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Frequency-Domain Analysis of Control Loops
With Intermittent Data Losses

Duarte Antunes and W. P. M. H. Heemels

Abstract—In this technical note, we propose a frequency-
domain analysis framework for control systems with data losses,
assumed to be statistically independent over time. Based on our
framework, the amplitudes of the mean and variance of the output
response to a sinusoidal input can be plotted as a function of the
input frequency, much like in the classical Bode plot. Analogously
to the classical analysis, this plot can be used for inferring the
behavior of the output response, characterized now by its mean
and variance, to an arbitrary input signal.

Index Terms—Data loss, frequency response methods, packet
drops, stochastic analysis.

I. INTRODUCTION

In several contexts, a real-time control loop is intermittently dis-
rupted by undesired events causing imperfect control updates. These
events include packet drops in wireless communication, task deadline
misses in shared processors, and outliers in sensor data, and can often
be modeled as data losses.

A common solution to cope with such losses is to use the most
recently received data as an estimate of the missing data. This solution
can be captured by a time-varying model and various methods are
available in the literature to analyze such models (see, e.g., [1]–[3]).
However, the majority of these methods rely on time-domain analysis.
Frequency-domain analysis is typically not an option in this context
since it is restricted to time-invariant systems (cf. [4]). As a result, for
a control loop with data losses it is not straightforward to reason about
the behavior of output responses to arbitrary input signals, which for
time-invariant systems is enabled by frequency response (Bode) plots.
One of the few works using frequency-domain ideas is [1], in which the
analysis is based on the power spectral density of the output response
to white noise. While this approach is useful to assert the impact of
stochastic disturbance inputs, it is not clear how to infer the output
response to deterministic inputs (e.g. reference signals).

Motivated by the relevance of frequency-domain analysis in engi-
neering practice, in this technical note we develop a frequency-domain
analysis framework for a time-varying model capturing lossy closed
loops in which the data losses are statistically independent over time.
Note that this is a reasonable assumption in many of the aforemen-
tioned contexts. Key to our approach is the observation that the maps
between the input of the loop and the statistical moments of the state
and of the output are time-invariant. Using this observation, we show
that the amplitudes of the mean and variance of the output response to
sinusoidal input signals can be plotted as a function of the input
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Fig. 1. Setup; P -plant, C-controller, ρt ∈ {0, 1}, and θt ∈ {0, 1} determine
if data losses occur at time t ∈ Z; H represents the hold scheme (3), (4), by
which the most recently received data is hold constant in case of a data loss.

frequency, similarly to the classical frequency response (Bode) plot.
Moreover, analogously to the classical analysis, this plot allows for
inferring the behavior of the output response, characterized now by its
mean and variance, to an arbitrary deterministic input. Interestingly,
the output mean can be exactly computed by a procedure which in-
volves replacing the lossy data links by first-order linear systems while
the ouput variance can be upper bounded by a graphical method. By
combining these results one can assert the influence of the bandwidth
of the input signal and of the data loss probabilities on the mean and
variance of the output response.

The technical note is organized as follows. Section II formulates the
problem, Section III presents the main results, and Section IV provides
an example. The focus is on a single-input single-output system with
data losses modeled as hold operators. Section V provides concluding
remarks, briefly discussing how to extend the ideas to other cases of
interest.

II. PROBLEM FORMULATION

Consider the feedback loop depicted in Fig. 1, where data losses can
occur in the links from the sensor to the controller and from the con-
troller to the actuator. The plant and the controller are assumed to be
described by the linear models

xt+1 = Axt +Bũt, yt = Cxt (1)

xc
t+1 = Acx

c
t +Bc(rt − ỹt), ut = Ccx

c
t +Dc(rt − ỹt) (2)

respectively, where xt∈Rnx and xc
t ∈Rnv denote the state of the plant

and of the controller at time t ∈ Z, respectively. Moreover, ũt ∈ R and
yt ∈ R are the input and the output of the plant at time t, respectively.
Similarly, et := rt − ỹt and ut ∈ R are the input and the output of the
controller at time t, respectively, where ỹt ∈ R is the latest received
output of the plant and rt ∈ R is the reference signal.

To cope with data drops in the link between the sensor and the
controller, we assume that the controller updates ỹt as a function of
yt according to the following hold scheme:

ỹt = (1− θt)ỹt−1 + θtyt (3)

for t ∈ Z, where θt equals one if the controller receives the output of
the plant at time t and zero if this data is lost. Similarly, to cope with
data drops in the link between the controller and the actuator of the
plant, we assume that the actuator updates the control input to the plant
according to

ũt = (1− ρt)ũt−1 + ρtut (4)
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for t ∈ Z, where ρt equals one if the actuator receives the output of the
controller at time t and zero otherwise. Note that the implementation
of this scheme is straightforward. In fact, the controller runs (2), (3)
based on the received output measurements {yt|θt = 1} and outputs
the control input ut at every time t; the actuator runs (4) based on the
controller output {ut|ρt = 1} and outputs the actuation values ũt at
every time t.

Let σt ∈ {1, 2, 3, 4} indicate which of the following data loss
possibilities occurred at time t:

(θt, ρt) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(0, 0) if σt = 1

(1, 0) if σt = 2

(0, 1) if σt = 3

(1, 1) if σt = 4.

Then, if we let ξt := (xt, x
c
t , ũt−1, ỹt−1), we can write

ξt+1 = Eσtξt +Hσtrt (5)

for every t∈Z, where Ei, for i∈{1, 2, 3, 4} is shown at the bottom of
the page. Note that (θt, ρt) = (θσt

, ρ
σt
). Moreover,

yt = Fξt, F := (C 0 0 0). (6)

The model is now completed by assigning probabilities to the occur-
rence of the data loss possibilities for which we adopt the following
assumption.

Assumption 1: For every t1 ∈ Z, t2 ∈ Z, t1 �= t2, σt1 and σt2 are
independent and identically distributed.

Under this assumption, the following probabilities do not depend
on time:

pi := Prob[σt = i], qθ := Prob[θt = 1], qρ := Prob[ρt = 1]

for every t ∈ Z, i ∈ {1, 2, 3, 4}.
Model (5) together with the probabilities pi, i ∈ {1, 2, 3, 4}, forms

a special case of a Markov jump linear system [5]. This model can
capture different scenarios of interest. For example, the case in which
the controller and sensors use a shared communication medium and
thus cannot transmit at the same time can be described by Prob[σt =
4] = 0. Another example is the case where they use two different
transmission channels. This includes the case where only one of the
channels is lossy, which can be captured by either Prob[σt ∈ {1, 2}] =
0 or Prob[σt ∈ {1, 3}] = 0.

While we are interested in the forced response of (5) to the input r, we
can consider the unforced response (rt=0, for all t ∈ Z) for a given
initial condition ξ0. We assume the following stability notion, typically
considered for unforced Markov jump linear systems (see [5]).

Assumption 2: We assume that the (unforced) system (5) with
rt = 0, for all t ∈ Z, is mean square stable, i.e., for every ξ0,
limt→∞ E[‖ξt‖2] = 0.

A necessary and sufficient condition to test mean square stability
is given below [see (19)]. Note that if the (unforced) system (5) is
mean square stable then ξt → 0 as t → ∞ with probability one (see
[5, Cor. 3.46]).

The problem addressed in this technical note is the computation
of the statistical moments of the output responses of the closed-
loop system (5) to a deterministic input r. We denote by r̂(z) :=∑∞

t=−∞ rtz
−t the z-transform of r and assume that r either belongs

to the class of signals with bounded energy, i.e.,
∑∞

t=−∞ |rt|2 < ∞,
or to the class of periodic bounded signals (power signals). While in
the former case the Fourier transform r̂(ejω) exists for ω ∈ [0, 2π) [6],
in the latter case r̂(ejω) is a generalized function described by

r̂(ejω) =
2π

T

T−1∑
k=0

vkδ

(
ω − 2πk

T

)
, ω ∈ [0, 2π) (7)

where T denotes the period, vk :=
∑T−1

t=0 rte
−j(2πk/T )t, and δ de-

notes the Dirac function [6]. A special case of a deterministic input is
the sinusoid

rt = �{vejωct} = |v| sin(ωct+ ψv) (8)

where v = |v|ejψv ∈ C is the complex amplitude, ωc ∈ [0, 2π) is the
frequency, and � denotes the imaginary part.

While we focus on the output y, we could also consider other
outputs such as the tracking errors y − r or ỹ − r.

III. FREQUENCY-DOMAIN ANALYSIS

In Sections III-A and B, we discuss how to compute the first and
second moments of the output response, respectively. Based on these
results, in Section III-C we define a frequency response plot and dis-
cuss how this plot allows for reasoning about the behavior of the output
response.

A. Expected Value

Although (5) is time-varying, the behavior of the expected values,
under Assumption 1, is governed by a linear time-invariant system as
we show next.

Theorem 1: Suppose that Assumptions 1 and 2 hold. Then

βt+1 = Ēβt + H̄rt, βt := E[ξt], t ∈ Z (9)

where H̄ :=
∑4

i=1 piHi, Ē :=
∑4

i=1 piEi, and the eigenvalues of Ē
lie inside the open unit circle. In particular, the z-transform of the
expected value of the output ŷ(z) :=

∑∞
t=−∞ E[yt]z

−t is given by

ŷ(z) = a(z)r̂(z) (10)

for z in the intersection of the regions of convergence of r̂(z) and a(z),
where a(z) := F (zI − Ē)−1H̄ . Moreover, if rt is a sinusoid (8), then

Ei :=

⎛
⎜⎜⎝
A− ρ

i
θiBDcC ρ

i
BCc (1− ρ

i
)B −ρ

i
(1− θi)BDc

−θiBcC Ac 0 −(1− θi)Bc

−ρ
i
θiDcC ρ

i
Cc (1− ρ

i
) −ρ

i
(1− θi)Dc

θiC 0 0 (1− θi)

⎞
⎟⎟⎠

Hi :=
(
ρ
i
(BDc)

� B�
c ρ

i
D�

c 0
)�

(θ1, ρ1) := (0, 0), (θ2, ρ2) := (1, 0)

(θ3, ρ3) := (0, 1), (θ4, ρ4) := (1, 1).
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E[yt] is a sinusoid described by

E[yt] = �
{
a(ejωc)vejωct

}
. (11)

Proof: Taking expected values on both sides of (5), we obtain

E[ξt+1] = E [Eσtξt] + E [Hσt ] rt. (12)

From (5), we conclude that ξt depends only on σs for s < t. Thus,
ξt is statistically independent of σt under Assumption 1 for each t ∈
Z. Then, E[Eσtξt] = E[Eσt ]E[ξt] = Ēβt, and (9) holds. Moreover,
Assumption 2 assures that (9) is a stable system in the sense that βt

converges to zero as t → ∞ for every initial β0, when the input r is
identically zero (or equivalently the eigenvalues of Ē lie inside the
open unit circle). This follows from the fact that E[ξi,t]2 ≤ E[ξ2i,t] for
every component ξi,t of ξt. Using standard arguments for linear time-
invariant systems (see, e.g., [4, Ch. 8] and [6, Ch. 10]), we can relate the
z-transforms of the input r̂(z) and of the expected value of the output
by (10), and conclude that (11) is the output response E[yt] = Fβt of
(9) to (8). �

Note that R := {z ∈ C| |z| > 1} is included in the region of
convergence of r̂(z) for the aforementioned input signals of interest.
Moreover, since a(z) is a rational function of z with roots coincid-
ing with the eigenvalues of Ē, its region of convergence includes
{z ∈ C| |z| > λ̄}, where λ̄ denotes the largest absolute value of the
eigenvalues of Ē (see [6, Ch. 10]), which must be smaller than 1 due
to Theorem 1. Thus, R is also in the region of convergence of a(z).

The next proposition provides a simple way of computing a(z)
when θt and ρt are independent. For d ∈ [0, 1], let

fd(z) :=
d

1− (1− d)z−1
.

Proposition 1: Suppose that Assumption 1 holds and that θt and ρt
are independent random variables for each t ∈ Z. Then

a(z) =
p̃(z)

1 + p(z)
(13)

where p(z) = fqθ (z)p̃(z) and

p̃(z) := C(zI −A)−1Bfqρ(z)
(
Cc(zI −Ac)

−1Bc +Dc

)
.

Proof: If θt and ρt are independent for each t ∈ Z, then we get
the equation (14), shown at the bottom of the page.

Then (13) is obtained by computing the transfer function (10) from r
to E[y] using (14). �

One can observe that (9), with matrices as in (14), describes a linear
time-invariant closed-loop system in which the lossy links associated
with θt and ρt are replaced by first-order systems given by fqθ (z)
and fqρ(z), respectively. We can then use this result to compute
expected values of other output responses. For example, we can obtain
ê(z) = (1/(1 + p(z)))r̂(z), where ê(z) :=

∑∞
t=−∞ E[et]z

−t. Note
the resemblance of this expression and of (10) and (13) with similar
expressions in the context of frequency-domain analysis for linear
time-invariant systems [4], which are recovered when there are no

data losses (qρ = qθ = 1). For example, ê(z) is related to r̂(z) by a
function which plays the role of a sensitivity function.

B. Variance

The variance of the output is given by

var(yt) := E
[
(yt − E[yt])

2
]
= E

[
y2
t

]
− E[yt]

2. (15)

The second term in this expression can be obtained by squaring the
inverse z-transform of (10). To compute the first term, we start by
noticing that

E
[
y2
t

]
= Gζt (16)

where G := F ⊗ F , ⊗ denotes the Kronecker product, ζt := E[ξt ⊗
ξt], and we used the fact that

(A⊗B)(C ⊗D) = (AC)⊗ (BD) (17)

for matrices with compatible dimensions. From (5), we obtain

ζt+1 = Mζt + Lβtrt +Nr2t (18)

where

M :=
4∑

i=1

piEi ⊗Ei, N :=
4∑

i=1

piHi ⊗Hi

L :=

4∑
i=1

pi(Ei ⊗Hi +Hi ⊗ Ei)

and we used again (17) and similar arguments as the ones used in
the proof of Theorem 1 under Assumption 1. One can show that
Assumption 2 is equivalent to

r(M) < 1 (19)

where r denotes the spectral radius (see [5]).
Contrarily to the equation describing the first moment (9), the

system (18) depends non-linearly on the input rt, t ∈ Z. Yet, as we
show next, we can (i) exactly characterize the solution to (18), and
thus compute (15), when r is a sinusoidal input, described by (8); and
(ii) use this fact to provide a bound for the variance (15) to an arbitrary
input signal characterized by its Fourier transform r̂(ejω), ω ∈ [0, 2π).

Theorem 2: Suppose that Assumptions 1 and 2 hold and let y be the
output response (6) of (5) to the input (8). Then

var(yt) = b(ejωc)|v|2 −

{
c(ejωc )v2e2jωct

}
(20)

for every t ∈ Z, where, for z ∈ C

b(z) :=
1

2


{
G(I −M)−1

(
N+L(zI−Ē)−1H̄

)}
− |a(z)|2

2

c(z) :=
1

2
G(z2I −M)

−1 (
N + L(zI − Ē)−1H̄

)
− a(z)2

2

and 
 denotes the real part. Moreover, b(1) = c(1) = 0 and b(−1) =
c(−1), and thus var(yt) = 0 for every t ∈ Z when ωc = 0 and when
ωc = π.

Ē =

⎛
⎜⎜⎝
A− qρqθBDcC qρBCc (1− qρ)B −qρ(1− qθ)BDc

−qθBcC Ac 0 −(1− qθ)Bc

−qρqθDcC qρCc (1− qρ) −qρ(1− qθ)Dc

qθC 0 0 (1− qθ)

⎞
⎟⎟⎠

H̄ =
(
qρ(BDc)

� B�
c qρD

�
c 0

)�
(14)
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Fig. 2. Frequency response of mean and variance, qρ = 0.8.

Theorem 3: Suppose that Assumptions 1 and 2 hold and let y be the
output response (6) of (5) to a reference input r with Fourier transform
r̂(ejω), ω ∈ [0, 2π). Then, for r with bounded energy, it holds that

var(yt) ≤
2

π

π∫
0

(∣∣b(ejω)∣∣+ ∣∣c(ejω)∣∣) ∣∣r̂(ejω)∣∣2 dω (21)

for every t ∈ Z. Moreover, for T -periodic r with Fourier transform (7),
it holds that

var(yt) ≤
4

T

�T
2 �∑

k=1

(∣∣b(ejωk)
∣∣+ ∣∣c(ejωk )

∣∣) |vk|2 (22)

for every t ∈ Z, where ωk := 2πk/T , the values vk are described after
(7), and �T/2� = (T/2)− 1 if T is even and �T/2� = (T − 1)/2 if
T is odd.

Note that (21) provides a constant bound for every time t ∈ N. In the
proof of Theorem 3, given in the Appendix, we obtain stricter bounds,
which depend on t (see Remark 4).

C. Reasoning in Terms of Frequency Response Plots

We propose to characterize the map between the input and the
mean and the variance of the output by: (i) a magnitude plot, which
consists of the following three graphs (ω, |a(ejω)|), (ω, |b(ejω)|),
(ω, |c(ejω)|) ω ∈ [0, π] and (ii) a phase plot, which consists of the
following two graphs (ω, arg(a(ejω))), (ω, arg(c(ejω))), ω ∈ [0, π],
where arg(a) denotes the argument of a ∈ C. Log-scales may be used
for convenience (see Fig. 2). Then, the following procedure allows to
obtain insights on the mean and the variance of the output response to
a reference r with bounded energy.

1) Multiply a(ejω) and r̂(ejω) and obtain the expected value of
the output by inverting the Fourier transform a(ejω)r̂(ejω), ω ∈
[0, 2π).

2) Multiply |r̂(ejω)|2 by |b(ejω)|+ |c(ejω)|, for ω ∈ [0, π], and
obtain a bound for the variance at every time step t ∈ Z by
computing (21). Graphically (see Fig. 4), the computation of
(21) amounts to plotting (|b(ejω)|+ |c(ejω)|)|r̂(jω)|2, for ω ∈
[0, π], and computing the average over frequency multiplied by
a factor 2.

The computation of the expected value is very close to the procedure
to compute the output response in the context of linear time-invariant
systems [4], which is a special case when there are no data losses (qθ =
qρ = 1). As for the variance, from Theorem 2 we know that the plots
of b(ejω) and c(ejω) are equal to zero for ω = 0. By continuity, b(ejω)
and c(ejω) are also close to zero for low frequencies. If we consider

Fig. 3. Time-responses for Tr = 10, qρ = 0.8.

Fig. 4. Computation of the bound for the variance.

a bandwidth limited input signal, then (|b(ejω)|+ |c(ejω)|)|r̂(jω)|2
will be approximately zero for very low and very high frequencies
(close to ω = π) and thus be concentrated in a given range of in-
termediate frequencies. Hence, increasing the bandwidth of the input
signal will in general lead to an increase in the variance of the output
response, the extent to which can be bounded by (21). Moreover, for a
desired frequency range for the input signal plotting b(ejω) and c(ejω)
for different values of the data loss probabilities one can infer how the
variance of the output response varies with these probabilities. Note that
for qθ = 1 and qρ = 1, b(ejω) and c(ejω) are zero for every ω ∈ [0, π].

From the expected value and the variance one can infer the behavior
of the sample paths of the output. In fact, from Chebychev’s inequality,
we conclude that, for α < 1

Prob [|yt − E[yt]| > α std(yt)] ≤
1

α2
, t ∈ Z (23)

where std(yt) :=
√

var(yt) denotes the standard deviation. One can
then use the bound (21) to provide a guarantee on the probability that
the output response is not far from its expected value.

IV. EXAMPLE

Let the plant be a double integrator described by the transfer function
1/s2 and the controller be described by the transfer function 10(s+
1)/(s+ 5). The plant and the controller are discretized at a sampling
period h = 0.05 with the zero-order hold invariant method [4] leading
to the matrices in (1) and (2). We consider that qρ = 0.8 and qθ = 1,
i.e., in the setup of Fig. 1 data losses occur only in the link between the
controller and the plant. We consider the following class of reference
inputs r defined in terms of the Hann function:

rt =

{
γ 1

2

(
1− cos

(
2πt
Tr

))
, t ∈ {0, 1 . . . , Tr}

0, otherwise
(24)

where γ is a normalization factor such that r has unitary energy, i.e.,∑∞
t=−∞ r2t = 1.
Fig. 2 plots the frequency response of the mean and the variance

proposed in Section III-C. Fig. 3 plots the input for Tr = 10, a real-
ization of the output, and the expected value of the output. It also plots
two signals obtained by adding and subtracting the standard deviation
to the expected value. This is convenient since from Chebychev’s
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Fig. 5. Output variance as a function of Tr and qρ.

inequality (23), one can guarantee that the realizations at a given time
t ∈ Z lie in between these plotted offsets with respect to the expected
value multiplied by a factor α with probability larger than 1/α2.
The mean is obtained by running (9) for the input (24). The standard
deviation is obtained by running (18) for the input (24) and taking the
square root of (20). The obtained maximum standard deviation is given
by 0.0514.

The bound for the variance obtained from (21) is given by 0.05236
which corresponds to a standard deviation of 0.2288. Note that this
bound is within a factor 5 from the maximum value of the actual
standard deviation 0.0514. The computation of this bound is illustrated
in Fig. 4, considering linear scales. As mentioned in Section III-C we
start by computing |r̂(ejω)|2 and multiplying by |b(jω)|+ |c(jω)|.
The variance bound is obtained by computing the average value over
frequency and multiplying by 2.

On the right side of Fig. 5, we plot the maximum values of the
standard deviation of the output response to (24) and the bound (21)
as a function of the drop probability for Tr = 10. On the left, the same
plots are shown as a function of Tr for a no loss probability qρ = 0.8.
Increasing the bandwidth of the input signal (decreasing Tr) and
increasing the drop probability leads to a larger variance as expected
from the remarks in Section III-C. We conclude again that the bounds
are reasonably close to the values obtained by simulation.

V. DISCUSSION

In this work, we have shown that the maps between an input of a
closed-loop system with data losses and the statistical moments of the
state and output are described by time-invariant models, provided that
the losses are independent and identically distributed. Building upon
this fact, we proposed an analysis using the output mean and variance
frequency response, with similar features to the classical analysis for
time-invariant systems and similar advantages when compared to a
time-domain analysis. In fact, while a time-domain analysis allows
only to infer the behavior of the output response to a single input
by plotting (several) output realizations or the statistical moments,
a frequency-domain analysis provides a magnitude and phase plot,
invariant with respect to the input. As a result, such plots allows to
reason on the behavior of the output response to an arbitrary input.

The main ideas presented in this work can be extended to analyze
scenarios which can still be modeled by (5) for different dynamic
and input injection matrices. Such model can capture multiple-input
multiple-output (MIMO) linear plants, other deterministic inputs such
as a plant disturbance, or sensor noise, and other time-varying artifacts
in the control loop such as delays with arbitrary distributions. One can
also show that a different mechanism for handling data losses by which
ỹt and ũt are set to zero if data loss occurs in the associated link at time
t can be modeled by (5) and the proposed framework can be applied
(see [7]).

While we have opted to restrict our analysis to the first two mo-
ments, an analysis using higher-order moments can be pursued. In fact,
similarly to (18) we can write ζnt+1 := E[xt+1 ⊗ xt+1 ⊗ . . .⊗ xt+1︸ ︷︷ ︸

n

],

in terms of the products ζmt rn−m
t for m ∈ {0, 1, . . . , n}. As in

(16), we can write the output statistical moment E[yn
t ] in terms of ζnt

and exactly characterize their input response to a sinusoidal input.

APPENDIX

PROOF OF THEOREM 2

Under Assumptions 1 and 2, we conclude from Theorem 1 that the
expected value of the state response β to (8) is a vector of sinusoids
with frequency ωc and complex amplitudes w(ejωc)v, w(z) := (zI −
Ē)−1H̄ [cf. (9)], and E[yt] is a sinusoid with frequency ωc and
complex amplitude a(ejωc)v. Thus

E[yt]
2 =

1

2

(∣∣a(ejωc)
∣∣2 |v|2 − 


(
a(ejωc)2v2ej2ωct

))
βtrt =

1

2

(


{
w(ejωc)

}
|v|2 − 


{
w(ejωc)v2ej2ωct

})
r2t =

1

2

(
|v|2 − 
{v2ej2ωct}

)
. (25)

Since (18) is a linear system driven by the two inputs βtrt, and r2t ,
both with two pure sinusoidal components (with frequencies 0 and
2ωc) the output (16) will also be a sum of two sinusoids. Computing
the complex amplitudes of these sinusoidal components of E[y2

t ],
and replacing the resulting expression for E[y2

t ] and (25) in (15), we
obtain (20).

It is clear that b(1) = c(1) and b(−1) = c(−1) and thus var(yt) =
0 when ωc ∈ {0, π}; b(1) = 0 follows from:

var(yt) = b(1)|v|2 (1− cos(2ψv)) (26)

obtained by setting ωc = 0 in (20). For ψv = 0, i.e., rt = |v|, we con-
clude that var(yt) is identically zero. If we pick v �= 0, ψ′

v ∈ (0, π/4),
and v′ = v/ sin(ψ′

v) and make rt = |v′| sin(ψ′
v) = |v| then var(yt)

must also be identically zero, but (26) gives b(1)|v′|2(1− cos(2ψ′
v)),

which implies b(1) = 0.

PROOF OF THEOREM 3

Consider first a periodic r characterized by the Fourier transform
(7). We assume that the period T is odd (the proof for an even T
follows similar arguments). Then

rt =
1

T

T−1∑
k=0

vke
jwkt =

1

T

⎛
⎝v0 + 2

T−1
2∑

k=1


{vkejwkt}

⎞
⎠ (27)
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for every t ∈ Z. Let yk,t, k ∈ P := {1, . . . , (T − 1)/2} and y0,t de-
note the stochastic processes coinciding with the output response of the
closed-loop system to 
{vkejwkt} = �{vkjejwkt} and v0, respec-
tively. Then, from Theorem 2, we conclude that for each k ∈ {1, . . . ,
(T − 1)/2}

var(yk,t) = b(ejωk)|vk|2 + 

(
c(ejωk )v2ke

2ωkt
)

and var(y0,t) = 0, for every t ∈ Z. Moreover, due to the linearity
of the system, the response of the closed-loop system to (27) is a
stochastic process given by

yt =
1

T

⎛
⎝y0,t + 2

T−1
2∑

k=1

yk,t

⎞
⎠ . (28)

We fix t ∈ Z and define a one-to-one map μ : P → P which orders
the random variables yk,t by decreasing order of variance, i.e.,

var
(
yμ(�+1),t

)
≤ var

(
yμ(�),t

)
, � ∈

{
1, . . . ,

T − 1

2
− 1

}
. (29)

Using the Cauchy-Schwarz inequality, for � ≥ κ, �, κ ∈ P

R�κ ≤
√

var
(
yμ(�),t

)
var

(
yμ(κ),t

)
≤ var

(
yμ(κ),t

)
(30)

where R�κ := E[(yμ(�),t − E[yμ(�),t])(yμ(κ),t − E[yμ(κ),t])] (the de-
pendence of R�κ and μ on t is omitted). Then

var[yt] =E

⎡
⎢⎣
⎛
⎝ 1

T

⎛
⎝y0,t−E[y0,t]+2

T−1
2∑

�=1

(y�,t−E[y�,t])

⎞
⎠
⎞
⎠

2
⎤
⎥⎦

=
4

T 2

T−1
2∑

�=1

T−1
2∑

κ=1

R�κ

=
4

T 2

⎛
⎝T−1

2∑
�=1

⎛
⎝var

(
yμ(�),t

)
+ 2

T−1
2∑

κ=�+1

Rμ(�)μ(κ)

⎞
⎠
⎞
⎠

≤ 4

T 2

⎛
⎝T−1

2∑
�=1

(
1 + 2

(
T − 1

2
− �

))
var

(
yμ(�),t

)⎞⎠
(31)

≤ 4

T

T−1
2∑

�=1

var
(
yμ(�),t

)

=
4

T

T−1
2∑

�=1

b(ejω�)|v�|2 + 

(
c(ejω�)v2� e

2ω�t
)

≤ 4

T

T−1
2∑

�=1

(∣∣b(ejω�)
∣∣+ ∣∣c(ejω�)

∣∣) |v�|2 (32)

which is (22). To establish the second equality, we used the fact that
y0,t = E[y0,t] (since var(y0,t) = 0) for every t ∈ Z and to establish
(31) we used (30).

Consider now a signal r with bounded energy but also with finite
support, i.e., zero outside the interval t ∈ M := {−m, . . . ,m} for a
given m ∈ N. Let r̃t be a periodic signal with odd period T > 2m
which equals rt in the interval t ∈ T := {−((T − 1)/2), . . . , (T −
1)/2}. Let β̃t and ζ̃t denote the solutions to (9) and (18), respectively,
when r̃t is the input. It follows from the linearity and the stability of
(9) that maxt∈M |βt − β̃t| < εT , where εT → 0 as T → ∞. Since ζ̃t
is obtained by the solution of a linear system (18) with inputs β̃tr̃t and
r̃t one can also conclude that maxt∈M |ζt − ζ̃t| < τT , where τT → 0
as T → ∞. Then we conclude that the variance of the responses are
arbitrarily close as T → ∞. The variance for r̃ can be bounded by (22)
which is then also a bound for the variance of the response to r. More-
over since this bound (22) holds for every T > 2m it also holds if we
take the limit as T →∞. Note that vk= r̂(ejωk), ωk+1 − ωk = 2π/T ,
and then (22) is an approximation to the integral (21). This approxi-
mation converges as T → ∞ since the integrand in (21) is bounded
and infinitely differentiable. In fact, r̂(ejω) =

∑m
t=−m rte

−jωt is a
sum of bounded and differentiable functions of ω, and b(z) and c(z)
are rational functions of z = ejω , and differentiable and bounded
functions of ω since r(M) < 1, r(Ē) < 1 due to Assumption 2.

Consider now a general signal rt with bounded energy, and make
rt = zt + ut, zt = rt for t ∈ M, and zt = 0 otherwise, and ut = rt,
for t ∈ Z \M, ut = 0 otherwise. By linearity of the system yt =
yu,t + yz,t, where yu,t, yz,t are the output responses to u and
z, respectively. Since r has bounded energy,

∑∞
t=−∞ |ut|2 < εm

where εm → 0 as m → ∞. This implies that
∑∞

t=−∞ |E[yu,t]|2 < τm
and

∑∞
t=−∞ |var[yu,t]| < πm, where τm → 0, πm → 0 as m → ∞.

Then, since

var(yt) =var(yu,t) + var(yz,t)

+ 2E [(yz,t − E[yz,t]) (yu,t − E[yu,t])]

≤var(yu,t) + var(yz,t) + 2
√

var(yz,t)var(yu,t)

for each t ∈ Z we conclude that limT→∞ maxt∈Z |var(yt)−
var(yz,t)| = 0. Therefore, since (22) is a bound to var(yz,t) for
arbitrarily large T it is also a bound to var(yt).

Remark 4: Note that (31), (32) provide tighter bounds to the vari-
ance than (22), which depend on time t ∈ N. Similar bounds can be ob-
tained for the case of finite energy inputs.
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