriodic ℓ2-controller, thereby requiring fewer transmissions and
hus resulting in larger (or equal) values of Ω̄η(w) in comparison
o τ . This ETC is called ℓ2-consistent according to the following
efinition.

efinition 4 (ℓ2-consistent event-triggered controller). For any
iven τ ∈ N and any ℓ2-gain bound γ ≻ γ ∗

τ of the system (1) and
6), an event-triggered ℓ2-controller η = (µ, Ψ µ) is said to be
ℓ2-consistent with ℓ2-gain bound γ if

(i) η has ℓ2-gain bound γ ,
(ii) in comparison to the τ -periodic ℓ2-controller (16) (or

equivalently (11), in case τ = 1) with ℓ2-gain bound γ , the
average inter-transmission time of η is larger than, or at
least equal to, τ , i.e. Ω̄η(w) ⩾ τ for all w ∈ ℓd2. □

The goal of this work is to propose an ℓ2-consistent ETC for
the NCS depicted in Fig. 1.

3. ℓ2-consistent event-triggered controller

We propose an ℓ2-consistent ETC in this section. For simplicity
we start, in Section 3.1, with the case in which τ = 1, since the
main ideas can already be conveyed for this case. In Section 3.2,
we consider the general case in which τ ∈ N.
5

3.1. Special case τ = 1

Based on Definition 4, in comparison to a 1-periodic
ℓ2-controller (11) with ℓ2-gain bound γ ≻ γ ∗

1 , the scheduler of
an ℓ2-consistent ETC should skip data transmissions at some
ime-steps, while still guaranteeing the same ℓ2-gain bound γ .
e know that the control policy (11) requires the state infor-
ation at every time-step. However, in our desired ETC setting,

he controller does not have the state information at all times
nd can, therefore, only use an estimation x̄k|k of the state xk at
ime k ∈ N0. In particular, we select the controller associated with
ur desired ℓ2-consistent ETC policy as

k = Kx̄k|k, (29)

here K is given as in (12) and x̄k|k is the state estimate in the
ontroller. We propose three state estimators. Two are described
s

x̄k+1|k = Nx̄k|k, x̄k|k =

{
xk, if µk(Hk) = 1
x̄k|k−1, otherwise,

(30)

t all k ∈ N for N ∈ {I, A} and x̄0|0 = x0. The choice N = I boils
own to keeping the estimated state constant if data is not
ransmitted to the controller and N = A boils down to up-
ating the estimated state based on the system dynamics by
gnoring the effects of both the control input and the disturbance
hen µk(Hk) = 0. Additionally,

x̄k+1|k = Ax̄k|k + Buk, x̄k|k =

{
xk, if µk(Hk) = 1
x̄k|k−1, otherwise,

(31)

t all k ∈ N and x̄0|0 = x0, is another (possibly more reasonable
for some special disturbance inputs) state estimator in the con-
troller. In the following theorem, we propose an event-triggered
scheduling policy, which together with (29) and (30) (or (31)),
results in an ℓ2-consistent ETC in the sense of Definition 4.

Theorem 1. Consider system (1) and (6) and let Assumption 1 hold.
For a given γ ≻ γ ∗

1 , consider the event-triggered scheduling policy

µk(Hk) :=

{
1, if k = 0 or Gk(Ûk, Ŵk) ≻ 0
0, otherwise,

(32)

where G0(Û0, Ŵ0) := 0 and at every k ∈ N,

Gk(Ûk, Ŵk) :=

k∑
i=lk+1

[
(ûi − u∗

i )
TΦ1(ûi − u∗

i )

− (Dwi−1 − Dŵ∗

i−1)
TΨ1(Dwi−1 − Dŵ∗

i−1)
]
,

in which lk = max
{
r ∈ N

k−1
0 |µr (Hr ) = 1

}
is the last triggering time

before k, u∗

i is given as in (11) and for all i ∈ N
k−1
ℓk

,

ŵ∗

i := SAxi + (L − S)Ax̄i|i,

where S = γ −2DTM(I−γ −2DDTM)−1, L = γ −2DTMH−1. Moreover,
Ŵk = {wi|i ∈ N

k−1
lk

} and Ûk = {ûi|i ∈ Nk
lk+1}, are the actual

values of disturbances and control inputs, respectively, where for
all i ∈ Nk

lk+1,

ûi :=

{
Kx̄i|i−1, if i = k,
ui, otherwise,

ui is determined based on (29) and x̄i|i−1 follows either (30) for
N ∈ {I, A} or (31). Then, the ETC (32) and (29) is ℓ2-consistent with
ℓ2-gain bound γ . □

We highlight next some features of the ETC proposed in
Theorem 1.

1: Based on the event-triggered scheduling policy (32), a de-

viation of the actual disturbance inputs from the worst-case
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isturbance scenario given by (14) acts as a ‘‘reward’’ in order
o skip data transmissions and let the control inputs deviate
rom the one determined for 1-periodic ℓ2-controller in (11).
his reward can counteract the penalty incurred by skipping data
ransmissions (as then uk ̸= u∗

k). This is the main intuition behind
he proposed ETC in Theorem 1. Moreover, as it can be easily
oncluded, if the disturbance inputs follow wk = w∗

k for all k ∈

0, where {w∗

k |k ∈ N0} can be seen as a worst case disturbance
nput, then the proposed event-triggered scheduling policy (32)
lways triggers data transmissions, i.e., µk(Hk) = 1 at all k ∈ N0,
nless ûk = u∗

k , which is typically not the case.

: We can show that for the 1-periodic ℓ2-controller determined
n Lemma 1, and for all γ ≻ γ ∗

1 , J
∗

= xT0Mx0, where M is given in
emma 1. As we select a smaller value for γ ,M will become larger
in the sense that Mγ1 ≻ Mγ2 if γ2 ≻ γ1). Furthermore, based
on (10), we can conclude thatMH−1 will also become larger. Now,
since Φ1 = (I − BTMH−1B)−1 and Ψ1 = γ 2(DDT)−1

− M , then Φ1
becomes larger and Ψ1 becomes smaller. Therefore, the schedul-
ing law (32) is expected to trigger more transmissions for smaller
values of γ and the same disturbance input sequence w.

3: In order to evaluate the event-triggered condition (32) at every
time k ∈ N0, the scheduler needs the values of

{
Dwt |t ∈ N

k−1
0

}
and

{
Dw∗

t |t ∈ N
k−1
0

}
, which can be calculated by using Dwk−1 =

xk − Axk−1 − Buk−1 and w∗

k−1 = S(Axk−1 + Buk−1) given the con-
dition that the scheduler receives xk at every k ∈ N0 and knows
the control policy, from which the control inputs uk−1 can be
replicated. Therefore, (ii) in Assumption 1 helps to calculate the
values of the disturbance inputs, needed in the event-triggered
scheduling policy, based on the state measurements, and there is
no need for measuring them independently.

3.2. General case τ ∈ N

For any γ ≻ γ ∗
τ , the τ -periodic ℓ2-controller (16) requires

periodic state transmission after every τ ∈ N time-steps. How-
ever, in this section, we propose an event-triggered ℓ2-controller
with ℓ2-gain bound γ ≻ γ ∗

τ , which can skip data transmissions at
some of these time-steps. Let us introduce the augmented control
policy associated with our desired ETC as

Uι = K̄τ x̄ιτ |ιτ , (33)

where K̄τ = B̄0 in which B̄0 is determined based on (23) and
similar to the previous section, we can either have

x̄(ι+1)τ |ιτ = N̄ x̄ιτ |ιτ , x̄ιτ |ιτ =

{
xιτ , if µιτ (Hιτ ) = 1
x̄ιτ |(ι−1)τ , otherwise,

(34)

for N̄ ∈ {I, Aτ
}, or

x̄(ι+1)τ |ιτ = Aτ x̄ιτ |ιτ + [Aτ−1B, . . . , B]Uι,

x̄ιτ |ιτ =

{
xιτ , if µιτ (Hιτ ) = 1
x̄ιτ |(ι−1)τ , otherwise,

(35)

as the state estimator in the controller for all ι ∈ N and x̄0|0 = x0,
depending on the characteristic of the disturbance input. In the
following theorem, we propose an event-triggered scheduler
which together with (33) and (34) (or (35)) result in an ℓ2-
consistent ETC based on Definition 4.

Theorem 2. Consider system (1) and (6) and let Assumption 1
hold. For a given τ ∈ N and γ ≻ γ ∗

τ , consider the event-triggered
scheduling policy

µk(Hk) :=

⎧⎪⎨⎪⎩
1, if k = 0 ∨(

k = ιτ ∧ Ḡι(Ûι, Ŵι) ≻ 0, for some ι ∈ N

)
,

0, otherwise,
(36)
6

where Ḡ0(Û0, Ŵ0) := 0 and at every ι ∈ N,

Ḡι(Ûι, Ŵι) :=

ι∑
i=lι+1

[
(Ûi − U∗

i )
TΦτ (Ûi − U∗

i )

− (Wi−1 − Ŵ ∗

i−1)
TΨτ (Wi−1 − Ŵ ∗

i−1)
]

in which lι = sup
{
r ∈ N

ι−1
0 |µrτ (Hrτ ) = 1

}
is the last triggering

time before ι, Ŵ ∗

i = D[ŵ∗T
iτ , . . . , ŵ∗T

(i+1)τ−1]
T and U∗

i follows (18) for
all i ∈ N

ι−1
ℓι

, where for L = γ −2DTMH−1,

ŵ∗

iτ+h := S̄hAxiτ+h + (L − S̄h)A(H−1A)hx̄iτ |iτ ,

for every h ∈ N
τ−1
0 in which S̄h follows (20). Moreover, Ŵι =

{Wi|i ∈ N
ι−1
lι } and Ûι = {Ûi|i ∈ Nι

lι+1}, are the actual values of
disturbances and control inputs, respectively, where

Ûi :=

{
K̄τ x̄iτ |(i−1)τ , if i = ι

Ui, otherwise,

for all i ∈ Nι
lι+1, Ui is determined based on (33), x̄iτ |(i−1)τ follows

either (34) for N ∈ {I, Aτ
} or (35) and Wi follows (15). Then, the

ETC policy (36) and (33) is ℓ2-consistent with ℓ2-gain bound γ . □

Note that the ℓ2-consistent ETC proposed in Theorem 2 also
has the features discussed after Theorem 1.

The ℓ2-consistency of the proposed ETC policies in Theorems 1
and 2 indicates that for the same γ ∈ R≻0 as the disturbance
attenuation level where γ ≻ γ ∗

τ , in case the disturbance input
does not follow the worst-case scenario given by (19), the event-
triggered scheduler can skip data transmissions at some times
required by the τ -periodic controller (16) and results in a larger
average inter-transmission time than τ while guaranteeing the
same ℓ2-gain bound γ . Moreover, for the proposed ETC, the
behaviour of the average inter-transmission time with respect
to γ when γ ≻ γ ∗

τ is not necessarily increasing and it highly
depends on the actual disturbance input of the system. This can
be clearly seen in Fig. 3 corresponding to a numerical example.

4. Numerical example

Consider a scalar system where A = 1.1, B = 1, D = 1 are
the parameters of the linear model (1), and Q = 1. Moreover,
we take wk = e−

k
200 sin( k

25 ), k ∈ N0, as the unknown disturbance
input of the system. The infimal ℓ2-gain of the system for periodic
control with the inter-transmission time-steps τ ∈ {1, 2, 3, 4}
are γ ∗

1 = 1.487, γ ∗

2 = 2.202, γ ∗

3 = 2.999 and γ ∗

4 = 3.871. Ac-
cording to Lemmas 1 and 2, for any τ ∈ N and γ ≻ γ ∗

τ , we can
design a τ -periodic ℓ2-controller with ℓ2-gain bound γ . Then
based on Theorems 1 or 2, we can design its ℓ2-consistent ETC
counterpart for this system. Based on Definition 4, the pro-
posed ℓ2-consistent ETC can result in the same attenuation level
(ℓ2-gain bound) as the PTC (11) or (16), however, with a smaller
(or at most an equal) average transmission rate. However, we will
show that for the given system and the disturbance input, it is
even possible to achieve smaller disturbance attenuation levels by
following the proposed ETC in comparison to the PTC (11) or (16),
while they both have the same average transmission rate.

Firstly, we consider τ = 1 and design an ETC based on
Theorem 1. The controller follows (29), where the state estima-
tion in the controller is determined based on (30) for N = A.
ig. 2(a) shows the state trajectory related to the ETC when τ = 1

and γ = 1.630 ≻ γ ∗

1 is its corresponding ℓ2-gain bound. This
ETC results in Ω̄η(w) = 2.033, where Ω̄η(w) denotes the average
inter-transmission time of scheduler. However, if the scheduler
triggers transmissions periodically with τ = 2, then we know
that the infimal ℓ2-gain of the system with periodic control

∗
is γ2 = 2.202. The state trajectory of the periodic controller (16)
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Fig. 2. Illustration of the improved performance of the proposed ETC in com-
parison to periodic time-triggered controller (PTC) in disturbance attenuation
with the same average transmission rate (for the given disturbance input w)
when (a) ETC designed for τ = 1 and PTC designed for τ = 2 (b) ETC designed
for τ = 2 and PTC designed for τ = 4.

Fig. 3. Trade-off curves resulted by the ℓ2-consistent ETC designed for τ = 1
nd τ = 2 and the given disturbance input w in comparison to the one which
an be achieved by PTC.

or γ = γ ∗

2 + ϵ, where ϵ ≻ 0 is a small real number, and τ = 2 is
hown in Fig. 2(a), which indicates the better disturbance atten-
ation of the ETC while they both have almost the same average
ransmission rate for the given disturbance input w. Fig. 2(b)
ompares similar situations when the ETC is designed for τ = 2
and γ = 2.924 based on Theorem 2. The controller follows (33)
where the state estimation in the controller is determined based
on (34) for N = A2. Again, for this system, the ℓ2-gain bound
of the system with the ETC is significantly smaller than the
minimum value that results from periodic control while they
both have almost the same average inter-transmission time-
steps to the controller

(
Ω̄η(w) ≈ τ = 4

)
for the given disturbance

input w. Fig. 3 is more generic and illustrates the ℓ2-consistency
of the proposed ETC when τ = 1 and τ = 2. For the given distur-
bance input w, we find the average inter-transmission time of the
system with the ℓ2-consistent ETC designed for different values
of γ ≻ γ ∗

τ , a time horizon of 250 and zero initial condition. The
solid line shows the trade-offs one can achieve by following a
periodic time-triggered control strategy. We easily see the better
trade-offs for the proposed ℓ2-consistent ETC in comparison to
PTCs. In principle, based on the theory (Theorems 1 and 2), for
every τ ∈ N and γ ∈ [γ ∗

τ , γ ∗

τ+1) the trade-offs for the proposed
ETC (36) and (33) (or (32) and (29) when τ = 1) are guaranteed
to be bellow (or at most on) the stairwise curve of PTCs for any
linear system (1) and disturbance input w.
7

5. Conclusions

In this work, we investigated the design of event-triggered
controllers (ETCs) for discrete-time linear systems by consider-
ing the ℓ2-gain as a performance criterion of the closed-loop
system. Firstly, for every transmission time period, we deter-
mined a periodic ℓ2-controller for a given ℓ2-gain bound, follow-
ing a game-theoretical approach. Then, we introduced the notion
of ℓ2-consistency, which refers to any ETC that guarantees the
same ℓ2-gain bound as that of the designed periodic ℓ2-controller,
however, with a larger or an equal average inter-transmission
time. Next, we proposed the design of an ℓ2-consistent ETC with
some interesting features. When the disturbance input follows
the worst-case scenario at every time, the scheduler triggers
transmissions periodically in order to guarantee an ℓ2-gain bound
for the system. However, when the disturbance input is not equal
to the worst-case scenario, the ℓ2-gain bound of our designed
ETC is still guaranteed and equal to that of the designed peri-
odic ℓ2-controller, however, with a (significantly) larger average
inter-transmission time. Possible directions for future work in-
clude considering linear plants with partial state information,
non-linear plants and date bit rate constraints.

Appendix

A.1. Proof of Lemma 1

Parts i and ii can be proved by the arguments in Theorem 3.8
of Başar and Bernhard (2008), in which the stabilizability of (A, B)
and the observability of (Q

1
2 , A) are used to guarantee the exis-

tence of γ̂ ∈ R≻0, where for all γ ≻ γ̂ the Ricatti equation (10)
has a positive definite solution M . They are also proved (by
making τ = 1) in a more general setting in Lemma 2. The
only point that is not proved in Başar and Bernhard (2008) is
the Lyapunov stability of the control loop when w = (0, 0, . . . ),
which we postpone it to the end of the present proof.

(Part iii) Let us define J̃(xk, xk+1) = xTk+1Mxk+1 − xTkMxk for
all k ∈ N0, where M is the positive definite solution of M = AT

MH−1A+Q for a given γ ∈ R≻0 such that γ 2I − DTMD ≻ 0. Then,
by using (1)

J̃(xk,xk+1) = (Axk + Buk)TM(Axk + Buk)

− wT
k (γ

2I − DTMD)wk + 2(Axk + Buk)TMDwk

− xTkMxk + (xTkQxk + uT
kuk) − (zTk zk − γ 2wT

kwk).

Now by completing the squares for wk, we obtain

J̃(xk,xk+1) = −(wk − w∗

k )
TDTΨ1D(wk − w∗

k ) + uT
kuk

+ xTk(Q − M)xk + (Axk + Buk)TMG(Axk + Buk)

− (zTk zk − γ 2wT
kwk),

for w∗

k = (DTΨ1D)−1DTM(Axk + Buk), where Ψ1 := γ 2D(DTD)−1

(DTD)−1DT
−M and DTΨ1D ≻ 0. Moreover, G := (I−γ −2DDTM)−1.

Now, we complete the squares for uk.

J̃(xk, xk+1) = −(wk − w∗

k )
TDTΨ1D(wk − w∗

k ) + (uk − u∗

k)
T

Φ1(uk − u∗

k) + xTk(A
TMH−1A − M + Q )xk + γ 2wT

kwk − zTk zk,

(A.1)

where Φ1 := I + BTMGB ⩾ I , H : = I + (BBT
− γ −2DDT)M,

and u∗

k = −BTMH−1Axk. Now by using the matrix inversion
lemma (Henderson & Searle, 1981, equation (18)), we can show
that Φ−1

= I − BTMH−1B. Then by summing all the values of
1
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J̃(xk, xk+1) over k ∈ Nν
0 for an arbitrary ν ∈ N and considering

M = ATMH−1A + Q ,
ν∑

k=0

J̃(xk, xk+1) = xTν+1Mxν+1 − xT0Mx0

= −

ν∑
k=0

(zTk zk − γ 2wT
kwk) +

ν∑
k=0

[(uk − u∗

k)
T

Φ1(uk − u∗

k) − (wk − w∗

k )
TDTΨ1D(wk − w∗

k )].

(A.2)

From this equation we conclude that
ν∑

k=0

[zTk zk − γ 2wT
kwk] = xT0Mx0 − xTν+1Mxν+1 +

ν∑
k=0

[−(wk − w∗

k )
TDTΨ1D(wk − w∗

k ) + (uk − u∗

k)
TΦ1(uk − u∗

k)].

Since M is a positive definite matrix and x0 = 0, then

J =

∞∑
k=0

[zTk zk − γ 2wT
kwk] ⩽

∞∑
k=0

[
(uk − u∗

k)
TΦ1(uk − u∗

k)

− (wk − w∗

k )
TDTΨ1D(wk − w∗

k )
]
,

which proves part iii. Now we need to prove the global asymp-
totic stability of the control loop, when w = (0, 0, . . . ) and the
control input follows (11). We take V (xk) = xTkMxk as the Lya-
punov function candidate, where M is a positive definite solu-
tion of (10). Considering ∆Vk := V (xk+1) − V (xk), then based
on (A.1), for w = (0, 0, . . . ) and uk = u∗

k at every k ∈ N0, we
have ∆Vk = −u∗T

k u∗

k − xTkQxk − w∗T
k DTΨ1Dw∗

k ⩽ 0, for ev-
ery k ∈ N0. Therefore, the control loop is Lyapunov stable. More-
over, based on the observability of (Q

1
2 , A) it can be shown that

he state of the control loop converges to zero as time goes
o infinity, when w = (0, 0, . . . ) and uk = u∗

k at every k ∈ N0,
ee Başar and Bernhard (2008, page 62). Thus, the system is
lobally asymptotically stable.

.2. Proof of Lemma 2

i) necessary and sufficient conditions for the existence of a τ -
eriodic ℓ2-controller
According to Theorem 3.8 of Başar and Bernhard (2008), taking

nto account the stabilizability of (A, B) and the observability
f (Q

1
2 , A), there exists a γ̂1 ∈ R≻0, where for all γ ≻ γ̂1 the

icatti equation (10) has a positive definite solution M . Moreover,
t is clear that there exists γ̂2 ≻ 0 such that for all γ ≻ γ̂2, γ 2I−D̄T

τ
¯

τ D̄τ ≻ 0 holds. Then we can take γ̂ := max{γ̂1, γ̂2}, which
stablishes the first assertion.
Now to prove the second assertion in statement i, we re-

ort to an argument in Başar and Bernhard (2008), which indi-
ates that the conditions needed to find a controller satisfying
art ii of Definition 2 are the same as the conditions needed to
ave J∗ ⩽ 0, where J∗ is given in (9). Solving the minimax op-
imization problem in (9) is equivalent to finding an appropriate
alue function V(xℓ) such that the following Isaacs equation holds
or every ℓ = ιτ ∈ N0 and every xℓ ∈ Rn (Başar & Olsder, 1999,
orollary 6.2),

V(xℓ) = min
Uι=R̄ι(F

πτ
ℓ

)
max

wℓ=Tℓ(Eℓ)
. . . max

wℓ+τ−1=Tℓ+τ−1(Eℓ+τ−1)

ℓ+τ−1∑
k=ℓ

[zTk zk − γ 2wT
kwk] + V(xℓ+τ ).

In this minimax game, the information structures of the two
players are periodic with given, generally not equal, time peri-
ods. As a result of Theorem 6.9 in Başar and Olsder (1999) the

value function for this two-player zero-sum minimax game is

8

V(xℓ) = xTℓMxℓ, where M is the positive definite solution of (10).
Therefore, we have to find the conditions under which the fol-
lowing equality always holds for every xℓ ∈ Rn,

xTℓMxℓ = min
Uι=R̄ι(F

πτ
ℓ

)
max

wℓ=Tℓ(Eℓ)
. . . max

wℓ+τ−1=Tℓ+τ−1(Eℓ+τ−1)

ℓ+τ−1∑
k=ℓ

[zTk zk − γ 2wT
kwk] + xTℓ+τMxℓ+τ .

(A.3)

In order to solve the optimization problem in (A.3) for τ ∈ N,
first we need to follow τ maximization steps and determine
W ∗

ι = D[w∗T
ℓ , . . . , w∗T

ℓ+τ−1]
T and then determine U∗

ι = [u∗T
ℓ , . . . ,

u∗T
ℓ+τ−1]

T in one minimization step. Therefore, w∗
s when s = ℓ +

τ − 1 is determined as follows

Ĵτ−1(xs, us) := max
ws∈Rd

[
zTs zs − γ 2wT

s ws + xTs+1Mxs+1
]
.

By substituting (1) into the above equation we get

w∗

s := arg max
ws∈Rd

(
zTs zs − γ 2wT

s ws

+ (Axs + Bus + Dws)TM(Axs + Bus + Dws)
)
,

where a bounded w∗
s exists if γ 2I − DTMD ≻ 0, and

w∗

s = γ −2DTV̂−1
τ−1M(Axs + Bus), (A.4)

for V̂τ−1 = I − γ −2MDDT. Now by substituting (A.4) into Ĵτ−1
(xs, us) we get Ĵτ−1(xs, us) = xTs Θτ−1xs + uT

s Yτ−1us + 2xTs Zτ−1us,
where

Θτ−1 := Q + ATV̂−1
τ−1MA, Zτ−1 := ATV̂−1

τ−1MB,

Yτ−1 := I + BTV̂−1
τ−1MB.

(A.5)

Therefore, the optimal game value at time s is a function of xs
and us. Now, by an induction argument, let us assume that at an
arbitrary optimization step h + 1 ∈ N

τ−1
1 the optimal game value

is

Ĵh+1(xr+1, Ûr+1) := xTr+1Θh+1xr+1 + 2xTr+1Zh+1Ûr+1

+ ÛT
r+1Yh+1Ûr+1,

where Θh+1, Yh+1 are known positive definite matrices, r = ℓ + h,
and Ûr+1 = [uT

r+1, . . . , u
T
ℓ+τ−1]

T is the augmented control input.
Then

Ĵh(xr , Ûr ) := max
wr∈Rd

[zTr zr − γ 2wT
r wr + Ĵh+1(xr+1, Ûr+1)].

By substituting (1) into the above equation, we get

w∗

r = γ −2DTV̂−1
h

(
Θh+1(Axr + Bur ) + Zh+1Ûr+1

)
, (A.6)

where V̂h = I − γ −2Θh+1DDT, provided that γ 2I − DTΘh+1D ≻ 0.
Then, Ĵh(xr , Ûr ) = xTr Θhxr + 2xTr ZhÛr + ÛT

r YhÛr , where

Θh := Q + ATV̂−1
h Θh+1A,

Zh :=
[
ATV̂−1

h Θh+1B ATV̂−1
h Zh+1

]
,

Yh :=

[
I + BTV̂−1

h Θh+1B BTV̂−1
h Zh+1

ZT
h+1V̂

−T
h B Yh+1 + ZT

h+1EhZh+1

]
,

(A.7)

for Eh = γ −2DDTV̂−1
h . Moreover, Ĵh takes the same form as the one

assumed for the Ĵh+1, and therefore, the quadratic form assumed
for the Ĵh is correct. Finally, consider at the optimization step ℓ,
after determining w∗

ℓ the optimal game value follows Ĵ0(xℓ, Ûℓ) =

xTℓΘ0xℓ + 2xTℓZ0Ûℓ + ÛT
ℓ Y0Ûℓ, where Θ0, Z0 and Y0 are determined

based on (A.7). Then, Û∗

ℓ = arg min
Ûℓ∈R

mτ
[xTℓΘ0xℓ + 2xTℓZ0Ûℓ +

ÛT
ℓ Y0Ûℓ], which results in U∗

ι := Û∗

ℓ = K̄τ xℓ, where

¯ −1 T
Kτ = −Y0 Z0 , (A.8)
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a

A

nd Ĵ0(xℓ) := xTℓ(Θ0 − Z0Y−1
0 ZT

0 )xℓ = xTℓMxℓ = V(xℓ). We can prove
that K̄τ = B̄0, where B̄0 is determined based on (23), see, Balaghi-
inaloo (2020, Appendix F). Therefore, we have M = Θ0 − Z0Y−1

0
ZT
0 . However, since the value of τ is arbitrary, then for ev-

ery h ∈ N
τ−1
0 ,

M = Θh − ZhY−1
h ZT

h . (A.9)

Based on (A.9), we can obtain the same Ricatti equation as in (10)
by considering h = τ − 1,

M = Θτ−1 − Zτ−1Y−1
τ−1Z

T
τ−1 = Q + ATMH−1A,

where H = I + (BBT
− γ −2DDT)M . However, according to γ 2I −

DTΘh+1D ≻ 0 we have to check the following conditions for the
existence of the optimal solution for (A.3),

Λh(γ ) := γ 2I − DTΘhD ≻ 0 (A.10)

at all h ∈ Nτ
1 , where

Θh =

{
M, if h = τ

Q + ATV̂−1
h Θh+1A otherwise.

(A.11)

One can easily establish that γ 2I − D̄T
τ M̄τ D̄τ ≻ 0 is equivalent

to the series of inequalities in (A.10), see, Balaghiinaloo (2020,
Appendix F).

Proving J ⩽ −ϵ∥w∥
2
ℓ2

for Uι = U∗
ι at all ι ∈ N0, all w ∈ ℓd2

and x0 = 0: Following the same procedure as the one given in
the proof of Lemma 1, we can obtain

xTℓ+τMxℓ+τ − xTℓMxℓ = (Uι − U∗

ι )
TY0(Uι − U∗

ι ) −

ℓ+τ−1∑
i=ℓ[

(wi − w∗

i )
TDTΨ̄i−ℓD(wi − w∗

i ) − (zTi zi − γ 2wT
i wi)

]
,

(A.12)

for any arbitrary transmission time ℓ = ιτ ∈ N0 and Ψ̄h := γ 2D
(DTD)−1(DTD)−1DT

− Θh+1 for all h ∈ N
τ−1
0 . Then by taking the

summation of both sides of the equation over the transmis-
sion times, from initial up to an arbitrary transmission time-
step ν ∈ N,

ν∑
k=0

(zTk zk − γ 2wT
kwk) = xT0Mx0 − xTν+τMxν+τ +

ν∑
ι=0

[(Uι − U∗

ι )
TΦτ (Uι − U∗

ι ) − (Wι − W ∗

ι )
TΨτ (Wι − W ∗

ι )],

where Ψτ = γ 2D̂τ (D̂T
τ D̂τ )−1(D̂T

τ D̂τ )−1D̂T
τ − Θ̂τ in which D̂τ = Iτ

⊗ D, Θ̂τ = diag(Θ1, . . . , Θτ−1,M) and Φτ = Y0. Thus,

J =

∞∑
k=0

(zTk zk − γ 2wT
kwk) ⩽ xT0Mx0 +

∞∑
ι=0

[(Uι − U∗

ι )
TΦτ (Uι − U∗

ι ) − (Wι − W ∗

ι )
TΨτ (Wι − W ∗

ι )].

(A.13)

Now following the similar arguments as in Limebeer et al. (1992,
Theorem 2.1), we can show that for Uι = U∗

ι at all ι ∈ N0 and
x0 = 0, J ⩽ −ϵ∥w∥

2
ℓ2

holds for all w ∈ ℓd2 and some positive ϵ.
Note that in case Wι = W ∗

ι at all ι ∈ N0 and for x0 = 0, we can
conclude w = (0, 0, . . . ), where still J ⩽ −ϵ∥w∥

2
ℓ2

holds for any
positive ϵ.

Proving the necessity of (A.10), such that Uι = U∗
ι at all ι ∈ N0

satisfies J ⩽ −ϵ∥w∥
2
ℓ2
, for x0 = 0 and all w ∈ ℓd2: Let us assume

that Λh(γ ) = DTΨ̄hD for a h ∈ Nτ
1 is not a positive definite matrix.

In this case, we will introduce a w ̸= (0, 0, . . . ), for which it is not
possible to find an ϵ ≻ 0 such that J ⩽ −ϵ∥w∥

2
ℓ2
. Suppose d∗

̸= 0
is an eigenvector of Λ (γ ) corresponding to its zero or negative
h

9

eigenvalue. Then for x0 = 0 and a given ι ∈ N0, we propose the
following disturbance sequence

wk =

⎧⎨⎩
0, if k ≺ ιτ + h
w∗

k + d∗, if k = ιτ + h
w∗

k , if k ≻ ιτ + h.
(A.14)

Since x0 = 0, then xt = 0 and w∗
t = 0 for all t ∈ Nk

0. Now
if Uι = U∗

ι at all ι ∈ N0, then (Uι − U∗
ι )

TΦτ (Uι − U∗
ι ) = 0

and since Λh(γ )d∗ ⩽ 0, then (Wι − W ∗
ι )

TΨτ (Wι − W ∗
ι ) ⩽ 0 at all

ι ∈ N0 for the given w ̸= (0, 0, . . . ). Therefore, based on (A.13),
we cannot find an ϵ ≻ 0, where J ⩽ −ϵ∥w∥

2
ℓ2

for the given
nonzero disturbance input. Thus, for all h ∈ N

τ−1
0 , Λh(γ ) should

not have any zero or negative eigenvalue.

(ii) τ -periodic ℓ2-controller
We can prove that the determined control policy U∗

ι = K̄τ xℓ is
equivalent to the one given in (16) and (17), however it is omitted
due to space limitations. In part i of the proof we showed that
the control policy Uι = U∗

ι for all ι ∈ N0 satisfies J ⩽ −ϵ∥w∥
2
ℓ2

for x0 = 0 and all w ∈ ℓd2. Now we just need to prove the global
asymptotic stability of the control loop when w = (0, 0, . . . ).

For this purpose, let us take V (xℓ) = xTℓMxℓ as the Lyapunov
function candidate at every transmission time step. Then based
on (A.12), we have

∆V (xℓ) = xTℓ+τMxℓ+τ − xTℓMxℓ

= −

ℓ+τ−1∑
i=ℓ

[
w∗T

i DTΨ̄i−ℓDw∗

i + zTi zi
]
⩽ 0,

at every ℓ ∈ N0, when Uι = U∗
ι and w = (0, 0, . . . ). This indicates

that the control loop is Lyapunov stable. Then, following the same
arguments as in Başar and Bernhard (2008, page 62), due to
the boundedness of the game upper value for Uι = U∗

ι at all
transmission time steps ℓ = ιτ , we can conclude that Q

1
2 xk → 0

when w = (0, 0, . . . ), and then based on the observability of
(Q

1
2 , A), we can show that xk converges to zero as time goes to

infinity for any initial condition. Therefore, we can conclude the
global asymptotic stability of the control loop.

(iii) performance index
We proved (21) in (A.13), where Φτ = Y0 which can be de-

termined iteratively based on (A.7). However, there is a simpler
iteration to determine Y−1

0 . Let us consider Yh = Â + B̂Ĉ B̂T, where
ˆ = diag{I, Yh+1},

B̂ =

[
BT 0
0 ZT

h+1

]
, Ĉ =

[
V̂−1
h Θh+1 V̂−1

h
V̂−T
h γ −2DDTV̂−1

h

]
,

then by considering the following matrix equality

(Â + B̂Ĉ B̂T)−1
= Â−1

− Â−1B̂(I + Ĉ B̂TÂ−1B̂)−1Ĉ B̂TÂ−1.

we can determine the equality in (22), for all h ∈ N
τ−1
0 . Moreover,

this iteration starts from Yτ−1 = I + BTV̂−1
τ−1MB, where we can

easily show that Y−1
τ−1 = I − BTMH−1B.

A.3. Proof of Theorem 1

In order to guarantee that γ ≻ γ ∗

1 is an ℓ2-gain bound of
the system (1), (32) and (29) (with (30) or (31)), one should
satisfy J ⩽ 0 for all w ∈ ℓd2, where J is given in (8). Therefore, we
can use (13) and represent it as

J ⩽ (u0 − u∗

0)
TΦ1(u0 − u∗

0) +

∞∑
k=1

[(uk − u∗

k)
TΦ1(uk − u∗

k)

∗ T ∗

− (Dwk−1 − Dwk−1) Ψ1(Dwk−1 − Dwk−1)].
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ased on the event-triggered policy (32), there is a state trans-
ission to the controller at k = 0, therefore u0 = u∗

0. Moreover,
we can change the summation in the above equation into two
summations as follows

J ⩽
∞∑
j=0

sj+1∑
i=sj+1

[(ui − u∗

i )
TΦ1(ui − u∗

i )

− (Dwi−1 − Dw∗

i−1)
TΨ1(Dwi−1 − Dw∗

i−1)],

where j ∈ N0 represents the number of transmissions and sj is
the time at which the j-th transmission happens. Then if uk
at all k ∈ N0 follows (29) for the data transmission scheduling
policy (32), we have

J ⩽
∞∑
j=0

sj+1∑
i=sj+1

[(ûi − u∗

i )
TΦ1(ûi − u∗

i )

− (Dwi−1 − Dŵ∗

i−1)
TΨ1(Dwi−1 − Dŵ∗

i−1)].

for ûi = Kx̄i|i and ŵ∗

i = S(Axi + Bûi). Based on the scheduling
policy (32), and the fact that at data transmission times ûsj = u∗

sj ,
for every sj ∈ N, we have

G(Ûsj+1 , Ŵsj+1 ) =

sj+1∑
i=sj+1

[(ûsj − u∗

i )
T
Φ1(ûsj − u∗

i )

− (Dwi−1 − Dŵ∗

i−1)
T
Ψ1(Dwi−1 − Dŵ∗

i−1)] ⩽ 0.

Therefore, we can guarantee J ⩽ 0. Furthermore, by substitut-
ing ûi into ŵ∗

i , we arrive at ŵ∗

i = SAxi + SBK x̄i|i. Moreover,
SBK = (−S + L)A, which results in ŵ∗

i = SAxi + (L − S)Ax̄i|i.
Stability when w = (0, 0, . . . ) : Let us take V (xν) = xTνMxν as
Lyapunov function candidate. Then, based on (A.2), when we
ave uk = ûk and w∗

k = ŵ∗

k for all k ∈ N0, and w = (0, 0, . . . ),

∆̂V (xν) : = V (xν+1) − V (x0) = −

ν∑
k=0

[xTkQxk + ûT
k ûk

− (ûk − u∗

k)
TΦ1(ûk − u∗

k) + ŵ∗T
k DTΨ1Dŵ∗

k ],

at every ν ∈ N0. Moreover, based on the event-triggered schedul-
ing law (32), when w = (0, 0, . . . ),

ν∑
k=0

[−(ûk − u∗

k)
TΦ1(ûk − u∗

k) + ŵ∗T
k DTΨ1Dŵ∗

k ] ⩾ 0,

t every ν ∈ N0. Therefore, ∆̂V (xν) ⩽ 0 at every ν ∈ N0, which
ndicates the Lyapunov stability of the control loop for the pro-
osed ETC, when w = (0, 0, . . . ). Then similar to the proof of

Lemma 1, the observability of (Q
1
2 , A) and the boundedness of

the performance index (8), i.e., J ⩽ xT0Mx0, guarantees the conver-
gence of the state to zero as time goes to infinity. Therefore, we
can conclude the global asymptotic stability of the control loop.
Therefore, the proposed ETC is an ℓ2-consistent ETC according to
Definitions 3 and 4.

A.4. Proof of Theorem 2

The proof procedure is similar to the one presented for
Theorem 1. However, here, in order to satisfy J ⩽ 0 for all w ∈ ℓd2,
here J is given in (8), we just need to consider (21). We just

need to simplify the disturbance input as it is given in (19)
when the control policy follows (33). For k = ιτ + τ − 1, we
ave ŵ∗

k = S̄τ−1(Axk + Bûk), where ûk = K (H−1A)τ−1x̄ιτ |ιτ . Then
imilar to what we did in the proof of Theorem 1, we can
how that S̄τ−1BK = (L − S̄τ−1)A, which results in ŵ∗

k =

S̄ Ax +(L− S̄ )A(H−1A)τ−1x̄ . Now when k ∈ Nιτ+τ−2, then
τ−1 k τ−1 ιτ |ιτ ιτ

10
ŵ∗

k = Shxk + γ −2DT
[Θh+1V−1

h B V−T
h Zh+1]Ûk, where h = k − ιτ

and

Ûk = −

[
BTMH−1A

Y−1
h+1Z

T
h+1H

−1A

]
(H−1A)hx̄ιτ |ιτ .

Moreover, we can show that[
Θh+1V−1

h B V−T
h Zh+1

] [
BTMH−1A

Y−1
h+1Z

T
h+1H

−1A

]
= Θh+1V−1

h A − MH−1A.

Then by substitution, w∗

k = S̄hxr + (L − S̄h)A(H−1A)hx̂ιτ |ιτ , where
S̄h = γ −2DTV−1

h Θh+1A and L = γ −2DTMH−1A.
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