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Abstract—While potential benefits of choosing the trans-
missions times in a networked control system based on state
or event information have been advocated in the literature,
few general methods are available that guarantee closed-loop
improvements over traditional periodic transmission strategies.
In this paper, we propose event-triggered controllers that
guarantee better quadratic discounted cost performance than
periodic control strategies using the same average transmission
rate. Moreover, we show that the performance of a method
in the line of previous Lyapunov based approaches is within
a multiplicative factor of periodic control performance, while
using less transmissions. Our approach is based on a dy-
namic programming formulation for the co-design problem of
choosing both transmission decisions and control inputs in the
context of periodic event-triggered control for linear systems. A
numerical example illustrates the advantages of the proposed
method over traditional periodic control.

I. INTRODUCTION
Event-triggered control (ETC) has emerged in recent years

due to the need to reduce the computation and communi-
cation burden in (networked) control systems. Traditional
digital control loops are designed under the premise that
measurement data is transmitted periodically to a controller
at a fixed rate, at which control values are also computed
and actuators updated. The premise of ETC is to balance the
need to transmit data and/or compute control laws with the
need to enforce closed-loop stability and performance.
One line of research on ETC [1]–[5] proposes transmis-

sions and control computations to be triggered only when
they are needed in order to guarantee (directly or indirectly)
a certain decrease condition for a Lyapunov function. In [1],
[2], this Lyapunov function is previously designed assuming
that communication links are ideal, and therefore it is guaran-
teed to decrease if transmissions occur sufficiently frequently.
In Periodic Event-Triggered Control (PETC) [3] a scheduler
periodically samples the plant and decides whether or not to
compute and transmit control data. The co-design problem
of synthesizing simultaneously the transmission triggering
rule and the controller is tackled in [4], [5]. Another line
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of research on ETC [6]–[10], formulates the event-triggered
problem in an optimal control framework in which the opti-
mization cost penalizes transmissions. An estimation average
cost problem was originally tackled in [6], and performance
bounds for approximate methods to the problem appeared
in [7], [8]. The works [9] and [10] concern the existence
of certainty equivalence controllers for finite-horizon control
problems with state and output observations, respectively.
See also [11].
In this paper, we follow the PETC approach and propose

a dynamic programming formulation for the co-design prob-
lem of choosing both the scheduling/transmission decisions
and the control inputs in the context of linear systems. We
propose event-triggered controllers that guarantee better or
equal quadratic discounted performance than periodic trans-
mission strategies using the same average transmission rate.
Our method is a variant of rollout strategies (see [12, Ch. 6])
described as follows. We consider a set of scheduling times
spaced by a scheduling period which is an integer multiple
of a baseline period at which transmissions are allowed to
occur. However, to reduce transmissions, only a subset of
possible transmission times are used. At scheduling times,
the transmission decisions and corresponding control inputs
within a scheduling period are chosen as the ones that would
minimize the cost if a periodic transmission strategy would
be used afterwards, which in general also only uses a subset
of possible transmission times. By imposing a limit on the
number of transmissions over the initial scheduling period
equal to the average number of transmissions of the periodic
strategy used in the construction of the method we assure
that both strategies have the same average transmission rate,
while we prove that our proposed strategy always performs
better or equal than the periodic strategy.
Another contribution of the present work is to show that

the performance of a Lyapunov based strategy in the line of
previous approaches [1]–[5] is within a multiplicative factor
(1 + θ) of periodic control discounted cost performance,
while using less transmissions. The positive parameter θ
allows to trade transmissions for performance. The key to
achieve this result, is to interpret existing event-triggered
control policies as in [1]–[5] as rollout sub-optimal strategies
for an optimal control problem that penalizes transmissions
proportionally to the running cost, i.e., a quadratic function of
the state and input. This differs from the problem formulation
in [6]–[10] in which transmissions are penalized with a
constant cost.
A numerical example considering a mass-spring system

demonstrates the performance improvements of our strategy
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in comparison to standard periodic strategies.
The remainder of the paper is organized as follows.

Section II formulates the problem considered in this paper.
Section III describes the new ETC method establishing our
main performance improvement result, while Section IV
gives a performance bound for a method related with
Lyapunov-based approaches. An illustrative example is given
in Section V while Section VI provides concluding remarks.
Notation : The transpose of a matrix A is denoted by

Aᵀ. The notation 0n×m indicates a matrix of zeros with n
columns and m rows, 0n denotes a vector with n zeros, and
In denotes the identity matrix of dimension n. Dimensions
are omitted when no confusion arises.

II. PROBLEM FORMULATION
Consider a continuous-time plant modeled by the follow-

ing stochastic differential equation

dxC = (ACxC +BCuC)dt+Bωdω, xC(0)=x0, t∈ R≥0,
(1)

where xC(t) ∈ Rnx is the state, uC(t) ∈ Rnu is the control
input and ω is an nw dimensional Wiener process with
incremental covariance Inwdt (cf. [13]); the pair (AC , BC)
is assumed to be controllable. Performance is measured by
the following discounted cost to be minimized

E[
∫ ∞

0
e−αCtgC(xC(t), uC(t))dt], (2)

where gC(x, u) := xᵀQCx + uᵀRCu, for positive semi-
definite matrices QC and RC , and αC ∈ R≥0. The pair
(AC , Q

1
2
C) is assumed to be observable. For the undiscounted

case αC = 0 we assume that (1) is not driven by disturbances
(Bω = 0) since otherwise (2) would be unbounded.
We assume that a scheduler-controller pair is collocated

with the plant sensors and that it is connected to the actua-
tors by a communication network. The scheduler-controller
periodically samples the state of the plant xC and decides
whether or not to compute and transmit control and mea-
surement data over a network to the actuators. Denote the
sampling times by tk, k ∈ N0, spaced by a baseline period
τ , i.e., tk = kτ , k ∈ N0. Assuming that the actuation is
held constant between sampling times and that there are no
transmission delays we have

uC(t) = uC(tk), t ∈ [tk, tk+1).

Let {σk|k ∈ N0} be the transmission scheduling sequence
defined as

σk :=

{
1, if a transmission occurs at tk,
0, otherwise.

Moreover, let xk := xC(tk), ûk := uC(tk), ξk := (xk, ûk),
and uk be the control input sent by the controller to the
actuators at times tk, k ∈ N0, that satisfy σk = 1, and
uk := 0nu at times tk, k ∈ N0, that satisfy σk = 0. Then,
we can write

ξk+1 = Aσkξk +Bσkuk + wk, k ∈ N0, (3)

where

Aj :=

[
Āτ (1− j)B̄τ

0 (1− j)I

]
, Bj :=

[
jB̄τ

jI

]
, j ∈ {0, 1},

Āτ := eACτ , B̄τ :=
∫ τ
0 eACsdsBC , and {wk|k ∈ N0} is a

sequence of zero-mean independent Gaussian vectors with
covariance E[wkw

ᵀ
k ] = Φw

τ , ∀k ∈ N0, where

Φw
τ :=

[
Φ̄w

τ 0
0 0nu×nu

]
, Φ̄w

τ :=

∫ τ

0
eACsBωB

ᵀ
ωe

Aᵀ
Csds.

The expression for Φw
τ can be obtained from the arguments

provided in [13, p. 82-85]. We assume that τ is non-
pathological (see [14, p. 45]), and therefore the pair ( Āτ , B̄τ )
is controllable.
We are interested in a co-design problem of finding a

policy, i.e., a set of functions

π = {(µσ
0 (I0), µ

u
0 (I0)), (µ

σ
1 (I1), µ

u
1 (I1)), . . . , },

for jointly designing the scheduling and control inputs

(σk, uk) = (µσ
k (Ik), µ

u
k(Ik)), k ∈ N0,

based on the information available to the scheduler-controller
at time tk,

Ik := {ξ%,σ%|0 ≤ ( < k} ∪ {ξk}, k ∈ N0.

By keeping track of previous data in Ik, the scheduler-
controller can, e.g., make decisions based on the number
of previous transmissions up to time tk or based on previous
state values. The possible scheduling and control inputs
belong to the set Uk(Ik), i.e., (µσ

k (Ik), µ
u
k(Ik)) ∈ Uk(Ik),

k ∈ N0, where

Co-design: Uk(Ik) =
(
{0}× {0nu}

)
∪
(
{1}× Rnu

)
,

but our results can also be adapted to an emulation frame-
work (see, e.g., [1], [3]), in which the control policy is fixed
to a static state feedback law uk = Fxk for k ∈ N0 that
satisfy σk = 1, by considering

Emulation: Uk(Ik) =
(
{0}× {0nu}

)
∪
(
{1}× {Fxk}

)
.

The discounted cost (2) for policy π can be shown to be
given, apart from an additive constant term, by

Jπ(ξ0) := E[
∞∑

k=0

αk
τg(ξk, µ

u
k(Ik), µ

σ
k (Ik))], (4)

where ατ := e−αCτ , g(ξ, u, j) := ξᵀQjξ+2ξᵀSju+uᵀRju,
and, for j ∈ {0, 1},

Qj :=

[
Q̄τ (1− j)S̄τ

(1− j)S̄ᵀ
τ (1 − j)R̄τ

]
, Sj :=

[
jS̄τ

0

]
, Rj :=jR̄τ ,

where
[
Q̄τ S̄τ

S̄ᵀ
τ R̄τ

]
:=

∫ τ

0
e

[
AC BC
0 0

]ᵀ
s
[
QC 0
0 RC

]
e

[
AC BC
0 0

]
s
ds.

We omit the dependency of Jπ on ξ0 and for two policies π
and ρ we use Jπ ≤ Jρ to denote Jπ(ξ0) ≤ Jρ(ξ0) for every
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ξ0 ∈ Rnx+nu . The average transmission rate of policy π is
defined as

Rπ :=
1

τ
lim sup
K→∞

1

K
E[

K−1∑

k=0

µσ
k(Ik)]. (5)

A typical event-triggered control policy depends on some
parameter, denoted here by γ, which allows to tune the trade-
off between average transmission rate and performance (see,
e.g, [1], [9]), and can therefore be considered a family of
policies πγ rather than a single policy. Consider the curve in
the plane

(Rπγ , Jπγ ), (6)

parameterized by γ belonging to [γ, γ̄] such that Rπγ lies
in a region of interest [R, R̄]. For example, the traditional
periodic strategy can be parameterized by γ = τ and,
under the observability and controllability assumptions for
the problem stated above, is described by (cf. [12], [13])
πτ = {(µσ

τ,0, µ
u
τ,0), (µ

σ
τ,1, µ

u
τ,1), . . . },

(µσ
τ,k(Ik), µ

u
τ,k(Ik)) = (1, K̄τxk), k ∈ N0,

where

K̄τ := −(R̄τ + ατ B̄
ᵀ
τ P̄τ B̄τ )

−1(ατ B̄
ᵀ
τ P̄τ Āτ + S̄ᵀ

τ ), (7)

and P̄τ is the unique positive semi-definite solution to the
algebraic Ricatti equation

P̄τ = ατ Ā
ᵀ
τ P̄τ Āτ + Q̄τ−

(ατ Ā
ᵀ
τ P̄τ B̄τ+S̄τ)(R̄τ+ατ B̄

ᵀ
τ P̄τ B̄τ )

−1(ατ B̄
ᵀ
τ P̄τ Āτ+S̄ᵀ

τ ).
(8)

This policy yields a curve (6) described by

(
1

τ
, Jper,τ ), (9)

where
Jper,τ = xᵀ

0 P̄τx0 +
ατ

1− ατ
tr(P̄τ Φ̄

w
τ ). (10)

We are interested in finding a family of polices that
achieves a better trade-off performance versus average trans-
mission rate than traditional periodic control in the sense
that the corresponding curve (6) lies below the traditional
periodic curve (9). This can be expressed in terms of the
following problem statement.
Problem 1: Find a family of policies πγ for which the

following holds
Jπγ ≤ Jper,Rπγ

, (11)

for γ ∈ [γ, γ̄] such that the average transmission rate belongs
to a given region of interest Rπγ ∈ [R, R̄].

!

III. PROPOSED METHOD AND MAIN RESULT
Let T denote the set of transmission scheduling sequences

with m transmissions in the first h time steps, where h is
an integer multiple of m, and that corresponds to periodic
transmission with period q := h

m in the remaining time steps.
Formally, there are nT := h!

(h−m)!m! scheduling sequences

{σi
k|k ∈ N0} ∈ T , i ∈ M, M := {1, . . . , nT }, character-

ized by a set of schedules in the interval 0 ≤ k ≤ h − 1,
denoted by

νi = (νi0, . . . , ν
i
h−1) ∈ I, i ∈ M,

where I := {ν ∈ {0, 1}h|
∑h−1

k=0 νk = m} and for k ≥ h,
for all i ∈ M,

σi
k =

{
1, if k is an integer multiple of q,
0, otherwise.

Our proposed method is based on solutions to optimal
control subproblems in which the transmission scheduling
sequence is fixed and belongs to the set T . Hence we start by
describing the optimal control input policy that minimizes (4)
for a fixed scheduling sequence in T labeled by i ∈ M,
which can be derived by standard optimal control arguments
(cf. [12], [13]).
Let Pi be the first matrix Pi = W0,i of the backward

recursion

Wh,i =

[
P̄qτ 0
0 0nu×nu

]
,

Wκ,i = Fνi
κ
(Wκ+1,i), 0 ≤ κ ≤ h− 1,

where P̄qτ can be obtained from the solution to (8) (with τ
replaced by qτ ) and

F0(P ) := ατA
ᵀ
0PA0 +Q0,

F1(P ) := ατA
ᵀ
1PA1 +Q1

− (S1+ατA
ᵀ
1PB1)(R1+ατB

ᵀ
1PB1)

−1(ατB
ᵀ
1PA1+Sᵀ

1 ).

Then the optimal control input policy for the scheduling
sequence {σi

k|k ∈ N0} is described in the interval 0 ≤ κ ≤
h− 1 by

uk =

{
Kk,ixk, if νik = 1,

0nu , otherwise,

where for 0 ≤ κ ≤ h− 1 such that ν i
k = 1,

Kκ,i :=−(R1 +ατB
ᵀ
1Wκ+1,iB1)

−1(ατB
ᵀ
1Wκ+1,iA1 +Sᵀ

1 ),
(12)

and for k ≥ h,

uk =

{
K̄qτxk, if k is an integer multiple of q,
0nu , otherwise.

This policy yields the following discounted cost (4)

ξᵀ0Piξ0 + ci + b, i ∈ M, (13)

where b := αh
ταqτ

1−αqτ
tr(P̄qτ Φ̄w

qτ ) and

ci :=
h∑

κ=1

ακ
τ tr(Wκ,iΦ

w
τ ), i ∈ M.

The proposed ETC method, described next, finds at each
scheduling time the scheduling sequence in T that would
optimize (4) if this scheduling sequence would be used
thereafter along with a corresponding optimal policy for the
control input.
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Algorithm 2: (i) At scheduling times ( = jh, j ∈ N0,
choose the scheduling sequence from the set T , labeled
by ι ∈ M, that would lead to the smallest cost (4) if this
fixed scheduling was used from time ( = jh onwards
and an associated optimal policy was chosen for the
control input, i.e., choose

ι(ξ%) = argminr∈Mξᵀ% Prξ% + cr. (14)

(ii) For times jh ≤ k < (j + 1)h pick the schedules σk =
νι(ξ%)k−jh and the control inputs

uk =

{
Kk−jh,ι(ξ%)xk, if σk = 1,

0, otherwise,

and repeat (i) and (ii) at time (j + 1)h.
!

In the terminology of Section II, Algorithm (2) corre-
sponds to a family of policies parameterized by τ and
described by ρτ = {(µσ

τ,0, µ
u
τ,0), (µ

σ
τ,1, µ

u
τ,1), . . . },

(µσ
τ,k(Ik), µ

u
τ,k(Ik)) = (ν

ι(ξjh)
k−jh ,Kk−jh,ι(ξjh)xk),

jh ≤ k < (j + 1)h, j ∈ N0.
(15)

It is clear, from construction of Algorithm (2), that this policy
yields an average transmission rate (5) equal to 1

qτ . The next
result establishes that this policy performances better (or at
least equally well) than the traditional periodic strategy with
a corresponding transmission rate 1

qτ , and hence this policy
provides a solution to Problem 1. Let Jρτ , denote the cost (4)
for policy ρτ .
Theorem 3: The following holds for every τ ∈ R>0

Jρτ ≤ Jper,qτ . (16)

!
Note that Theorem (3) does not guarantee a strict per-

formance improvement in (16) for our proposed method.
However, this is typically the case in practice as we shall
illustrate in the example of Section V.

IV. LYAPUNOV BASED STRATEGY

In Section IV-A we review a Lyapunov Based ETC
approach which can be found in [3] and which follows the
line of work of [1]. We relate it to a suboptimal strategy for
a special dynamic programming problem in an emulation
context. We then adapt these ideas in Section IV-B to a
co-design context providing another triggering rule with
guaranteed discounted cost.

A. Lyapunov Based Approach in an Emulation Context

In the framework of Section II, we consider a noise free
plant (Bw = 0), an emulation based approach, and the
undiscounted case αC = 0. Let ek := ûk−1 − Fxk, k ∈ N0,
û−1 := 0nu , and zk := [xᵀ

k eᵀk]
ᵀ. Then,

xk+1 = (Āτ + B̄τF )xk + (1− σk)B̄τek. (17)

For a given τ , we assume that (Āτ + B̄τF ) is Schur, which
is equivalent to the following condition: for every Q ( 0
there exists P ( 0 such that

(Āτ + B̄τF )ᵀP (Āτ + B̄τF )− P = −Q. (18)

We pick a matrix Q ( 0 for which a matrix P ( 0 is
obtained. If we define a Lyapunov function

V (x) := xᵀPx, (19)

we obtain that (18) is equivalent to the following condition

∀xk∈Rn , V (xk+1)− V (xk) = −xᵀ
kQxk, (20)

when σk = 1. Suppose that in order to reduce transmissions,
we are willing to loose some of this guaranteed decrease of
this Lyapunov function by relaxing (20) to

V (xk+1)− V (xk) ≤ −ηxᵀ
kQxk, (21)

for some 0 < η < 1. Then, the scheduler should only demand
a control update if (21) is not met when σk = 0, which,
using (17), (18), is equivalent to

(σk, uk) =

{
(1, Fxk) if h(zk) > 0

(0, 0nu) otherwise
, (22)

where, for z ∈ Rnx+nu ,

h(z) := zᵀ
[

−(1− η)Q (Āτ + B̄τF )ᵀPB̄τ

B̄ᵀ
τP (Āτ + B̄τF ) B̄ᵀ

τPB̄τ

]
z.

One can easily check that the condition h(zk) ≤ 0, which
means that (21) holds, is implied by ‖ek‖ ≤ r‖xk‖ for
sufficiently small r > 0, which is a simple condition often
associated with ETC (cf. [1]). Moreover, noticing that we
can pick α > 0 such that Q ( αP , we have that ĥ(zk) > 0
implies that h(zk) > 0, where

ĥ(z) := zᵀ
[

−(1− η)αP (Āτ + B̄τF )ᵀPB̄τ

B̄ᵀ
τP (Āτ + B̄τF ) B̄ᵀ

τPB̄τ

]
z.

Condition ĥ(zk) > 0 matches one of the triggering condi-
tions provided in [3].
We reinterpret triggering rule (22) as a suboptimal policy

to a problem of minimizing a cost similar to (4), which can
be described as follows. At each time step t%, tk+1 − tk =
τ , k ∈ N0, the scheduler decides to transmit or not based
on which decision would lead to the smallest cost, if from
then on the scheduler would decide to transmit at every time
step tk, k > (. This can be seen as a rollout policy similar
to Algorithm 2 with a unitary decision horizon h = 1 and
with a different set of scheduling options I = {0, 1}. Since
this set of scheduling options does no longer impose rate
constraints we encourage the scheduler to save transmissions
by penalizing them in (4) proportionally to the running cost

g(ξ, u, j) = (1 + θj)
(
ξᵀQjξ + 2ξᵀSju+ uᵀRju

)
. (23)

In this section, to directly relate this approach with the
Lyapunov based approach we consider a simpler cost

g(ξ, u, j) = (1 + θj)xᵀQx (24)
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where Q is the matrix choosen in (18), and consider (23)
only in the next section.
Using (18), we can conclude that the cost (4), (24) for

the policy (σk, uk) = (1, Fxk), ∀k ∈ N0, is given by
(1 + θ)xᵀ

0Px0. Thus, at time ( the cost of option σ% = 1
(assuming that from this iteration onwards transmissions
occur at every time step) is given by

h1(z%) = (1 + θ)xᵀ
%Px%

whereas the cost of option σ% = 0 is given by

h0(z%) = xᵀ
%Qx%+

((Āτ + B̄τF )x%+B̄τe%)
ᵀ(1+θ)P ((Āτ+B̄τF )x%+B̄τe%).

Thus, the rollout policy described above boils down to

(σk, uk) =

{
(1, Fxk), if h1(zk) < h0(zk)

(0, 0nu), otherwise.
(25)

If we make
1

1 + θ
= η, (26)

we obtain, using (17), (18), that

h1(zk) < h0(zk) ⇔ h(zk) > 0

and therefore (25) is equivalent to (22).
Condition (26) has the following interpretation. If the

penalty on transmissions θ is close to zero then η is close
to one, and (21) may be rarely satisfied when σk = 0,
which means that we may expect many transmissions. On
the other hand, if we significantly penalize transmissions by
making θ large then η is close to zero and (22) may be often
satisfied when σk = 0, which means that we may expect less
transmissions.

B. Co-design with Performance Guarantees
We adapt the interpretation given in Section IV-A for

the Lyapunov based strategy (22) to generalize it to a co-
design context in the general framework of Section II, i.e.,
we allow for the plant (1) to be disturbed by white noise and
consider a general αC ≥ 0. To this effect, we consider that
at each time step t%, the scheduler-controller pair decides to
transmit or not based on which decision would lead to the
smallest cost, if from then on the scheduler would decide to
transmit at every time step tk, k > (, and an optimal control
policy would be used for the control input. Considering
cost (4), (23), the decision of transmitting σ% = 1 yields
a cost proportional to (10), which is given by

f1(ξ%) := (1 + θ)xᵀ
% P̄τx% + a

where a := (1 + θ) ατ
1−ατ

tr(P̄τ Φ̄w
τ ) and the corresponding

control input is given by

uk = K̄τxk.

where K̄τ is described by (7). The decision of not transmit-
ting σ% = 0 (and transmitting for j ≥ () yields the cost

f0(ξ%) := xᵀ
% Q̄τx% + 2xᵀ

% S̄τ û% + ûᵀ
% R̄τ û%

+ (Āτx% + B̄τ û%)
ᵀ(1 + θ)ατ P̄τ (Āτx% + B̄τ û%) + a.

Thus, this policy can be described by

(σk, uk) =

{
(1, K̄τxk), if f1(ξk) < f0(ξk)

(0, 0nu), otherwise.
(27)

Note that although (27) takes a similar form to the policy
obtained in the emulation context (25), here the gain K̄τ

in (27) is uniquely defined, whereas in an emulation context
the gain F can be taken as any gain that yields the closed-
loop stable.
The next theorem gives a bound on the performance of

this strategy. Let Jδτ denote the cost (4) (without penalizing
transmissions) of the family of policies (27), parameterized
by τ .
Theorem 4: The following holds for every τ ∈ R>0

Jδτ ≤ (1 + θ)Jper,τ . (28)

!
Note that contrarily to the policy provided by Algorithm 2

we do not quantify the average transmission rate of pol-
icy (27). We can only state that, by construction, it leads
to less transmissions than traditional periodic control with
rate 1

τ . Note also that Theorem 4 subsumes that the family
of policies (27) is parameterized by τ for a fixed θ, which
is different from parameterizing such policies by θ, while
keeping τ fixed.

V. EXAMPLE
Consider two unitary masses on a frictionless surface

connected by an ideal spring and moving along a one
dimensional axis. The control input is a force acting on the
first mass. The state vector is xC =

[
x1 x2 v1 v2

]ᵀ,
where xi, vi are the displacements and velocities of the mass
i ∈ {1, 2}, respectively, and the plant model (1) is described
by

AC =





0 0 1 0
0 0 0 1

−κm κm 0 0
κm −κm 0 0



 , BC =





0
0
1
0



 , (29)

where κm is the spring coefficient. We set the initial state to
x0 = [−1 1 0 0]ᵀ, meaning that the masses start with zero
velocity and at opposite distances from their equilibrium
values. We assume no disturbances act on the plant, i.e.,
Bω = 0. Consider the following performance index,

∫ ∞

0
x1(t)

2 + x2(t)
2 + 0.1uC(t)

2dt (30)

which takes the form (2) with αC = 0. The matrix AC

has two eigenvalues at zero and two complex conjugates
eigenvalues at ±

√
2kmi. We set km = 2π2, implying that

the sampling period must be different from pathological
sampling periods 0.5κ, κ ∈ N, so that the discretization
of the plant is controllable [14]. Fig. 1 plots the (normal-
ized) performance (30) obtained with the traditional periodic
control strategy and with the rollout strategy described by
Algorithm 2 with parameters h = 6, m = 2, q = 3,
for several values of the average transmission period qτ in
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Fig. 1. Comparison of ETC and periodic policies for mass-spring example

the range [0, 0.5]. The performance (30) is normalized with
respect to the optimal LQR performance achievable by a
continuous-time controller. For small average transmission
periods the methods perform very closely. In fact, periodic
control approaches the optimal performance (2) achievable
by a continuous-time controller when the sampling period
tends to zero (cf. [14]) so there is little room for improve-
ments. However, for larger transmission periods the rollout
strategy obtains significant performance improvements over
traditional periodic control.

VI. CONCLUDING REMARKS

We proposed a class of event-triggered strategies that
can guarantee better quadratic performance than traditional
periodic strategies. The key idea relies on a variant of rollout
algorithms [12]. It is interesting to note that the general
property of rollout algorithm discussed in [12, Vol 1,p. 341],
which states that rollout algorithms achieve a substantial
performance improvement over the base heuristics at the
expense of extra computation, can be translated into an ETC
context through our proposed method. In fact, our method
achieves performance improvements over traditional periodic
sampling (which plays the role of a base heuristic) at the
expense of extra computations for scheduling decisions.
Future work includes: (i) considering an average cost

(see [12]) instead of the discounted cost considered here;
(ii) output-feedback problem, in which only a subset of the
state variables are available to the scheduler-controller pair;
and (iii) non-Gaussian stochastic models for the disturbances
acting on the plant.
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