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Abstract— Given a partially observable Markov decision pro-
cess (POMDP) with finite state, input and measurement spaces,
and costly measurements and control, we consider the problem
of when to sample and actuate. Both sampling and actuation
are modeled as control actions in a framework encompassing
estimation and intervention problems. The process evolves
freely between two consecutive control action times. Control
actions are assumed to reset the conditional distribution of
the state given the measurements to one of a finite number
of distributions. We tackle the problem of deciding when
control actions should occur in order to minimize an average
cost that penalizes states and the rate of control actions. The
problem is first shown to boil down to a stopping time problem.
While the latter can be solved optimally, the complexity of the
optimal policy is intractable. Thus, we propose two approximate
methods. The first is inspired by relaxed dynamic programming,
and it is within an additive cost factor of the optimal policy.
The second is inspired by consistent event-triggered control and
ensures that the cost is smaller than that of periodic control
for the same control rate. We conclude that the latter policy
can deal with large dimensional problems, as demonstrated in
the context of precision agriculture.

I. INTRODUCTION

There are many control and estimation applications where
taking actions or intervening in an otherwise freely evolving
process is costly but necessary. Thus, the times of these
interventions must be carefully selected, possibly based
on available process information. For instance, in remote
monitoring, limited sensors can work as a proxy to detect
events that need to be confirmed by closer inspection and
eventually handled. This is the case in precision farming,
where diseases, water stress, nitrogen levels, or weed can be
inferred, to some extent, from a few sensors placed in the
field. However, costly farmer or (aerial) robot inspections are
required for complete situational awareness and handling.
For instance, in [1], [2], when to irrigate depends on soil
moisture and temperature sensors, and in [3], when to apply
nitrogen fertilizers depends on in-situ active-light reflectance
measurements. Similar challenges arise in queuing control,
predictive maintenance, stock trading, and home surveillance.

These and related problems have been studied in several
fields, primarily considering finite (or countable) state, input,
and measurement spaces, leading to partially observable
Markov decision processes (POMPDs). It is well-known that
these problems are intractable; thus finding appropriate (close
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to optimal) strategies remains challenging. In turn, much
research has recently been carried out on event-triggered
control (ETC) that concerns choosing the times to sample or
actuate in a control loop based on states or events rather than
periodically. Since in ETC, state, input, and measurement
spaces are typically continuous, the literature that considers
finite spaces is scarce. Still, [4], [5], and [6] aim at finding
control policies for POMDPs considering finite spaces that
depend on events, defined in terms of given state transitions;
events are pre-defined, whereas in many ETC papers [7]–
[10], as in the present paper, events are to be scheduled.
This latter approach is followed in a different research line
proposed in [11], [12] and [13], also considering POMDPs
with finite spaces. However, [11], [12] propose to decide the
next sampling (or control) time based on the information up
to the current sampling time and not in between the two; this
parallels self-triggered control. Differently, ETC, considered
here, continuously monitors the state or output of the process
to decide the next sampling or control time.

The present paper considers POMDPs with finite state,
input, and measurement spaces. Control actions model both
costly sampling through information gathering and costly
actuation through process intervention and are triggered at
only a subset of possible discrete times. The process evolves
freely in between control action times. Control actions are
assumed to reset the conditional distribution of the state given
the measurements to one of a finite number of distributions.
In this sense, the effect of control actions is known, and only
when control actions should be enforced is to be determined.
In fact, we tackle the problem of deciding when these control
actions should occur in order to minimize an average cost
penalizing state configurations and the number of control
actions. We show that the average cost problem can be
tackled as a stopping time problem. While an optimal policy
can be obtained for this latter problem, its complexity is
intractable. Thus, we propose approximate policies.

First, we propose a class of policies inspired by relaxed
dynamic programming (RDP) [14]. These policies guarantee
a cost within an additive constant factor of the cost of the op-
timal policy, rather than a multiplicative factor as in original
RDP [14]; this is needed for the stopping time problem at
hand since the cost can be negative. While the approximate
policy’s complexity is far smaller than that of the optimal
policy, and it provides nearly optimal results when the state
dimension is small, it becomes impractical when the state
dimension is large (see example in Section VI).

Second, inspired by [9], [10], we propose a class of
so-called consistent policies that lead to a strictly smaller
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cost than that of periodic inspection for the same average
inspection rate. The policies proposed here are different from
the ones in [9], [10], both in form and derivation, to account
for the case that the state probability distribution resets to
one of a set of possible distributions rather than a single one;
examples of applications where this arises are discussed.

The applicability of the results is highlighted by a nu-
merical case study in the context of precision farming. The
proposed policies rely on limited remote sensors indicating
weed presence to decide the timings of weed removal. Due
to space discretization the state dimension is rather large.
Unlike RDP, the policy inspired by consistent ETC can
handle problems with a large state dimension. This shows
that ideas inspired by the ETC literature can help determine
when to sample and actuate a POMDP.

The remainder of the paper is organized as follows.
Section II provides the problem formulation and some
applications. Section III provides the optimal policy and
explains the intractability issue. Sections IV and V provide
the approximate policies and main results based on RDP
and the consistent policies, respectively. Simulation results
are discussed in Section VI and concluding remarks in
Section VII. The proofs of the results are omitted.

II. PROBLEM FORMULATION

Consider a dynamical system

xt+1 = f(xt, ut, wt)

yt = h(xt, ut, vt)
(1)

where xt ∈ {1, 2, . . . , n}, ut ∈ {1, 2, . . . , nu}, yt ∈
{1, 2, . . . , ny}, wt ∈ {1, 2, . . . , nw}, vt ∈ {1, 2, . . . , nv} are
the state, control input, measurement, process disturbance
input, and measurement noise input at time t ∈ N0 :=
N ∪ {0}, respectively. The disturbance sequences {wt|t ∈
N0} and {vt|t ∈ N0} are assumed to be independent and
identically distributed disturbance sequences (i.i.d.), which
are also mutually independent. The fact that the output
in (1) depends on ut allows for tackling sensor management
problems [15]. Consider also the average cost

Js = lim
T→∞

1

T

T−1∑
t=0

E[g(xt, ut)], (2)

which exists under assumptions provided shortly. The control
rate is assumed to be costly, and thus ut can only be decided
upon at so-called control times s` ∈ N0, s`+1 = s`+τ`, with
τ` ∈ N, ∀` ∈ N0. For convenience, the intervals between
control times are assumed to be bounded: τ` ≤ h̄, ∀` ∈ N0.
Since h̄ ∈ N can be arbitrarily large, this assumption is not
restrictive. Let σt = 1 if s` = t for some ` and σt = 0
otherwise. We assume that s0 = 0 and, thus, σ0 = 1. Note
that {t ∈ N0|σt = 1} = {s`|` ∈ N0}. At times t = s`, a
sequence of current and future inputs U0|t, U1|t, . . . , Uh̄−1|t
is computed to be applied between control times s`, i.e.,

ut+j = Uj|t for j ∈ {0, . . . , τ`−1} when t = s` for some `.

Often there is one decision in the set ut = u ∈ {1, . . . , nu}
that corresponds to a free (not controlled) mode of the system

and Uj|s` = u for j ∈ {0, . . . , τ` − 1}. However, more
general cases can be considered.

The initial state probability distribution is denoted by
p̃0 = [p̃0,1 . . . p̃0,n]ᵀ with p̃0,i = Prob[x0 = i] and p̃0 ∈
Pn := {p = [p1 . . . pn]ᵀ|1ᵀnp = 1, pi ≥ 0,∀i}, where 1n
denotes a column vector with n entries equal to one. Let
also It = It−1 ∪ {yt, σt−1, ut−1} for t ∈ N with I0 =
{p̃0}∪{y0} denote the information available for decisions up
to time t and pt|t = [pt|t,1 . . . pt|t,n]ᵀ denote the probability
distribution of the state xt given the information set It, i.e.,
pt|t,i = Prob[xt = i|It], with pt|t ∈ Pn. Let pt+1|t be
defined similarly but with pt+1|t,i = Prob[xt+1 = i|It]. A
crucial assumption is that either pt|t or pt+1|t belongs to a
known set of b possible distributions, denoted by ρ1, . . . , ρb,
when actuation is computed (at control times). Note that b
does not depend on t. Formally:

Assumption 1: One of the following conditions holds

(i) ps`|s` ∈ {ρ1, . . . , ρb}, for every ` ∈ N0. (3a)
(ii) ps`+1|s` ∈ {ρ1, . . . , ρb}, for every ` ∈ N0. (3b)

Assumption 1(ii) captures applications where the state be-
comes either known or has a known probability distribution
at time t+1 (through map f ) when a control intervention on
the process is carried out at time t, while Assumption 1(i)
captures applications where the control actions at time t
influence measurements at time t through map h.

Let φ` ∈ {1, . . . , b} be such that ps`|s` = ρφ` or
ps`+1|s` = ρφ` , when Assumptions 1(i), 1(ii) hold respec-
tively (if both hold either choice for φ` can be picked).
We can define a Markov chain with b states and transition
probability matrix Q with entries Qij = Prob[φt+1 = i|φt =
j]. It is assumed to be ergodic, i.e., aperiodic and irreducible.
Thus, it has a stationary probability distribution.

Assumption 2: There exists a unique a ∈ Pb such that
a = Qa.

Due to this assumption, and since we are interested in an
average cost (2), we can assume that the initial distribution
of φ0 is a, i.e., Prob[φ0 = i] = ai, i ∈ {1, . . . , b}.

A third assumption imposes that the control sequence
Uj|s` only depends on φ`.

Assumption 3: Uj|s` = θ(j, φ`) for every j ∈ {0, . . . , h̄−
1}, every ` ∈ N0, and for a given function θ.

These assumptions are motivated by and met in the appli-
cations discussed below. Due to these assumptions, between
control times, the system evolves freely as

xt+1 = f(xt, ζt, φ`, wt), s` ≤ t ≤ s`+1 − 1,

where ζt = t − s¯̀(t),
¯̀(t) = max{`|s` ≤ t}, and

f(xt, ζt, φ`, wt) = f(xt, θ(ζt, φ`), wt). Likewise, letting
L(T ) = max{`|s` ≤ T −1}, the average cost is rewritten as

Js= lim
T→∞

1

T
E

L(T )−1∑
`=0

s`+1−1∑
t=s`

g(xt, ζt, φ`)+

T−1∑
t=sL(T )

g(xt, ζt, φL(T ))

 ,
(4)

with g(xt, ζt, φ`) = g(xt, θ(ζt, φ`)), and the output as yt =
h(xt, ζt, φ`, vt), s` ≤ t ≤ s`+1− 1, with h(xt, ζt, φ`, vt) =
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h(xt, θ(ζt, φ`), vt). Costly actuation is captured by defining
a cost that penalizes the average rate of control actions Jc :=
limT→∞

1
T

∑T−1
t=0 E[σt]. Then, minimizing

Jav = Js + δJc (5)

over different values of δ is equivalent to finding Pareto
optimal policies. Another interpretation for Jav is that the
actuation is actually costly, and noticing that the running
cost for Jav is g(xt, ut) + δσt. The goal is to find a policy

σt = µt(It), t ∈ N0, (6)

that minimizes Jav . Two applications are discussed next.
1) Remote estimation with costly transmission: Consider

a process described by a special case of (1)

xt+1 = f(xt, wt), yt = xt, (7)

which can equivalently be described by a transition matrix
P with entries Pij = Prob[xt+1 = i|xt = j], assumed to be
ergodic. Model (7) results from quantizing a process ξt+1 =
a(ξt, ωt) with ξt ∈ Rn and ωt i.i.d. disturbances, and state
xt labels one of n representative values ξi of the quantized
state variable ξt. Thus, there exists a labeling map π such
that ξi = π(i). The state is known to an agent who wishes to
send it to a remote estimator. Control times s` are understood
here in a broad sense as the times at which information is
sent to the remote estimator; σt ∈ {0, 1} determines when
information is sent (σt = 1) or not (σt = 0). Transmissions
are assumed to be expensive, e.g., due to battery limitations
on the sensor side. On the remote side, an estimator obtains
qt =

[
qt,1 . . . qt,n

]ᵀ ∈ Pn, qt,i = Prob[xt = i|Zt],
with Zt := {y`|0 ≤ ` ≤ t, σ` = 1}, and computes
ξ̂t := E[π(xt)|Zt] =

∑n
i=1 π(i)qt,i Note that, assuming

σ0 = 1, qt = δxt , if σt = 1, qt = P ζtδxt−ζt , if σt = 0,
where δi is the column vector of zeros except at position
i, where it equals 1. The running cost of an average cost
penalizes the difference between the state and the estimated
state ‖π(xt)−ξ̂t‖2. While (7) does not depend on the control
input ut we can use ut as a modeling variable to ensure we
can write (2) with this running cost. In fact, we can define

u1,t = Uζt|s` = xs` , u2,t = ζt, for s` ≤ t ≤ s`+1 − 1,

and ut ∈ {1, . . . , nu}, with nu = nh̄ to assign a unique
label to the pair (u1,t, u2,t) ∈ {1, . . . , n} × {0, . . . , h̄ − 1}.
Then ‖π(xt) − ξ̂t‖2 can be written as g(xt, ut) as ξ̂t are
functions of the state and control input since, when σt = 0,
qt = Pu2,tδu1,t and when σt = 1, qt = δxt . Moreover,
ps`|s` = δxs` ∈ {δ1, . . . , δn} belongs to a finite set, Uj|s`
are functions of φ` = xs` and j and ergodicity of Q follows
from ergodicity of P . The goal is to find a policy (6) for
when to apply control actions (send remote data) in order to
minimize (5) with the proposed running cost in Js.

2) Costly interventions based on limited data: Consider
a set of N discrete interdependent states xi ∈ {1, . . . , ni}
evolving in a free, or non-controlled, fashion according to

xi,t+1 = fi(x1,t, . . . , xN,t, wi,t), i ∈ {1, . . . , N}, (8)

when there are no control interventions (σt = 0), where
the disturbance inputs wi,t live in a finite set. At control or
intervention times (σt = 1) the state is reset to

x1,t+1 = α1, . . . , xN,t+1 = αN (9)

and cost δ is paid per intervention. Only a subset of states
is measured by M sensors. Each sensor j ∈ {1, . . . ,M},
depends on a subset of nj states Lj = {l1, . . . , lnj} with
lj ∈ {1, . . . , N}, yj = hj(xl1 , . . . , xlnj , vj), and where the
measurements yj ∈ {1, . . . , ny,j} might be corrupted by
noise vj , also living in a finite set. The running cost of an
average cost is

gA(x1,t, . . . , xN,t) =

N∑
i=1

gi(xi,t) (10)

In precision agriculture (see Section VI), each xi,t is a
binary variable representing if there is weed (xi,t = 2) in
a given subarea of a field at time t or not (xi,t = 1);
xi,t depends on neighboring states and only a subset of
subareas can be measured. At intervention times s` the weed
is completely removed, setting all the states to xi,s`+1 = 1,
∀i ∈ {1, . . . , N}. For some constant d, representing the cost
of having weed between t and t+ 1, gi(2) = d and gi(1) =
0 ∀i ∈ {1, . . . , N}.

For the general setting, we can find single variables
xt ∈ {1, . . . , n}, yt ∈ {1, . . . , ny}, n = n1 × · · · × nN ,
ny = ny,1 × · · · × ny,M to label all possible state and
output combinations and write the problem in the canonical
formula described above, see special case in Section VI. Here
pt+1|t = δα, when σt = 1, corresponding to xt+1 = α,
where α ∈ {1, . . . , n} is the label corresponding to (9),
and Assumption 1 is trivially met since Q corresponds to
a Markov chain with just one state. The control input ut
can be used to model the process evolution and in particular
the state reset (9), but it can also be omitted. The goal is
to find a policy for σt as a function of the information set
It = It−1 ∪ {yt, σt−1} for t ∈ N, with I0 = {y0} to
minimize (5) with the proposed running cost.

III. OPTIMAL POLICY

We start by providing a result that converts the average
cost problem to the following stopping time problem. Con-
sider (1) for t ∈ {0, 1, . . . , h̄}. The information available
to make a decision at time t ∈ {1, . . . , h̄} on either s1 =
τ0 ∈ {1, . . . , h̄} is equal to t or larger, is summarized in
p0|0 = ρφ0 , if (3a) holds, or in p1|0 = ρφ0 , if (3b) holds,
and in the measurements y1, y2, . . . , yt. Thus, we define the
information set H0

t = {φ0} ∪ {yκ|κ ∈ {1, . . . , t}}. Consider
the optimal stopping time problem for ` = 0 and s0 = 0:

Jstop = min
τ`

1

E[τ`]

(
E[

τ`−1∑
t=0

g(xs`+t, ζs`+t, φs`)] + δ

)
(11)

where τ0 is a stopping time with respect to the filtration
corresponding to the information set H0

t . In other words, the
event [τ0 = m] is a function of H0

m. Similarly, we can define
stopping times τ` with respect to the filtration corresponding
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to the information setH`r = {φ`}∪{ys`+1, ys`+2, . . . , ys`+r}
and consider an identical stopping time problem to (11) for
a general `. These problems are identical due to Assump-
tions 1, 2, 3 as stated next. These stopping times τ` define
the control times according to s`+1 = s` + τ`.

Lemma 1: Suppose that Assumptions 1, 2, 3 hold. Then
the optimal stopping time policies for problems (11) for ` ∈
N0 are identical in the sense that they take the form

τ` = min{r ∈ {1, . . . , h̄}|σs`+r = 1}
σs`+r = ξr(H

`
r), for every ` ∈ N0

(12)

for the same functions ξr, r ∈ {1, . . . , h̄}. Moreover, σt =
σs¯̀(t)+ζt with σs`+r given by (12) is also an optimal policy
for the average cost problem of minimizing (5) and Jav =
Jstop. Furthermore, the optimal policy for problem (11) when
` = 0 can be obtained by solving the stopping time problem

min
τ0

E[

τ0−1∑
t=0

(g(xt, ζt, φ0)− β)] + δ (13)

where β ∈ R≥0 is the largest value for which the optimal
solution to (13) results in a zero cost and is given by β = Jav.

�
The optimal policy and cost for problem (13) for a given

β can be obtained by the dynamic programming algorithm.
Let qt = [qt,1 . . . qt,n]ᵀ with qt,i = Prob[xt = i|H0

t ] and
ḡt = [g(1, t, φ0) . . . g(n, t, φ0)]ᵀ, t ∈ {0, . . . , h̄ − 1}, where
the dependence of ḡt on the given φ0 is omitted. Then, one
should iterate for t ∈ {h̄− 1, . . . , 0}

Jh̄(qh̄) = δ,

Jt(qt) = min{δ, qᵀt ḡt − β + E[Jt+1(qt+1)|H0
t ]}

and the optimal policy is

τ0 = min{t ∈ {1, . . . , h̄}|σt = 1}

σt =

{
1 if Jt(qt) = δ or if t = h̄,

0 otherwise.

Note that qt can be iterated with the Bayes’ filter

qt+1 =
1

α(yt+1)
D(yt+1)Pqt

with Pij = Prob[xt+1 = i|xt = j] and D(yt+1) =
diag([Ryt+1,1 . . . Ryt+1,n]) with R`,j = Prob[yt = `|xt = j],
for ` ∈ {1, . . . ,m}, j ∈ {1, . . . , n} and α(`) = Prob[yt+1 =
`|It] =

∑n
j=1R`,j r̄t,j . with r̄t = [r̄t,1 . . . r̄t,n]ᵀ, r̄t =

Pqt. The filter is initialized with q0 = ρφ0
if (3a) holds

and r̄0 = ρφ0
if (3b) holds. It is well known that (see,

e.g., [14]) Jt(qt) = minc∈Jt c
ᵀqt. One can obtain that, for

t ∈ {h̄− 1, . . . , 0},

Jt = {d1,t +

ny∑
`=1

P ᵀD(`)ᵀc̄j` |c̄j` ∈ Jt+1,

j1, . . . , jny ∈ {1, . . . , |Jt+1|}} ∪ {d2}
(14)

with d1,t = ḡt−β1n, d2 = δ1n, and Jh̄ = d2. However, the
size of set Jt, denoted by |Jt|, grows as |Jt| = 1+|Jt+1|ny .
Thus, this is a computationally intractable method.

When ḡt depends on φ0 = i so will the cost-to-go and now
we stress this by denoting the cost-to-go at time t = 0 by
J i,β0 (q0) where the dependence on β is also added. Cost (13)
is then equal to

∑b
i=1 aiJ

i,β
0 (ρi) when (3a) holds. Thus, one

needs to find β for which this cost is zero. To this end we
can simply run a bisection algorithm as it can be shown that
the cost is a strictly monotone and continuous function of β.

IV. RELAXED DYNAMIC PROGRAMMING POLICY

The idea of relaxed dynamic programming [14] is to find
simpler functions to approximate Jt(qt). Here we consider
the following functions Vh̄(qh̄) = δ and

Vt(qt) = min
c∈Vt

cᵀqt, t ∈ {0, 1, . . . , h̄− 1}, (15)

where Vt ⊆ Jt can be seen as a pruned version of Jt. We
will provide a procedure to obtain this pruned set in such a
way that

Jt(qt) ≤ Vt(qt) ≤ Jt(qt) + ε(h̄− t), t ∈ {0, 1, . . . , h̄− 1},
(16)

so that Vt(qt) is always within an additive factor ε(h̄ − t)
of the optimal policy and the resulting policy as well.
Although the original idea of relaxed dynamic programming
considered a multiplicative factor for the guarantees, i.e.,
Jt(qt) ≤ Vt(qt) ≤ (1 + ε)Jt(qt), here an additive factor is
chosen for two reasons. First, here Jt and Vt take in general
negative values (due to subtracting β from the running
cost (13)), thus the multiplicative bound makes no sense.
Second, here Jt(qt) ≤ maxx,φ g(x, 0, φ) + δ for every t and
qt so that scaling issues can be avoided.

Towards this, let us define

Jεt (qt) = min{δ + ε, (qᵀt ḡ − β + ε) + E[Vt+1(qt+1)|H0
t ]}

Using similar steps to the ones that lead to (14) (see,
e.g., [14]) one can conclude that Jεt (qt) = minc∈J εt c

ᵀqt,

J εt = {d1,t + ε1 +

ny∑
`=1

P ᵀD(`)ᵀc̄j` |c̄j` ∈ Vt+1,

j1, . . . , jny ∈ {1, . . . , |Vt+1|}} ∪ {d2 + ε1}

Function Jεt coincides with Jt when ε = 0. However, this
function is defined with an extra cost term for the running
cost when ε > 0. Given a c̃ε ∈ J εt , consider a corresponding
c̃0 from the set Jt = J εt |ε=0 defined in (14).

At each time t, the set Vt is a pruned version of the set
Jt. To facilitate the pruning operation, which is carried out
iteratively, it is wise to define a heuristic function H(c) which
assigns a score to the elements c of a given set (say Jεt ). The
higher H(c) the larger the belief that c can be pruned.

Relaxed Dynamic Programming procedure:

1) Initialize Vt as empty.
2) Take the element c̃ε in J εt \Vt with the smallest H and

check if it satisfies

min
c∈Vt

cᵀq ≤ c̃εᵀq ∀q ∈ Pn. (17)
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3) If (17) is not satisfied (or if Vt is empty), then add
c̃0 (corresponding to c̃ε) to Vt. If there are no more
elements in J εt , then stop, otherwise go to step 2.

The heuristic used evaluates cᵀξi for each of nc members
c, and for s fixed values ξi, i ∈ {1, . . . , s} and assigns a
reward ri ∈ {1, . . . , nc} to each member corresponding to
the ranking in the ith ordered set according to cᵀξi. Then
H(c) =

∑s
i=1 ri.

Lemma 2: Let Vt be defined by (15) with the set Vt
obtained from the relaxed dynamic programming procedure.
Then (16) holds.

�
The following test provides a sufficient condition to test

if (17) holds and if (17) is replaced by this test the same
guarantees can also be given: if there exists αi ≥ 0 with∑|Vt|
i=1 αi = 1 such that, with ci ∈ Vt,

∑|Vt|
i=1 αici ≤ c̃

then (17) holds. To test this latter condition we can simply
test the feasibility of the simplex Aα ≤ b with A =
[Cᵀ − I 1 − 1]ᵀ, b = [c̃ᵀ 0 1 − 1]ᵀ, C = [c1 . . . c|Vt|].

V. CONSISTENT POLICY

We start by providing a result stating the performance of
periodic control.

Lemma 3: Suppose that Assumptions 1, 2, 3 hold and that
τ` = h, ∀` ∈ N0, are constant, corresponding to periodic
control. Then Jav := Js + δJp with

Js = ηh :=

b∑
i=1

νh,iai, Jp =
1

h
(18)

where

νh,i :=


1

h
(

h−1∑
`=0

ḡᵀ` P
`)ρi, if (3a) holds

1

h
(gᵀ0P

`−1 +

h−2∑
`=0

ḡᵀ`+1P
`)ρi, if (3b) holds.

�
The proposed policy yields a better trade-off between

average number of actions and average cost in the following
sense. Suppose that we define the curve (s, Jper(s)) with

Jper(s) = ηr + (ηr+1 − ηr)(s− r) if s ∈ [r, r + 1).

Then (τ̄π, Jπ), with τ̄π = E[τ0] = 1/Jc the average inter-
control time and Jπ = Jav the policy’s cost, is below this
curve. We call this a consistent policy. We propose such a
consistent policy inspired by [9], [10] but different both in
form and derivation. It is defined as follows:

τ` = min{r ∈ {1, . . . , h̄}|
s`+r∑
t=s`

ḡᵀt pt|t > −δ+ ωc,φ`r} (19)

for ωc,i < ωm,i where ωm,i = min{νr,i + δ 1
r |r ∈

{1, . . . , h̄}}. Intuitively, assuming for simplicity b = 1 and
` = 0, if we knew the state and if we could make sure that∑τ0−1
t=0 g(xt, t, 1) + δ − ωc,1τ0 ≤ 0 we would obtain also

that E[
∑τ0−1
t=0 g(xt, t, 1) + δ − ωc,1τ0] ≤ 0, which would

imply that 1
E[τ0]E[

∑τ0−1
t=0 g(xt, t, 1)] + δ 1

E[τ0] ≤ ωc,1 < ωm,1
meaning that we could ensure that such a policy would yield
a better combined cost than that of the periodic policy for
any h. Although the state is not available, this policy still
ensures this property by replacing the term g(xt, t, φ0) by
its expected value given the information up to time t, ḡᵀt qt,
and by taking into account the initial condition.

A limitation is that if δ is large and wm,i is small the policy
might lead to many control actions. However, the consistency
property holds for any choice of δ ≥ 0 and ωc,i < ωm,i. The
only restriction then comes from ωm,i.

Theorem 1: Suppose that Assumptions 1, 2, 3 hold. Let
Jπ be the cost Jav of the proposed policy (19) and let τ̄π =
E[τ0] = 1/Jc be the average inter-control time, for given
δ ≥ 0 and ωc,i < ωm,i, i ∈ {1, . . . , b}. Then,

Jπ ≤ Jper(τ̄π). (20)

VI. APPLICATION IN PRECISION AGRICULTURE

Consider the precision farming setting of Section II.2) and
assume that the field is a strip of potato crops divided into
N subareas. The state xt ∈ {1, . . . , 2N} labels all possible
states of the N weed indicator variables xt,i ∈ {1, 2}. At
initialization and directly after the interventions at times
s`, the whole field has no weed. Weed can simply appear
in a given subarea or spread from one of the neighboring
subareas, which is summarized by, for a, b ∈ {1, 2},

Prob[xt+1,l = 2|xt,l−1 = a, xt,l = 1, xt,l+1 = b] = rab

when l /∈ {1, N}, with 0 < r11 < r21 = r12 < r22 < 1
and Prob[xt+1,1 = 2|xt,2 = i, xt,1 = 1] = Prob[xt+1,N =
2|xt,N−1 = i, xt,N = 1] = ri, i ∈ {1, 2}, with r1 = r11,
r2 = r21. When a subarea has weed, it remains until an
intervention, Prob[xt+1,i = 2|xt,i = 2] = 1 for every i. From
these assumptions (8) can be computed or equivalently the
transition probability matrix Pij = Prob[xt+1 = i|xt = j]
can be computed, as follows. First, let πj(i) = xt,j extract
the value of the indicator variable xt,j j ∈ {1, . . . , N} for
a given state xt = i ∈ {1, . . . , 2N} and let N (i, t) =
(xt,i−1, xt,i+1), N (1, t) = xt,2, N (N, t) = xt,N−1 be the
neighboring indicator states. Then Pij = 0 if there exists
` such that π`(i) = 1 and π`(j) = 2 and, otherwise,
Pij =

(∏
`∈Mi,j,2

rN (`,t)

)(∏
`∈Mi,j,1

(1− rN (`,t))
)

with
Mi,j,κ = {` ∈ {1, . . . , N}|π`(j) = 1, π`(i) = κ}, κ ∈
{1, 2}. While each sensor i ∈ {1, . . . ,M} can, in general,
measure several subareas, here only one subarea per sensor
is assumed `i ∈ {1, . . . , N}. Thus yt,i ∈ {1, 2} and an
error probability is assumed Prob[yt,i = 2|xt,`i = 1] =
Prob[yt,i = 1|xt,`i = 2] = ep. From these assumptions,
the output map can be computed or equivalently Rij =
Prob[yt = i|xt = j]. Let χκ(i) = yt,κ extract the value of the
subarea measurement yt,κ, κ ∈ {1, . . . ,M} for a given mea-
surement yt = i ∈ {1, . . . , 2M} and let sij be the number
of subarea measurements associated with yt = i that provide
a correct estimate for the corresponding subarea state asso-
ciated with xt = j, i.e., sij = |{κ ∈ {1, . . . ,M}|χκ(i) =
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Fig. 1: Average (weed) cost Js versus average rate of control
actions Jc for three policies: periodic, optimal and consistent
for a simple example with N = M = 1

π`κ(j)}|. Then Rij = (1− ep)sije
M−sij
p . Running cost (10)

can be written as the running cost in (11) as

g(i, t, 0) = d
[
π1(i)− 1 . . . πN (i)− 1

]
1N . (21)

We start by considering a very special case with just one
field N = 1, xt ∈ {1, 2}, one measurement yt ∈ {1, 2} and

P =

[
1− r11 0
r11 1

]
, R =

[
1− ep ep
ep 1− ep

]
,

This simple case allows one to still compute the optimal
policy cost and understand how close is the cost of the
consistent policy, for this example. The parameters consid-
ered are h̄ = 10, d = 1, r11 = 0.1, ep = 0.2. Figure 1
shows the results of periodic control, optimal policy (or
relaxed dynamic programming with ε = 0) considering
δ ∈ {0.5, 1, 1.5, 2, 2.5, 3, 3.5} and of the consistent policy
with δ = 0 and ωm,1 ∈ {0.01 + 0.02i|i ∈ {0, 1, . . . , 8}} ∪
{0.2, 0.3, 0.4}. As it can be seen, the optimal policy yields
a significant reduction of cost Js, when the running cost
is (21), for the same average intervention interval with
respect to periodic control. The consistent policy provides
results close to optimal.

We now consider a more realistic example with N = 12
subareas, M = 3 sensors l1 = 3, l2 = 6, l3 = 9 and
parameters d = 1, r11 = 0.02, r21 = 0.2, r22 = 0.4,
ep = 0.02, h̄ = 20. The number of states is n = 212 = 4096.
We can no longer apply relaxed dynamic programming since
solving the corresponding linear programs with c ∈ R4096

is computationally hard. However, we can still compute the
consistent policy. The results are depicted in Figure 2 consid-
ering parameters ωm,1 ∈ {0.2, 0.4, 0.6, 1, 1.5, 2, 2.5, 3, 3.5}
and δ = 0. Note that in fact the policy provides a significant
reduction of cost for the same average rate of control actions
with respect to periodic control. To access the value of
information, the case M = 12 and ep = 0 is also shown,
leading to a reduction of cost.

VII. CONCLUSION

We have proposed a new framework to determine when
a partially observable Markov decision process with finite
state, input, and measurement spaces should be sampled
or/and intervened, assuming these operations are costly. We
proposed two approaches to find a policy for the time inter-
vals between interventions. The approach based on relaxed

Fig. 2: Average (weed) cost Js versus average rate of control
actions Jc when N = 12 for periodic control, consistent with
M = 3 sensors and full state feedback M = 12

dynamic programming can provide nearly optimal cost when
the state dimension is very small. Still, it is not suitable for
larger dimensional problems, as this involves solving large
linear programs. In turn, the approach based on consistent
control provides a simple and effective solution.
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