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Abstract—We consider networked control systems where
nodes (sensors, actuators, and controller) are connected via a
communication network that allows only one user to transmit
at a given time. We tackle the scheduling problem of deciding
which node should access the network at each transmission
time so as to optimize a quadratic performance objective. Using
the framework of dynamic programming, we propose a rollout
strategy by which the node elected to transmit at each step is the
one that leads to optimal performance over a lookahead horizon
assuming that from then on nodes transmit in a periodic order.
The proposed strategy leads to a protocol in which a conic state
partition determines which node transmits at each step and
which can outperform any given periodic protocol. Moreover,
we show that some of the protocols previously proposed in
the literature, such as the Maximum Error First and the
dynamic protocols, can be viewed as rollout strategies for a
certain dynamic programming problem. The advantages of
using rollout strategies are illustrated by a numerical example.

I. INTRODUCTION

Several works have addressed the scheduling problem
for networked control systems in which nodes (sensors,
actuators, and controller) communicate via a shared network
that allows only one node to transmit at a given time
(e..g, Ethernet, CAN-BUS, Wireless 802.11). In this paper,
we follow a line of research [1], [2], [3], [4], [5], [6]
that considers an emulation set-up in the sense that the
control algorithm for the networked control system is ob-
tained from a previously designed stabilizing continuous-
time controller and the network protocol should strive to
emulate a continuous connection between controller, sensors
and actuators. Hence, in this paper, only the protocol is to be
designed. In a companion paper [7], we tackle the problem
of simultaneously designing the protocol and the controller.
In [1], [2], Maximum Error First (MEF) protocols are

proposed, in which the node that transmits at each step
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is the one yielding the largest error between its current
measurement/control value and the last value it sent over the
network. Simulation results indicate significant advantages
of using MEF protocols instead of periodic protocols, in
which nodes transmit in a periodic order. See also [3] where
a weighted version of the MEF protocol is considered. In
a similar setup, [4], [5] propose a more general class of
quadratic protocols, where the node elected to transmit is
the one yielding the least value of quadratic state functions
associated to each node. Conditions are given in [4], [5] to
assert the stability of a given quadratic protocol considering
delays and time-varying sampling intervals. When applied
to a benchmark example, the stability conditions provided
in [4], [5] for quadratic protocols provide less conserva-
tive bounds on delays and time-varying sampling intervals
for which stability of the networked control system can
be guaranteed than the stability conditions for round-robin
protocols, a special case of periodic protocols in which each
node transmits only once in a period. Dynamic protocols,
proposed in [6], generalize quadratic protocols by allowing
more than one quadratic function to be associated with each
node. It is established in [6] that if the networked control
system is stable for a given periodic protocol, then one can
find a stabilizing dynamic protocol, for which the networked
control system is also stable.
In the present paper, we tackle the scheduling problem

of deciding which node should access the network at each
transmission time so as to optimize a quadratic performance
objective. We consider both finite and infinite horizon prob-
lems and propose the use of rollout strategies, which for
the infinite horizon problem lead to stationary policies. As
explained in [8], rollout strategies consist of suboptimal
strategies for dynamic programming problems in which the
search for optimal decisions occurs only along a lookahead
horizon, assuming that from then on a base policy is used for
which the cost to go is typically simple to determine. In our
approach, we propose to use a periodic protocol for the base
policy. We show that this rollout strategy leads to a protocol
in which a conic state partition determines which node
should transmit based on the current state. By construction
of rollout algorithms our method outperforms any periodic
protocol as long as this protocol is used as the base policy.
Moreover, we establish the following connections between
rollout strategies and previously considered protocols in the
literature: (i) a weighted version of the MEF protocol is
obtained from a rollout algorithm with a round-robin base
policy for a special optimal problem and for the special case
where only two nodes transmit over the network; (ii) dynamic
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protocols obtained from the design procedure given in [6] can
be viewed as rollout algorithms in which the base policy
consists of a stochastic protocol assigning transmissions
based on the state of a Markov chain. We also briefly address
the relation between stochastic and periodic protocols.
The remainder of the paper is organized as follows.

Section II sets up the general networked control scheduling
problem. Section III addresses rollout strategies, and the
connection with other protocols in the literature is given in
Section IV. An illustrative example is given in Section V.
Section VI contains concluding remarks.
Notation We denote by In and On the n × n identity and
zero matrices, respectively, and by diag(A1, . . . , An]) a block
diagonal matrix with blocks Ai. For a matrix A, Aᵀ denotes
its transpose. The notation x(t−k ) indicates the limit from
the left of x at the point tk. For dimensionally compatible
matrices A and B, we define (A,B) := [Aᵀ Bᵀ]ᵀ.

II. PROBLEM SETUP

We consider a networked control system for which sen-
sors, actuators, and a controller, are connected through a
communication network, possibly shared with other users.
The plant and controller are described by the following state-
space model:

Plant: ẋP = APxP +BP û, y = CPxP (1)
Controller: ẋC=ACxC +BC ŷ, u = CCxC +DC ŷ. (2)

where xP (t) ∈ Rn, û(t) ∈ Rm, and y(t) ∈ Rp are the
plant’s state, input, and output, respectively, and xC(t) ∈
RnK , ŷ(t) ∈ Rp, and u(t) ∈ Rm, are the controller’s state,
input, and output, respectively. We assume that the controller
would stabilize the closed loop if the plant and the controller
were directly connected, i.e., if we would have û(t) = u(t),
ŷ(t) = y(t) for all t ≥ 0. The signals û, u, y, and ŷ are
partitioned as û = (û1, . . . , ûnu), u = (u1, . . . , unu), y =
(y1, . . . , yny ), and ŷ = (ŷ1, . . . , ŷny ), where ûi ∈ Rsi and
ui ∈ Rsi pertains to an actuator node 1 ≤ i ≤ nu; yi−nu ∈
Rsi and ŷi−nu ∈ Rsi pertains to a sensor node nu + 1 ≤
i ≤ nu + ny . Note that, for convenience, we use the same
index i ∈ M,M := {1, . . . , nu +ny} to label both actuator
and sensor nodes, and in our terminology a single node can
be associated with several entries of the process output y
or with several entries of the process input û. With some
abuse of terminology, we say that an actuator or a sensor
node transmits when a transmission occurs either from the
controller to an actuator, or from a sensor to the controller,
respectively.
The transmission times are denoted by tk, k ≥ 0, and

we assume that the time intervals between transmissions is
constant, i.e., tk+1−tk = τs, where τs is the sampling period.
Between transmission times, the inputs to the plant and to
the controller are held constant, i.e.,

û(t) = û(tk), ŷ(t) = ŷ(tk), t ∈ [tk, tk+1). (3)

The network is assumed to impose that only one node can
transmit at a given time. For a set of time instants of interest

K := {0, . . . , kF − 1}, with kF ∈ N ∪ {∞}, we define the
following scheduling sequence

σk ∈ M, for k ∈ K. (4)

indicating that at the time tk, σk is the node that transmits.
Although (4) is simply a vector of scheduling decisions
when kF < ∞, we will use the nomenclature scheduling
sequence also for this case. The components of ŷ(tk) or
û(tk) associated with the node σk that transmits at time tk
are updated by the corresponding components of y(t k) or
u(t−k ). If we define a vector e ∈ Rne , ne :=

∑nu+ny

j=1 sj as

e := (û − u, ŷ − y), (5)

this is captured by the following equation

e(tk) = Λσke(t
−
k ), (6)

where

Λj := diag(I∑j−1
i=1 si

0sj I
∑m

i=j+1 si), j ∈ M.

The state of the networked control system is defined by
the vector x := (xP , xC , e), x(t) ∈ Rnx , nx := n+nK+ne,
and can be described by

ẋ(t) = ACLx(t), t ≥ 0, t (= tk, k ≥ 0

x(tk) = Jσkx(t
−
k ),

(7)

where Jj := diag(In+nK ,Λj), j ∈ M, and

ACL=

[
I
Ce

] [
Axx Axe

]
, Axe =

[
BP BPDC

0 BC

]

Axx=

[
AP +BPDCCP BPCC

BCCP AC

]
, Ce=

[
0 −CC

−CP 0

]
.

(8)
Note that Axx is Hurwitz due to the assumption that the
controller would stabilize the closed loop if plant (1) and
controller (2) were directly connected.
Defining xk := x(t−k ), xk ∈ Rnx , we can write

xk+1 = Aσkxk, k ≥ 0, (9)

where Aσk := ĀJσk ,

Ā := eACLτs . (10)

We consider the following cost

J(x0,σ) :=






kF−1∑

k=0

xᵀ
kQσkxk + xᵀ

kF
Q̄xkF , if kF < ∞

∞∑

k=0

xᵀ
kQσkxk, if kF = ∞

(11)
where the matrices Qj , j ∈ K, and Q̄ are assumed to be
positive semi definite, and we shall be interested in the
problem of finding a scheduling sequence σk, k ∈ M to
minimize J(x0,σ). Since this problem is combinatorial in
general we shall propose suboptimal strategies which lead
to policies taking the form σk = µk(xk), k ∈ K, for some
functions µk, k ∈ K.
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The cost matrices Qj , j ∈ K, and Q̄ in (11) are in general
problem specific, but can also be seen as tunning knobs. In
fact, by properly choosing these matrices we shall be able
to relate the results presented here with previous results in
the literature (cf. Section IV). These matrices can also be
obtained from an optimal quadratic cost for (1), (2), taking
the form JC =

∫ tF
0 xP (t)ᵀQCxP (t) + û(t)ᵀRC û(t)dt, for

tF > 0, in which case we have
Qσk =
∫ τs

0
Jᵀ
σk
eA

ᵀ
CLs(diag(QC , 0nK+p+m)+Uᵀ

CRCUC)e
ACLsJσkds,

(12)
UC =

[
DCCP CC I DC

]
, and Q̄ is defined as Qσk by

replacing τs by min{tF − kτs|k ≥ 0, tF − kτs > 0}.
III. ROLLOUT STRATEGIES

We start by showing how to compute the cost (11) for a
periodic base policy in Section III-A, and then we present the
scheduling protocol that a rollout strategy with this periodic
base policy leads to in Section III-B. In Section III-C we
discuss this rollout strategy.
A. Base Policy
To define a periodic protocol, we consider a set of h

consecutive scheduling decisions σk denoted by

(v0, . . . , vh−1), (13)

where v# ∈ M, # ∈ H, H := {0, 1, . . . , h − 1}, which are
periodically repeated as explained next. If we let )k*h denote
the remainder after division of k by h, we have

σk = θκk , k ∈ K, (14)

where
θκk := v#k+κ$h , k ∈ K, (15)

for some κ ∈ H that characterizes the initial condition of the
periodic scheduling θκk . We make the following assumption.
Assumption 1: We assume that the base policy (14), (15)

is such that the system (9) is asymptotically stable when σk

is given by (14), (15), with kF = ∞, i.e., we assume that
the matrix Avh−1 . . . Av1Av0 has all its eigenvalues inside
the unit disk.
As usual, by asymptotic stability we mean that the state

of (9) converges to zero xk → 0 when k → 0, for any initial
condition x0.
The following proposition summarizes how to compute

the cost of the periodic policy.
Proposition 2: Suppose that Assumption 1 holds and sup-

pose that kF > h. Then, the cost (11) is given by

Jbase,κ(x0) := xᵀ
0(Pκ + P̄κ(kF , 0))x0,

where {Pκ,κ ∈ H} is the unique solution to
Pκ = Aᵀ

vκP#κ+1$hAvκ +Qvκ , κ ∈ H, (16)

and

P̄κ(kF , 0) := Φ(kF , 0)
ᵀ(Q̄ − Pθκ

kF
)Φ(kF , 0),

Φ(kF , 0) := Aθκ
kF −1

. . . Aθκ
1
Aθκ

0
.

!

B. Rollout Policies
We propose to choose at each time the node to transmit

as the one that leads to optimal performance over a fixed
lookahead horizon, assuming that from then on a periodic
base policy is used. In other words, for each time iteration
#, 0 ≤ # ≤ kF − 1, the schedules

σ#,σ#+1, . . . ,σ#+H−1

are assumed to be free variables, where H denotes the length
of the lookahead horizon, while

σ#+H ,σ#+H+1, . . .

are fixed and follow a periodic policy as in (14) and (15).
The free scheduling variables are denoted by ν =
(ν0, . . . , νH−1), i.e.,

σk = νk−#, for k ∈ {#, . . . , #+H − 1} (17)

and the fixed scheduling variables can be written as

σk = θκk−(#+H), for k ∈ {#+H, . . . , kF − 1}. (18)

Note that at time # +H the base policy is assumed to start
at an initial schedule vκ, determined by κ. We consider that
κ ∈ H is also a decision variable, and the decision set is
denoted by I := MH ×H, i.e., (ν,κ) ∈ I. We also allow
for H = 0, in which case κ is the only decision variable.
The length of the lookahead horizon is a fixed constant, but
naturally needs to be adapted when the time iteration is close
to the terminal time iteration kF , i.e,

H(#) := min(Hc, kF − 1− #), (19)

where 0 ≤ Hc ≤ kF − 1 is a constant. The dependency
of H on # is omitted hereafter. The process is restarted at
each step, in a similar fashion as in Model Predictive Control
(MPC) [9].
We describe next a protocol which, as established in the

sequel, corresponds to the rollout algorithm just described.
We separate the cases H = 0 and H > 0. As in Proposi-
tion 2, we assume that the periodic base policy stabilizes the
networked control system.
Protocol 1: At each time iteration # take the scheduling

decision σ# as
σ# = w#

0, (20)

where:
(i) if H > 0, w#

0 is the first entry of the vector w# =
(w#

0, . . . , w
#
H−1) obtained from

(w#,κ#) = argmin(ν,κ)∈Ix
ᵀ
#Rν,κ,#x#, (21)

where

Rν,κ,# :=
H−1∑

m=0

Ψ(m, 0)ᵀQvmΨ(m, 0)+

Ψ(H, 0)ᵀ(Pκ + P̄κ(kF − (#+H), 0))Ψ(H, 0),

(22)

Ψ(m, 0) := Aνm−1 × · · ·×Aν1 ×Aν0 , Ψ(0, 0) = I , and
Pκ, P̄κ(kF − (#+H), 0) are described in Proposition 2.
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(ii) if H = 0, w#
0 = vκ̄" where

κ̂# = argminκ∈Hxᵀ
# (Pκ+P̄κ(kF −(#+H), 0))x#. (23)

!
As stated next, this protocol does in fact correspond to the

rollout algorithm described above, and it always outperforms
the corresponding periodic base policy. Let J rollout(x0) be the
cost (11) for the system (9) with initial condition x0 when
σk is chosen according to Protocol 1.
Theorem 3: The rollout scheduling algorithm (17), (18) is

determined by at each iteration # choosing σ# as described
in Protocol 1. Moreover,

Jrollout(x0) ≤ min
κ∈H

Jbase,κ(x0) (24)

for every initial condition x0 ∈ Rnx .
!

The fact that rollout strategies outperform the correspond-
ing base policy is a general property of these policies [8],
but, as explained in [8], it is typically hard to prove that (24)
holds with a strict inequality. It is also mentioned in [8] that
these policies typically largely outperform the corresponding
base policy in practice. We shall illustrate this performance
improvement with an example in Section V.

C. Discussion on Protocol 1
We provide next further important comments on Protocol 1

and Theorem 3, concerning: (i) the case where kF = ∞; (ii)
the full state knowledge assumption of the Protocol 1.
1) Conic state partition and stability (kF = ∞): It

follows from the Assumption 1, that Φ(r, 0) → 0, as
r → 0, and this implies in turn that P̄κ(r, 0) → 0, where
Φ(r, 0) and P̄κ(r, 0) are described in Proposition 2. Thus,
if kF = ∞, the scheduling law (20), (21) becomes time-
invariant, i.e., independent of #, depending only on x #, or
in other words, the rollout policy becomes stationary. Let
Sj , j ∈ {1, . . . , ny + nu)H × h} be an indexation of the
matrices Rv,κ obtained from eliminating the time-varying
dependency from Rv,κ,k by letting kF → ∞. Furthermore,
corresponding to this indexation, consider a map d 1 assigning
to each j ∈ M the corresponding first component ν0 of the
vector ν = (ν0, . . . , νH−1) of the matrix Rν,κ corresponding
to j. Then, we can write (20), (21) when kF = ∞ as

σ# = d1(j), (25)

where j is obtained from

j := argminj∈MD
xᵀ
#Sjx#. (26)

In this case, the scheduling depends only on the state (and
not on time #) and is determined by a zero-symmetric conic
state partition since the same schedule is applied for a state
x# and for αx#, where α ∈ R− {0}. The protocol (25), (26)
as the same structure of the quadratic protocols proposed
in [4], [5], and of the dynamic protocols proposed in [6], and
we shall discuss this relation in more detail in Section IV.
As stated in the next proposition the system (9) with

Protocol 1 when kF = ∞ is asymptotically stable, if the
matrices Qk, k ∈ K, are positive definite.

Proposition 4: Suppose that Assumption 1 holds, that
kF = ∞, and that Qk, k ∈ K, are positive definite. Then
the system (9) with Protocol 1 is asymptotic stable.

!
2) Full-State knowledge assumption: One difficulty in

implementing the protocol (25), (26) is that one needs to
assume that the full-state is known, which is only true in very
special cases. In the companion paper [7], using a different
problem formulation in which we aim at simultaneously
designing the protocol and the controller based on the data
transmitted over the network up to a scheduling decision
time t#, we are able to find a state estimator that comes out
naturally from the solution to the problem and which can be
implemented in a distributed way.

IV. CONNECTION WITH EXISTING PROTOCOLS

We start by addressing the connection between rollout pro-
tocols and Maximum Error First (MEF) protocols [1], [2] in
Section IV-A and then address the connection with dynamic
protocols [6] in Section IV-B.

A. Maximum Error First
A weighted version of the MEF protocols [1], [2], can

be described as follows. Consider a partition of the error
vector e defined in (27) into components e i ∈ Rsi , i ∈ M,
pertaining to node i, i.e.,

e = (e1, e2, . . . , enu+ny ), (27)

where ei := (ûi−ui), if i ∈ {1, . . . , nu}, and ei := (ŷi−nu−
yi−nu), if i ∈ {nu+1, . . . , nu+ny}. Then the MEF protocol
is defined by

MEF : σk = argmaxj∈Mejk
ᵀMje

j
k, k ∈ K, (28)

for some positive definite matrices Mj , j ∈ M. It is also
useful to define the round-robin protocol which is a periodic
protocol taking the form (14), (15) with

(v0, v1, . . . , vh−1) = (1, 2, . . . , nu + ny), h = nu + ny.
(29)

To establish a link between the rollout strategy and MEF
protocols we start by making the following assumption.
Assumption 5: Let h and v be defined by (29). Then,

we assume that there exists matrices Sκ, κ ∈ H, with the
following structure

Sκ =

[
X 0
0 Eκ

]
(30)

for positive definite matrices X ∈ R(n+nK)×(n+nK), and
positive definite matrices Eκ ∈ Rne×ne , κ ∈ H, such that

(Jv"κ+1#h
Ā)ᵀS#κ+1$hJv"κ+1#h

Ā−Sκ < 0, κ ∈ H. (31)

!
It can be shown that the existence of general positive

definite matrices Sκ, κ ∈ K, that satisfy (31) is a necessary
and sufficient stability condition for (9) to be asymptotically
stable when the nodes transmit in a round-robin fashion. The
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restriction (30) makes Assumption 5 stricter than assum-
ing asymptotic stability of (9) for a round-robin protocol.
However, as we state next this assumption is satisfied if the
sampling period τs in (10) is sufficiently small.
Proposition 6: There exists ε > 0, such that Assumption 5

holds for τs ∈ [0, ε), for X > 0 such that

Aᵀ
xxX +XAxx < 0, (32)

and for Eκ, κ ∈ H, such that

Λᵀ
v"κ+1#h

E#κ+1$hΛv"κ+1#h
− Eκ < 0, κ ∈ H. (33)

!
Note that there exists X > 0 such that (32) holds due to
the assumption that Axx is Hurwitz and, e.g., the following
matrices satisfy (33)

Eκ = diag(cκ1Is1 , . . . , cκhIsh), κ ∈ H,

where cκ := circκ([h h− 1 . . . 2 1]), κ ∈ H, and circj(a)
denotes a right circular shift of the vector a by j units, e.g.,
circ0([1 2 3]) = [1 2 3], circ1([1 2 3]) = [3 1 2].
The connection between rollout protocols and Maximum

Error First (MEF) protocols is summarized in the next
result. Under Assumption 5, we define the following positive
definite matrices

Q̄κ := Sκ − (Jv"κ+1#h
Ā)ᵀS#κ+1$hJv"κ+1#h

Ā, κ ∈ H.
(34)

Theorem 7: Suppose that Assumption 5 holds, let h and
v be defined by (29), and consider that kF = ∞. If the cost
matrices in (11) are given by

Qj = Jᵀ
j Q̄j−1Jj , j ∈ M, (35)

then a rollout policy with H = 0 and round-robin periodic
base policy yields the following protocol

σk = vk̄, (36)

where
k̄ = argmini∈HeᵀkΛ

ᵀ
viEiΛviek. (37)

In particular, when the number of nodes is equal to two, i.e.,
h = ny + nu = 2, one obtains the following MEF protocol

MEF : σk = argmaxj∈{1,2}e
j
k
ᵀMje

j
k, k ∈ K, (38)

for M1 = Λᵀ
2E2Λ2 and M2 = Λᵀ

1E1Λ1.
!

Proof: A rollout protocol with H = 0, with kF = ∞
and a round-robin base policy can be written as (23) where
the matrices Pκ, κ ∈ H, are obtained from (16). If (35)
holds, then the matrices Pκ, κ ∈ H that satisfy (16) and the
matrices Sκ, κ ∈ H that satisfy (34) are related by

Pκ = Jᵀ
vκSκJvκ , κ ∈ H. (39)

Replacing (39) in (23) when kF = ∞ we obtain (36), (37).
The last part of the theorem, follows by direct replacement.

B. Dynamic Protocols
To establish the connection between rollout protocols and

dynamic protocols [6] we need to define a class of base
policies, different from periodic. We consider the following
stochastic policies

Prob[ωk+1 = j|ωk = i] = µij , i, j ∈ MD

σk = d(ωk), k ≥ 0,
(40)

where ωk is a Markov Chain with mD > m states, MD :=
{1, . . . ,mD}, and d : MD → M is a map that assigns a
node to each state of the Markov chain. We shall be interested
in an infinite time interval, i.e., kF = ∞.
The system (9) with scheduling (40) is Mean Square Stable

(limk→∞ E[xᵀ
kxk] = 0, ∀x0) if and only if for every Q̂i > 0,

i ∈ MD, there exists Si > 0, i ∈ MD, such that
mD∑

j=1

µijA
ᵀ
d(i)SjAd(i) − Si = −Q̂i, ∀i ∈ MD (41)

(cf. [10]). If (41) holds then one can also conclude (cf. [10])
that for the system (9) with protocol (40), we have

JMC,κ(x0) = xᵀ
0Sκx0, κ ∈ MD (42)

where

JMC,κ(x0) := E[
∞∑

k=0

xᵀ
kQ̂ωkxk|ω0 = κ], κ ∈ MD. (43)

If we choose Q̂i, i ∈ MD as

Q̂i = Qd(i), i ∈ MD, (44)

for matrices Qj , j ∈ M, we can interpret (43) as the
expected value of a cost taking the form (11).
Using similar ideas to the ones presented in Section III to

obtain Protocol 1 we can obtain that a rollout policy with
H = 0 having this stochastic policy as the base policy is
described by

σk = d(argminj∈MD
xᵀSjx). (45)

Moreover, we can use the same arguments as in Theo-
rem 3 and Proposition 4 to obtain the following result. Let
Jrollout,MC(x0) denote the cost (11) for the system (9) with
initial condition x0 when σk is chosen according to (45).
Theorem 8: Suppose that the system (9) with schedul-

ing (40) is Mean Square Stable, and in particular, that there
exists positive definite matrices Sκ, κ ∈ MD such that (41)
holds for Q̂κ, κ ∈ MD, taking the form (44). Then

Jrollout,MC(x0) ≤ min
κ∈MD

JMC,κ(x0). (46)

for every initial condition x0 ∈ Rnx . Moreover, the sys-
tem (9) with protocol (45) is asymptotically stable.

!
One can confer that the protocol defined by (45) has

exactly the same structure of the dynamic protocols [6] which
are also synthesized under the assumption that there exists
matrices Sκ such that (41) holds for every Q̂j , 1 ≤ j ≤
mD. Actually the last part of Theorem (9) is a special case
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of [6, Th. 1].which is obtained using a different line of
reasoning.
Stochastic protocols have been proposed before in the

literature (cf. [11], [12]). Although we shall not discuss
in detail the relation with periodic protocols we state the
following result, which indicates that the appeal to consider
Markov Chain base policies may be limited.
Proposition 9: If there exists a scheduling taking the

form (40) that yields (9) Mean Square Stable, then there
also exists a periodic scheduling (14), (15) that yields (9)
stable.

!
V. ILLUSTRATIVE EXAMPLE

Consider a linearized model of an inverted pendulum

AP =

[
0 1
1 0

]
, BP =

[
0
1

]
, CP =

[
1 0

]
, DP = 0.

and a performance criterium
∫ ∞

0
(y(t)2 + û(t)2)dt. (47)

The continuous-time controller is taken as ŷ(t) = KxC(t)
where K =

[
−2.141 −2.197

]
is the optimal linear

quadratic regulator gains for the problem and xC(t) is a
state estimate obtained by the following observer

ẋC(t) = (AP + LCP +BPK)xC(t)− Ly(t)

with L =
[
−4.317 −4.316

]ᵀ. Plant and controller are
connected by a network, which allows transmissions at tk =
kτs, where the sampling period is given by τs = 0.1. The
plant sends measurements y(k1τs) to the controller, and the
controller sends the actuation values u(k2τs) to the plant
through the same exclusive network, i.e., k1 and k2 belong
to different sets whose union is N. Thus we wish to determine
at each transmission step whether to sample or to control.
Suppose that the initial conditions of the networked control
system are given by xP (0) = [1 0]ᵀ, xC(0) = [0 0]ᵀ,
e(0) = [0 0]ᵀ. The cost (47) (which can be written in
the form (11), (12)) of a base policy where controller and
sensor transmit in a round-robin fashion, i.e., σk has period
2, and the cost obtained with the rollout strategy described
in Theorem 3, with a lookahead horizon H = 3, are the
following

Periodic Rollout
4.835 3.850

We can see that the proposed rollout algorithm clearly
outperforms the base policy. Figure 1 plots the continuous-
time output signals from the plant and the controller, for both
rollout and base policies. The scheduling sequence obtained
with the rollout policy from time step k = 0 to k = 34 is
given by

s s ssaaaaaaaaasasasasasasasasassass a
k 0 1 2-33 34
where s stands for a sensor transmission and a for an actuator
transmission.
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Fig. 1. Measurement and Control

VI. CONCLUSIONS
In this paper we explored the use of rollout algorithms

for the scheduling problem in networked control systems.
One of the main advantage of using rollout strategies is that
they are never worse than the corresponding periodic strategy
used as a base policy. Moreover, we interpret existing as
rollout strategies for certain optimal problems. Simulation
results show that rollout algorithms can indeed significantly
outperform periodic protocol, while keeping computations
within reasonable limits.
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