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Model Predictive Control for Quadcopters with
Almost Global Trajectory Tracking Guarantees

A.R.P. Andriën, E. Lefeber, D. Antunes, W.P.M.H. Heemels

Abstract—This paper provides a new method for trajec-
tory tracking for quadcopters following a cascaded control
approach with formal closed-loop tracking guarantees. An
outer-loop model predictive controller generates twice dif-
ferentiable acceleration references, which provide attitude,
angular velocity and acceleration references for a nonlinear
inner-loop controller. The model predictive controller al-
lows for tracking of references while explicitly considering
that the thrust of the quadcopter is upper and lower limited.
It is proven that the overall strategy renders the trajectory
tracking errors uniformly almost globally asymptotically
stable. Via a numerical case study the advantages of the
novel method are highlighted.

Index Terms— global stability, model predictive control,
quadcopters, trajectory tracking

I. INTRODUCTION

Q
UADCOPTERS are now widespread in the consumer

market [1] and are used in many applications, such

as agriculture [2], surveillance [3], wildlife monitoring [4],

construction [5], (medicine) delivery [6], [7] and even ex-

traterrestrial exploration [8], [9]. From a research point of

view, quadcopters have received much attention as well, due

to the challenging nonlinear dynamics required to properly

describe them [10], their under-actuated configuration [11]

and high maneuverability [12]. In particular, for the control of

quadcopters many avenues have been explored, such as sliding

mode control [13], iterative learning control [14], nonlinear

control [15], [16], reinforcement learning [17], to name a few.

However, despite the broad range of approaches in quadcopter

control, it is still hard to find in the literature a control

approach with the following highly desired features:

1) Ability to anticipate on future reference information;

2) Explicit handling of constraints on the states and inputs;

3) Real-time implementability on embedded hardware;

4) Stability or tracking error convergence guarantees.

Model Predictive Control (MPC) can potentially provide

these features, due to its ability to anticipate using future

reference information, handle constraints explicitly and the

availability of well-established theoretical results that can be

used to provide guarantees on closed-loop behavior [18].
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Moreover, the typically high computational burden of (non-

linear) MPC (3) can potentially be overcome by using the dif-

ferential flatness property of quadcopters as motivated in [19].

Yet, to the best of the authors’ knowledge there are no MPC

strategies currently available that provide all these favorable

features. Indeed, MPC setups have been used for quadcopters

in, for example, [20], exploiting differential flatness to achieve

a convex optimization problem that is solved in real-time;

however no stability guarantees are provided. In [21], a hi-

erarchical MPC strategy was developed that uses linearization

around the trajectory to make the problem computationally

feasible, however tracking error convergence guarantees are

not given. A common element in many quadcopter control

approaches is a cascaded control structure, where the control

of the orientation of the quadcopter, known as the inner loop, is

separated from the position and velocity control, referred to as

the outer loop [22]. A strategy combining a thrust prioritizing

inner-loop controller with an outer-loop controller that satisfies

constraints on some of the states was presented in [23],

however, again without stability and convergence guarantees.

Control strategies following other approaches also do not

provide all the desired features. For instance, the strategies

provided in [24], [25] meet 3) and 4), however 1) and 2) are

not satisfied.

Nonlinear MPC (NMPC) has also been used in more recent

papers, due to the increase in onboard computational power of

most quadcopters. A cascaded approach is used in [26], where

NMPC and LQR control with integral action are used for the

inner and outer loop, respectively. NMPC is used in the outer

loop in [27] and used for obstacle avoidance. In [28] NMPC

is used to avoid obstacles in cluttered environments while

performing high speed trajectories, respecting both input and

state constraints. NMPC is compared with differential-flatness-

based control in [29], both with and without the addition

of an inner loop controller using the incremental nonlinear

dynamic inversion (INDI) method for both cases, showing

that NMPC outperforms DFBC at the expense of a much

higher computational load. They also show the importance of

considering the aerodynamic drag in both methods, where they

consider a linear drag model that captures the major effects

[30]. Although all these methods provide impressive results in

terms of tracking high speed trajectories in real experiments,

none of them provide stability guarantees, resulting in crashes

for aggressive trajectories [29]. Moreover, they do not show

guaranteed feasibility of the NMPC algorithm, resulting in

unpredictable and sometimes unstable behavior.

Motivated by this gap in the literature, in this paper a new
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MPC approach is proposed based on a general fourth-order

quadcopter model as presented in [30]. A cascaded control

design is employed, in which the control of the translational

system, consisting of position and velocity kinematics and

dynamics, is re-formulated as a linear problem by considering

a virtual acceleration as input. This is referred to as the outer-

loop tracking problem and an MPC strategy is designed that

allows for meeting the desired features mentioned above. In

order for the system to track the desired virtual acceleration

generated by the MPC in the outer loop, a desired thrust vector

is generated, which is converted into a desired attitude that is

tracked by using the attitude controller presented in [16]. The

attitude tracking problem is referred to as the inner loop, and

the adopted controller requires that the desired virtual acceler-

ation is twice differentiable, which is ensured by considering

a linear fourth-order model for the outer loop, as we will

show. Indeed, it is shown how the constraints for the original

nonlinear model can be translated into constraints for the

linear fourth-order model, although this translation involves

the introduction of some degree of conservatism, as will be

carefully explained. Considering a given class of reference

inputs, it is shown that the outer-loop MPC control strategy

results in uniform global asymptotic stability (UGAS) for the

tracking error. This convergence proof relies on new technical

contributions that rely on state and input transformations

and on recent results on globally stable MPC strategies for

linear systems with input constraints. Moreover, we explicitly

consider the discrete-time nature of the MPC controller and

show that constraint satisfaction of the continuous-time system

is still guaranteed in between samples. The advantages of the

proposed cascaded control scheme are shown in a numerical

case study, where we show that the quadrotor is able to recover

from an upside-down starting attitude and converges to a

challenging reference trajectory.

Compared to the preliminary results presented in [31], here:

(i) a more complete, fourth-order model of the quadcopter

as proposed in [30] is considered, (ii) trajectory tracking

guarantees are provided for the full cascaded system rather

than setpoint guarantees only for the outer-loop controller, and

(iii) all the proofs and extensive explanations, not available

in [31], are provided.

The remainder of this paper is structured as follows. First,

the notation used in this paper is introduced in Section II,

followed by the dynamic model and the problem definition

in Section III, after which the method is outlined in Sec-

tion IV. The inner- and outer-loop controllers are presented

in Sections V and VI, respectively, which are combined to

provide the overall controller in Section VII, together with the

proofs of the main results. Simulations results are provided in

Section VIII. Section IX provides concluding remarks.

II. PRELIMINARIES

In this section the notation used in this paper is introduced.

Let ei ∈ R
3 for i ∈ {1, 2, 3} denote the standard unit vectors.

The trace of a matrix A is denoted by tr (A) for a square

matrix A ∈ R
n×n. The Euclidean, or two-norm, of a vector is

denoted by ‖v‖ for v ∈ R
n, i.e., ‖v‖ =

√
v⊤v. The induced

Euclidean matrix norm for A ∈ R
n×n is denoted similarly

by ‖A‖, which is equal to
√

λmax(A⊤A), where λmax(A
⊤A)

denotes the largest eigenvalue of A⊤A. A positive definite

and semi-positive definite matrix A are denoted by A ≻ 0 and

A � 0, respectively. A diagonal matrix with scalar entries a, b

on the diagonal is denoted as diag(a, b).
Consider the non-autonomous system

ẋ = f(t, x), (1)

with state x taking values in R
n, time t ∈ R≥0 and f : R≥0×

R
n → R

n is piecewise continuous in t and locally Lipschitz

in x. We assume that the origin x = 0 is an equilibrium point

of (1), meaning that

f(t, 0) = 0, for all t ∈ R≥0. (2)

In this paper uniform global asymptotic stability (UGAS),

uniform global exponential stability (UGES) and uniform

local exponential stability (ULES) are considered, for which

definitions are given in [32] and repeated here for convenience.

Definition 1 (cf. [32]): Consider (1) and let x = 0 be an

equilibrium point of (1). This equilibrium is

• stable, if for each t0 ≥ 0 and each ǫ > 0, there is δ =
δ(ǫ, t0) > 0 such that

‖x(t0)‖ < δ =⇒ ‖x(t)‖ < ǫ, for all t ≥ t0. (3)

• unstable, if it is not stable.

• uniformly stable, if for each ǫ > 0, there is δ = δ(ǫ) > 0,

independent of t0, such that (3) is satisfied for all t0 ≥ 0.

• asymptotically stable, if it is stable and for all t0 ≥ 0
there is a positive constant c = c(t0) such that x(t) → 0
as t→ ∞, for all ‖x(t0)‖ < c.

• uniformly asymptotically stable, if it is uniformly stable

and there is a positive constant c, independent of t0, such

that for all t0 ≥ 0, all ‖x(t0)‖ < c and each η > 0, there

is T = T (η) > 0 such that

‖x(t)‖ < η, for all t ≥ t0 + T (η). (4)

• uniformly globally asymptotically stable (UGAS), if it

is uniformly asymptotically stable, where δ(ǫ) can be

chosen to satisfy limǫ→∞ δ(ǫ) = ∞, and, for each pair

of positive numbers η and c, there is T = T (η, c) > 0
such that for all t0 ≥ 0 it holds that

‖x(t)‖ < η, for all t ≥ t0 + T (η, c),

for all ‖x(t0)‖ < c. (5)

• uniformly locally exponentially stable (ULES), if there

exist positive constants c, k, and λ such that for all t0 ≥ 0,

all t ≥ t0 and all ‖x(t0)‖ < c it holds that

‖x(t)‖ ≤ k ‖x(t0)‖ e−λ(t−t0). (6)

• uniformly globally exponentially stable (UGES), if (6) is

satisfied for all initial states x(t0) ∈ R
n, all t0 ≥ 0 and

all t ≥ t0.

Global stabilization of a quadcopter involves global stabiliza-

tion of its attitude on SO(3) and global stabilization of its

linear position. Since global stabilization on SO(3) using a
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Fig. 1. The inertial reference frame W and body fixed frame B.

continuous control input can not be achieved, cf. [33], we

need to relax such stability notion. In fact, uniform almost

global asymptotic stability is the aim in this paper, which is

defined as follows:

Definition 2: Consider (1) and let x = 0 be an equilibrium

point. This equilibrium is uniformly almost globally asymp-

totically stable (UaGAS), if it is UGAS, except for initial

conditions in a set of measure zero. That is, (3) and (5) hold

for every x(t0) ∈ R
n \M , where M is a set of measure zero,

and δ(ǫ) can be chosen to satisfy limǫ→∞ δ(ǫ) = ∞.

III. QUADCOPTER DYNAMICS AND PROBLEM

FORMULATION

In this section a model of the quadcopter dynamics is

first introduced, followed by the introduction of the notion of

feasible reference trajectories. Based on these two ingredients,

a formal problem statement is provided.

A. Dynamic model of quadcopter

The model that is used here is based on [15]. However,

in contrast to [15], stiff rotors and no external wind are

considered here (as was also done in [30]). To present the

resulting model, suitable coordinate frames are needed. To

introduce them, let W denote a right-handed inertial (or world)

frame according to the North-East-Down (NED) convention,

with unit vectors along the axes denoted by {xW , yW , zW },

forming an orthonormal basis. Let B denote a right-handed

body-fixed frame with unit vectors {xB, yB, zB} forming an

orthonormal basis, where these vectors are the axes of B with

respect to W . The origin of the body-fixed frame coincides

with the center of mass of the quadrotor, and zB is aligned

with zW and the gravitational vector when the quadrotor is at

hover, see Figure 1. The orientation of B with respect to W is

represented by the rotation matrix R = [xB , yB, zB] ∈ SO(3).
Let ω = [ω1, ω2, ω3]

⊤
denote the angular velocities of B

relative to W , expressed in B. The position and linear velocity

of the center of mass of the quadrotor with respect to W

are denoted by p = [px, py, pz]
⊤

and v = [vx, vy, vz]
⊤

,

respectively.

Using the above variables, the model can now be described

by the equations

ṗ = v, (7a)

v̇ = gzW − TzB −RDR⊤v, (7b)

Ṙ = RS(ω), (7c)

Jω̇ = S(Jω)ω − τg −AR⊤v − Cω + τ. (7d)

The forces acting on the translational dynamics ((7a)-(7b)) of

the quadrotor consist of the gravity, given by gzW , where g

is the gravitational constant, the thrust force −TzB, where

T ≥ 0 denotes the magnitude of the combined thrust of

the four propellers (mass-normalized), and a drag force as

a result of rotor drag −RDR⊤v = −d(R)v, where D =
diag(dx, dy, dz), dx, dy, dz > 0 are the mass-normalized rotor

drag coefficients and d(R) = RDR⊤. Note that similarly to

[27], [34]–[36] we consider a linear drag model.

The rotation of the quadcopter is characterized by the

attitude kinematics given in (7c), where S(a) represents a

skew-symmetric matrix such that S(a)b = a × b for any

vectors a, b ∈ R
3 and the dynamics given in (7d), where

J ∈ R
3×3 is the inertia matrix, τg ∈ R

3 are torques resulting

from gyroscopic effects, A and C are constant matrices and

τ = [τ1, τ2, τ3]
⊤ ∈ R

3 is the torque input.

The thrust is considered to be non-negative and limited

according to

0 ≤ T (t) ≤ Tmax, for all t ∈ R≥0, (8)

where Tmax > g is the maximal thrust. This is a physical

restriction dictated by the fact that the propellers can only

generate limited thrust upwards and must be capable of coun-

teracting the gravitational force. Note that the thrust T and the

torque τ are considered as the control inputs of the quadcopter.

Effects such as motor dynamics and propeller aerodynamics

are omitted.

B. Reference trajectory

In this paper we focus on a certain class of feasible reference

trajectories. In fact, a reference trajectory (p̄, v̄, R̄, ω̄, T̄ , τ̄ ) :
R≥0 → R

3×R
3×SO(3)×R

3 ×R×R
3 is called feasible, if

it satisfies the dynamics (7) in the sense that for all t ∈ R≥0

˙̄p = v̄, (9a)

˙̄v = gzW − T̄ z̄B − R̄DR̄⊤v̄, (9b)

˙̄R = R̄S(ω̄), (9c)

J ˙̄ω = S(Jω̄)ω̄ − τg −AR̄⊤v̄ − Cω̄ + τ̄ , (9d)

and

0 < ǫ ≤ T̄ (t) ≤ Tmax − ǭ, (10)

for fixed ǭ, ǫ > 0. Note that the thrust of a feasible reference is

required to be strictly greater than zero and have a maximum

that is strictly smaller than the maximal thrust Tmax of the

actual quadcopter. This is required in order for the actual

quadcopter to be able to follow the reference.
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C. Problem statement

Given a feasible reference trajectory, the error coordinates

can be defined as

p̃ = p̄− p, (11a)

ṽ = v̄ − v, (11b)

R̃ = R̄⊤R, (11c)

ω̃ = ω − R̃⊤ω̄, (11d)

which can be used to formulate the main problem considered

in this paper as follows.

Problem 1: Given a feasible reference trajectory

(p̄, v̄, R̄, ω̄, T̄ , τ̄ ), find control laws

T = T (p, v, R, ω, p̄, v̄, R̄, ω̄, T̄ , τ̄),

τ = τ(p, v, R, ω, p̄, v̄, R̄, ω̄, T̄ , τ̄ ),
(12)

such that (8) holds and such that for the closed-loop system

(7), (9), (12)

lim
t→∞

(p̃(t), ṽ(t), R̃(t), ω̃(t)) = (0, 0, I, 0), (13)

for all initial conditions (p(0), v(0), R(0), ω(0)) ∈ R
3×R

3 ×
SO(3)\M×R

3, where M ⊂ SO(3) is a set of measure zero.

In fact, we aim for the closed-loop system to satisfy a UaGAS

property, see Definition 2.

Assumption 1: It is assumed that the effects of rotation in

the drag force are negligible, i.e., that d(R) = RDR⊤ ≈ D,

for all trajectories considered.

Remark 1: While Problem 1 assumes, for simplicity, a

continuous-time controller implementation by making T and

τ at time t a function of the state and reference at time t, the

actual proposed controller will take a sample and hold form.

This is required due to the MPC approach that we will follow.

More formally, we can state that T, τ are functions of the state

and reference from time 0 to time t.

IV. METHODOLOGY

In order to solve the nonlinear tracking problem defined

in Problem 1, a cascaded controller design is employed. The

cascade consists of an outer loop and an inner loop, that

contain the translational ((7a)-(7b)) and rotational ((7c)-(7d))

subsystems, respectively, as depicted in Figure 2. First the

setup of the cascade is discussed, followed by the resulting

constraints on the subsystems that follow from the setup and

the thrust constraint (8). These constraints also ensure that the

variables used in this section are well-defined. The section

is concluded with the problem definitions related to the inner

loop and outer loop, that are solved in the subsequent sections.

A. Cascaded trajectory tracking setup

Considering the definition of the position and the velocity

errors in ((11a)-(11b)), their dynamics can be found by sub-

tracting ((9a)-(9b)) from ((7a)-(7b)), giving

˙̃p = ṽ,

˙̃v = −Dṽ + TzB − T̄ z̄B.

Introducing a new virtual input ad ∈ R
3, referred to as the

desired acceleration (error), the actual acceleration error is

replaced by ad, i.e.,

ad = TzB − T̄ z̄B, (14)

which leads to

˙̃p = ṽ, (15a)

˙̃v = −Dṽ + ad. (15b)

In Section VI an MPC strategy is used to find a desired

acceleration ad such that the dynamics in (15) are stabilized

and the constraint in (8) is satisfied. Based on this desired

acceleration, the inputs τ and T are then used to have the

actual acceleration converge to the desired acceleration, i.e.,

to have the error

ã = ad − TzB + T̄ z̄B. (16)

converge to zero. By setting (16) to zero, it follows that

TzB = ad + T̄ z̄B, (17)

and by setting the thrust as the magnitude of the vector on the

right-hand side, i.e.,

T =
∥

∥ad + T̄ z̄B
∥

∥ , (18)

the first input is determined. Note that in order to ensure the

correct direction of the vector on the right-hand side in (17),

the vector zB can be used. However, this is not a direct control

input of the quadcopter. Therefore, instead, the desired rotation

of the quadcopter, denoted by Rd, is determined next. First,

note that pre-multiplication of (17) with R̄⊤ results in

T R̄⊤Re3 = R̄⊤ad + T̄ R̄⊤R̄e3,

or, equivalently,

T R̃e3 = R̄⊤ad + T̄ e3. (19)

The desired thrust direction is then set to

zB,d =





zB,d1

zB,d2

zB,d3



 =
R̄⊤ad + T̄ e3

∥

∥R̄⊤ad + T̄ e3
∥

∥

, (20)

and the remaining columns of the desired quadcopter orienta-

tion are set to

yB,d =
zB,d × e1

‖zB,d × e1‖
=

[

0
zB,d3

θ

−zB,d2

θ

]⊤

,

xB,d = yB,d × zB,d =
[

θ − zB,d1
zB,d2

θ − zB,d1
zB,d3

θ

]⊤
,

for θ =
√

z2B,d2
+ z2B,d3

. The desired attitude of the quad-

copter is then given by

Rd =
[

xB,d, yB,d, zB,d

]

. (21)

Roughly speaking, this ensures that when the errors in (15)

converge to zero, ad converges to zero and zB,d → e3, making

Rd → I .

Note that the Euclidean norm is invariant under rotation, so

that the thrust defined in (18) can be written as

T =
∥

∥ad + T̄ z̄B
∥

∥ =
∥

∥R̄⊤ad + T̄ e3
∥

∥ .
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Fig. 2. Overview of the proposed control strategy. In the outer loop, MPC is used to generate desired accelerations ad, as will be discussed
in Section VI. As will be discussed in Section IV-A, these accelerations are subsequently converted to thrust inputs T that are applied to the
quadcopter as well as desired attitudes Rd and angular velocities ωd. These are then combined with the reference and measured attitudes
and angular velocities, R̄, ω̄ and R,ω, respectively, in the attitude controller in the inner loop, resulting in torque inputs τ that are applied to
the quadcopter, see Section V. The outer-loop and inner-loop strategies are combined in Section VII, where the stability of the overall system is
discussed as well.

Combined with (20) and (21), this shows that (19) can be

written as

T R̃e3 = R̄⊤ad + T̄ e3 = TRde3. (22)

From this it becomes clear that by making R̃ converge to

Rd, the desired acceleration is achieved. This will be achieved

using the torque τ , which is generated by the attitude tracking

controller presented in Section V. This controller will require

differentiable setpoints for the desired angular velocity, which

are found by first noting that from Ṙd = RdS(ωd) it follows

that

ẋB,d = ωd3
yB,d − ωd2

zB,d, (23a)

ẏB,d = −ωd3
xB,d + ωd1

zB,d, (23b)

żB,d = ωd2
xB,d − ωd1

yB,d. (23c)

Pre-multiplying (23b) with x⊤B,d and (23c) with x⊤B,d and y⊤B,d

results in an expression for the desired angular velocity as

ωd =





−y⊤B,dżB,d

x⊤B,dżB,d

−x⊤B,dẏB,d



 . (24)

The above derivations show that the desired acceleration

ad can be achieved by generating the desired attitude in (21)

and using the thrust as in (18). Next, it is discussed how the

constraint on the thrust in (8) can be converted to constraints

on the desired acceleration ad, which is to be generated by the

MPC. Moreover, the constraints on the desired acceleration

will also ensure that the variables in this section are well-

defined.

B. Constraints

The magnitude of the thrust vector is constrained according

to (8) and for (20) to be defined it is required that T 6= 0.

Furthermore, in order for yB,d to be well-defined it is required

that zB,d and e1 are never parallel, which is achieved by

requiring zB,d3
> 0, which also ensures T 6= 0. Note that

from (20) it follows that ensuring zB,d3
> 0 is equivalent to

ensuring z̄⊤Bad + T̄ > 0. To this effect, ad ∈ A is constrained

and the set of admissible values that the desired acceleration

can take is defined as

A(R̄, T̄ ) := {ad ∈ R
3|0 <

∥

∥ad + T̄ z̄B
∥

∥ ≤ Tmax,

z̄⊤Bad + T̄ > 0}. (25)

The inner-loop controller requires setpoints for the desired

angular velocity and its derivative, which means that the

desired acceleration needs to be twice differentiable, see (24).

C. Cascaded problem definition

The original tracking control problem as defined in Prob-

lem 1 is now split into two subproblems, namely an outer-

loop and an inner-loop problem. The outer-loop problem is

formulated as

Problem 2 (Outer-loop problem): Find a twice differen-

tiable virtual acceleration control law ad = ad(p, v, p̄, v̄, T̄ ),
such that the origin (p̃(t), ṽ(t)) = (0, 0) of the system ((15a)-

(15b)) is UGAS and such that ad ∈ A(R̄, T̄ ), for all t ∈ R≥0,

with A(R̄, T̄ ) as defined in (25).

Since it is desired to steer R̃ to Rd, the attitude error and

angular velocity error considered in the inner-loop problem

are defined as

Re = R⊤
d R̃ (26)

and

ωe = ω − R̃⊤ω̄ −R⊤
e ωd, (27)

respectively. The inner-loop problem is now formulated as

Problem 3 (Inner-loop problem): Find a control law τ =
τ(R,ω, R̄, ω̄, Rd, ωd), such that the origin (Re(t), ωe(t)) =
(I, 0) of the system ((26)-(27)) is UaGAS.
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In Section VII it will be shown that by solving Problems 2

and 3 a solution to Problem 1 can be obtained.

Remark 2: Similarly to Remark 1, we can state that the

control laws in Problem 2 and 3 are rather a function of state

and reference variables from time 0 to time t, to emphasize

the sampled-data approach.

V. INNER-LOOP TRACKING

As mentioned in the introduction, many controllers for

stabilizing the attitude dynamics of quadcopters have been

proposed over the years. Here, a controller similar to the one

proposed in [16] is employed, because it provides ULES and

UaGAS for the attitude dynamics. The dynamics of the error

variables in ((26),(27)) are given by

Ṙe = ReS(ωe),

Jω̇e = S(Jω)ω − τg −AR⊤v − Cω + τ

−JR̃⊤J−1
(

S(Jω̄)ω̄ − τg −AR̄⊤v̄ − Cω̄ + τ̄
)

+J
[(

S(ω)R̃⊤ − R̃⊤S(ω̄)
)

ω̄ + S(ωe)R
⊤
e ωd −R⊤

e ω̇d

]

,

which, combined with the input

τ = −Kωωe +KR

3
∑

i=1

ki(ei ×R⊤
e ei)

− S(Jω)ω + τg +AR⊤v + Cω

+ JR̃⊤J−1
(

S(Jω̄)ω̄ − τg −AR̄⊤v̄ − Cω̄ + τ̄
)

− J
[(

S(ω)R̃⊤ − R̃⊤S(ω̄)
)

ω̄ + S(ωe)R
⊤
e ωd −R⊤

e ω̇d

]

,

(28)

result in the closed-loop system

Ṙe = ReS(ωe), (29a)

Jω̇e = −Kωωe +KR

3
∑

i=1

ki(ei ×R⊤
e ei), (29b)

with distinct ki > 0, Kω ≻ 0 and KR ≻ 0. The following

theorem asserts stability for this closed-loop system:

Theorem 1 (cf. [16], Theorem 4): The system described in

((29a),(29b)) has (I, 0) as a ULES and UaGAS equilib-

rium. That is, let Ec = {I, diag(1,−1,−1), diag(−1, 1,−1),
diag(−1,−1, 1)}, then Re converges to Ec and ωe converges

to zero. The equilibria (Re, 0) of ((29a),(29b)), where Re ∈
Ec \ {I}, are unstable and the set of all initial conditions

converging to the equilibria (Re, 0), where Re ∈ Ec \ {I}
form a lower dimensional manifold.

Since Re converges to I for almost all initial conditions

it follows from (26) that R̃ converges to Rd for almost all

initial conditions. Moreover, as ωe → 0 it follows from (27)

that ω̃ → R⊤
e ωd, which combined with Re → I results in

ω̃ → ωd. This solves Problem 3.

VI. OUTER-LOOP TRACKING

For the outer-loop control problem defined in Problem 2 a

model predictive control (MPC) strategy is used, that allows

for the desired acceleration to be constrained to the set defined

in (25), while still providing appropriate stability guarantees.

As is common for many MPC strategies, the MPC law used is

formulated in discrete time. An overview of the MPC strategy

is provided in Figure 3. In this section, the actual optimal

control problem (OCP) that is solved is presented in a stepwise

manner, starting with the discretization of the dynamics ((15a)-

(15b)) in Section VI-A. In this same section, the constraints on

the continuous states are replaced by constraints on the discrete

input, which still ensure the continuous-time satisfaction of

the constraint on the desired acceleration ad in (25). An MPC

law is formulated based on the resulting discretized system in

Section VI-C. This MPC law uses the fact that a globally

stabilizing control law is known, which is introduced just

before, in Section VI-B. In Section VI-D it will be shown

that stability and constraint satisfaction is achieved for the

continuous time system as well.

A. Discretization and input transformation

As mentioned, the MPC law used is formulated in discrete

time, and in order to be able to provide twice differentiable

desired accelerations for the inner loop the following extended

version of (15) is considered:

˙̃p = ṽ, (30a)

˙̃v = −Dṽ + ad, (30b)

ȧd = − 1

γ
(ad + η), (30c)

η̇ = − 1

γ
(η + s), (30d)

where γ > 0, p̃, ṽ, ad, η ∈ R
3 and s ∈ R

3 is considered

as the input. By designing a piecewise constant (zero-order-

hold (ZOH)) control law for s in this model, instead of for

ad directly, it is ensured that ad is twice differentiable for the

original model (15). Recall that twice differentiability of the

desired acceleration ad is required by the inner-loop controller.

Note that for the purpose of ensuring differentiability, inte-

grator dynamics would have sufficed, however, the first-order

filter dynamics will be used at the end of this subsection to

guarantee constraint satisfaction in between sample times.

Next, ad is constrained to lie in a more conservative set

than strictly necessary, i.e., contained in the set defined in (25).

However, with the benefit that this idea will result in an easier

control design to generate ad by decoupling the constraint in

(25). First note that
∥

∥ad + T̄ z̄B
∥

∥ ≤ ‖ad‖ + T̄ .

Hence, if

‖ad‖ + T̄ ≤ Tmax,

then the upper-bound in (25), i.e.,
∥

∥ad + T̄ z̄B
∥

∥ ≤ Tmax, is

met. Furthermore, it also required that z̄⊤Bad + T̄ > 0, which

can be ensured by requiring

‖ad‖ ≤ T̄ − δ,

for some small 0 < δ < ǫ. These last two conditions describe

two spheres for the desired acceleration ad to be in of radius

Tmax − T̄ and T̄ − δ, respectively. However, similarly to [20],
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MPC

OCP

(Eq. 47)
ZOH

Dynamic

Controller

(Eq. 33)

Fig. 3. Overview of the proposed MPC strategy, for one of the three axes. The position and velocity error dynamics are extended into a dynamic
controller structure in (33), which is subsequently discretized using exact discretization with a ZOH input. This discretized system forms the basis
for the optimal control problem (OCP) that is solved for the MPC strategy in (45).

a more conservative, box approximation AL(T̄ ) ⊂ A(R̄, T̄ )
is considered, where A(R̄, T̄ ) as defined in (25) and

AL(T̄ (t)) := {ad ∈ R
3| − L ≤ ad,i ≤ L, i ∈ {1, 2, 3}} (31)

with

L(t) =
1√
3
min

(

T̄ (t)− δ, Tmax − T̄ (t)
)

, (32)

which can be viewed as the largest cube that fits in the sphere

that is most restricting, see Figure 4 for an illustration. Note

that ad ∈ AL(T̄ ) implies ad ∈ A(R̄, T̄ ). This allows for

Fig. 4. Schematic depiction of the constraints on the desired acceler-
ation ad in 2D (so that circles and squares are considered, instead of
spheres and cubes, respectively). The blue and red circles have radii
of Tmax − T̄ and T̄ − δ, respectively. Note that the radius of each
circle changes as the reference thrust T̄ changes, so that it is not always
the case that the red circle is smaller than the blue circle. In this case
however, the red circle is the smallest, and thus the most restricting for
the desired acceleration ad to have to lie in. In this circle the largest
square that fits is depicted in green, and the constraint on the desired
acceleration can now be decoupled by limiting each of the components
to smaller than ±L.

the consideration of three separate, constrained, scalar systems

given by

ṗi = vi, (33a)

v̇i = −divi + ai, (33b)

ȧi = − 1

γ
(ai + ηi), (33c)

η̇i = − 1

γ
(ηi + si), (33d)

with i ∈ {1, 2, 3}, pi, vi, ai, ηi, si ∈ R, di the cor-

responding component of D and ai ∈ AL(T̄ (t)) :=
{a ∈ R| − L(t) ≤ a ≤ L(t)}. The index i will be omitted

from here on whenever possible to improve readability, since

the three scalar systems are of the same form.

Using exact discretization with a ZOH input, i.e.,

s(t) = s(tk), t ∈ [tk, tk+1), (34)

with tk = kh, k ∈ N≥0, and h > 0 the sampling period,

results in the discrete-time system

xk+1 = Axk +Buk, (35)

where xk = x(tk), x =
[

p v a η
]⊤

taking values in R
4,

uk = s(tk) taking values in R and k ∈ N. The system matrices

A and B are displayed in Table I. The time-varying bound

in (32) can be lower bounded by a positive constant as

0 < ∆ = inf
t∈R

≥0

L(t), (37)

since T̄ (t) is limited as in (8) and δ < ǫ. The constraint a ∈
AL(T̄ (t)) is then ensured by initializing the controller such

that |a(0)| ≤ ∆, |η(0)| ≤ ∆ and restricting the input as

−∆ ≤ uk ≤ ∆, for all k ∈ N. (38)

Indeed, this choice of controller saturation results in the

satisfaction of the constraint (31) as can be seen by considering

the evolution of the acceleration and the jerk of the system (33)

in between sample times, which is given by

a(t) = α(t)ak − β(t)η
k
+ [1− α(t)− β(t)]uk, (39)

η(t) = α(t)η
k
+ [α(t)− 1]uk, (40)

for t ∈ [tk, tk+1), where α(t) = e−t/γ and β(t) = t
γ e

−t/γ .

Note that 0 ≤ α(t) ≤ 1, 0 ≤ β(t) ≤ e−1, and 0 ≤ α(t) +
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A =













1
1−e−dh

d
γ(e−dh+dγ−dγe−h/γ

−1)
d(dγ−1)

γ(e−dh+2dγ−d2γ2
−2dγe−h/γ

−dhe−h/γ+d2γ2e−h/γ+d2γhe−h/γ
−1

d(dγ−1)2

0 e−dh γ(e−h/γ
−e−dh)

dγ−1
γe−h/γ+he−h/γ

−γe−dh
−dγhe−h/γ

(dγ−1)2

0 0 e−h/γ −
h
γ
e−h/γ

0 0 0 e−h/γ













B =















e−dh+dh+3d2γ2
−2d3γ3+d3γ2h−3d2γ2e−h/γ+2d3γ3e−h/γ

−2d2γh+d3γ2he−h/γ
−d2γhe−h/γ

−1
d2(dγ−1)2

1−e−dh
−2dγ+d2γ2+2dγe−h/γ+dhe−h/γ

−d2γ2e−h/γ
−d2γhe−h/γ

d(dγ−1)2

γ−γe−h/γ
−he−h/γ

γ

e−h/γ − 1















(36)

TABLE I

MATRICES OF THE SYSTEM IN (35)

β(t) ≤ 1. From (39) we see that at each time instance a(t) is

a convex combination of ak, −η
k

and uk, and similarly from

(40) we see that η(t) is a convex combination of η
k

and −uk.

Therefore, from |ak| ≤ ∆, |η
k
| ≤ ∆ and |uk| ≤ ∆ we obtain

|a(t)| ≤ ∆ and |η(t)| ≤ ∆ for all t ∈ [tk, tk+1).

B. Stabilizing input constraints

Before introducing our MPC law, we first derive constraints

on the input that guarantee the existence of a positive definite,

decrescent, time-independent Lyapunov function, and there-

fore guarantee UGAS (cf. [32]).

Inspired by the work in [37]–[40] on stabilization of neutral

linear systems with input saturation, we first note that, based

on the Jordan-decomposition of matrix A in (36), we can

define the change of coordinates

x̂k =









0 1 γ
1−dγ

−γ
(1−dγ)2

0 0 1 0

0 0 0 −h
γ e

−h/γ

1 1
d

γ
d − γ

d









xk, (41)

which makes that the dynamics in (35) can alternatively be

expressed as

x̂k+1 =









e−dh 0 0 0
0 e−h/γ 1 0

0 0 e−h/γ 0
0 0 0 1









x̂k+











1−e−dh

d(1−dγ)2

1− (1 + h
γ )e

−h/γ

h
γ e

−h/γ(1− e−h/γ)
h
d











uk. (42)

For these transformed dynamics, we can see that the dynamics

of the first three states are input-to-state stable (ISS) with

respect to uk, i.e., the first three states will converge to zero,

if the input is zero. Therefore, if we are able to design a

controller specifying uk such that the (scalar) dynamics

x̂k+1,4 = x̂k,4 +
h

d
uk (43)

is UGAS, then, due to ISS, we have that the system (42)

is UGAS, and so is the system in (35). Since the state in

(43) is scalar, it follows that to have stability (not asymptotic

stability) it suffices to impose the following inequalities (next

to the input saturation in (38)) on the input for all k ∈ N:

0 ≤ uk ≤ −2d

h
x̂k,4, if x̂k,4 ≤ 0,

−2d

h
x̂k,4 ≤ uk ≤ 0, if x̂k,4 ≥ 0.

In order to tighten these constraints to achieve asymptotic

stability, we introduce a class K-function β satisfying β(q) ≤
min( dhq,∆), for q ∈ R≥0, together with the input constraints

β(−x̂k,4) ≤ uk ≤ −2d

h
x̂k,4 − β(−x̂k,4), if x̂k,4 ≤ 0,

(44a)

−2d

h
x̂k,4 + β(x̂k,4) ≤ uk ≤ −β(x̂k,4), if x̂k,4 ≥ 0.

(44b)

Note that from (42) we have x̂k,4 =
[

1 1
d

γ
d − γ

d

]

xk , so

that the constraint can be expressed in terms of xk as well.

The following theorem asserts that any input satisfying these

constraints guarantees UGAS.

Theorem 2: The system (35) with input uk constrained by

(44) and (38) is uniformly globally asymptotically stable.

Proof: Consider the Lyapunov function candidate

V (x̂k,4) = x̂2k,4, then for the dynamics in (43) we have

V (x̂k+1,4)− V (x̂k,4) = (x̂k,4 +
h
duk)

2 − x̂2k,4

≤
[

|x̂k,4| −
h

d
β(|x̂k,4|)

]2

− x̂2k,4

= −|x̂k,4|
h

d
β(|x̂k,4|)

−
[

|x̂k,4| −
h

d
β(|x̂k,4|)

]

h

d
β(|x̂k,4|)

≤ −|x̂k,4|
h

d
β(|x̂k,4|) =: −β̄(|x̂k,4|)

Note that in the last inequality we used that |x̂k,4| −
h
dβ(|x̂k,4|) ≥ 0 due to the definition of β and we define

β̄(q) := |q|hdβ(q), q ∈ R≥0, which is a class K∞-function.

Hence, we can directly conclude UGAS of the system (43)

(cf. [32]). From the ISS properties of the other states in the
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transformed dynamics (42) we can conclude UGAS for that

system as well. Finally, we note that the state in (42) is a linear

transformation of the original state in (35), so that we conclude

that the system in (35) is UGAS for any input satisfying the

constraints (44) and (38).

Remark 3: The function β is used to stay away from control

actions that keep the system at a state (or its opposite sign),

i.e., to ensure we have a decreasing Lyapunov function at each

time step. To make this constraint only slightly restrictive, one

might take for example β(q) = εq
1+q , with ε ≤ min( dh ,∆)

some small positive number.

C. Model predictive controller

Based on the constraints that guarantee stability presented in

the previous section, the MPC law is then set up as solving the

following optimal control problem (OCP) at each time step:

min
Uk

J(xk, Uk) = lT (xN |k) +

N−1
∑

ℓ=0

l(xℓ|k, uℓ|k)

s.t. x0|k = xk

xℓ+1|k = Axℓ|k +Buℓ|k, ℓ ∈ {0, 1, . . . , N − 1} ,
|uℓ|k| ≤ ∆, ℓ ∈ {0, 1, . . . , N − 1} ,

β(−x̂k,4) ≤ u0|k ≤ −2d

h
x̂k,4 − β(−x̂k,4), if x̂k,4 ≤ 0,

− 2d

h
x̂k,4 + β(x̂k,4) ≤ u0|k ≤ −β(x̂k,4), if x̂k,4 ≥ 0.

(45)

where Uk =
[

u0|k . . . uN−1|k

]⊤
contains the predicted

future control inputs. Moreover, N ∈ N≥1 is the prediction

horizon, l : R
4 × R → R≥0 is the stage/running cost,

lT : R
4 → R≥0 is the terminal cost and xℓ|k, uℓ|k denote

the prediction of the state and input at time step ℓ+ k, made

at time k, respectively.

The first input of the optimal Uk, denoted as U∗
k =

[

u∗0|k . . . u∗N−1|k

]⊤

, is then applied to the system, yielding

the MPC policy uk = µMPC(xk) as a nonlinear function of

the state, where

µMPC(xk) = u∗0|k. (46)

The input to the trajectory tracking dynamics in ((15a)-(15b))

is now obtained by solving the OCP at each k ∈ N for each

scalar system i ∈ {1, 2, 3} resulting in µMPC,i(xk). Using

these inputs as si(t) = µMPC,i(xk) for t ∈ [tk, tk+1) (see

also (34)) in the linear system (33) yields ai(t) and ad(t) =
[a1(t), a2(t), a3(t)]⊤.

The following result asserts the stability of the MPC policy:

Theorem 3: The origin of the system (35) with input (46),

obtained from (45), for any l : R4 × R → R, lT : R4 → R

and N ∈ N≥1, is uniformly globally asymptotically stable.

Proof: The optimization problem is always feasible, since

a known solution in the form of (44) is feasible (one could

take for instance the input exactly on the boundaries of the

constraints). The constraints (44) guarantee uniform global

asymptotic stability by construction.

Remark 4: Note that only the first input of the horizon u0|k
in (45) needs to be constrained by ∆ and (44), whereas for the

rest of the horizon the constraint on the input can be chosen

freely, whilst still guaranteeing feasibility and stability of the

closed-loop system. This is because only the first input in the

horizon is applied to the system, and there always exists a

solution satisfying (44).

Remark 5: Note that the choice of cost function in

(45) is not mentioned in the above theorem, i.e.,

any cost function and any horizon N ∈ N≥1 can be chosen

whilst still guaranteeing global asymptotic stability of the

system (35). In fact, global stability follows from the con-

straints imposed in (45). However, the performance of the

MPC strategy does depend on the choice of cost function,

since the controller is free to generate any input that satisfies

the input constraints. In fact, any MPC control law that renders

the closed loop with (35) UGAS can be used to guarantee that

the overall scheme of Figure 3 results in guaranteed (almost)

global asymptotic tracking in the sense of Theorem 5 below.

D. Stability of the continuous-time system

Although UGAS has been concluded for the system (35),

care must be taken in concluding UGAS for the continuous-

time system in (30). The state in (35) is exactly the state (30)

due to the ZOH and the exact discretization used. However, the

behavior of the continuous-time system in between sampling

times needs to be considered as well.

Consider the continuous-time linear system in (30), which

can be written as

˙̄x(t) = Āx(t) + B̄u(t), (47)

where x̄(t) = [p̃⊤, ṽ⊤, a⊤d , η
⊤]⊤ ∈ R

12 and the input is

generated by solving (45) for each axis and setting

u(t) =





µMPC,1(x̄(kh))
µMPC,2(x̄(kh))
µMPC,3(x̄(kh))



 , for t ∈ [kh, kh+ h). (48)

Then, for t ∈ [kh, kh+ h]:

x̄(t) = eĀ(t−kh)x̄(kh) +

∫ t−kh

0

eĀs ds B̄u(kh),

and therefore

‖x̄(t)‖ = ‖eĀ(t−kh)x̄(kh) +

∫ t−kh

0

eĀs ds B̄u(kh)‖

≤ ‖eĀ(t−kh)‖‖x̄(kh)‖+ ‖
∫ t−kh

0

eĀs dsB̄‖ ‖u(kh)‖

≤ c1‖x̄(kh)‖+ c2 ‖u(kh)‖ .
These bounds on the inter-sample behavior, together with the

fact that x̄(kh) is UGAS in discrete-time and we have that

u(x) ≤ r(|x|) with r(|x|) a class K-function, guarantee that

the system (47) in closed loop with the ZOH-input given by

(46) is UGAS as well.

VII. CASCADED TRAJECTORY TRACKING CONTROLLER

In the previous sections a desired acceleration for asymp-

totic stability of the position dynamics in the outer-loop

problem was derived together with a controller that uses
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the torque and thrust to acquire this desired control action

asymptotically in the inner-loop problem. In order to conclude

stability of the closed-loop system using the proposed strategy,

the cascaded system is now examined. To conclude stability

the following theorem will be used:

Theorem 4 (cf. [41], [16]): Consider a cascaded system

ẋ = f(t, x) with f(t, 0) = 0, for all t ∈ R≥0, that can be

written as

ẋ1 = f1(t, x1) + g(t, x1, x2)x2, (49a)

ẋ2 = f2(t, x2), (49b)

with x1 and x2 taking values in R
n and R

m, respectively. This

system is a cascade of the systems

ẋ1 = f1(t, x1) (50)

and (49b). If the origins of the systems (50) and (49b) are

UGAS and the solutions to (49) remain bounded, then the

origin of the system (49) is UGAS.

Remark 6: In [41] it is assumed that f1(t, x1) is contin-

uously differentiable in (t, x1) and f2(t, x2), g(t, x1, x2) are

continuous in their arguments, and locally Lipschitz in x2 and

(x1, x2) respectively. However, only uniqueness of solutions

is used in the proof of Theorem 4, so that the same theorem

can be employed here in the stability proof for this system.

Although the choice of cost function in (45) is not relevant

for providing stability guarantees in Theorem 3, in order to

provide uniqueness of solutions, the cost function in (45) is

limited to be strictly convex in the rest of this paper:

Assumption 2: The cost function in (45) is chosen to be

strictly convex.

Note that this is not a major restriction, since in practice

strictly convex cost functions are typically preferred as they

often lead to lower computation times.

Consider the dynamics (7) and reference (9) in closed loop

with the inputs (18), (28) and (48). The closed-loop system is

then given by

˙̃p = ṽ, (51a)

˙̃v = −Dṽ + ad + TR(I −R⊤
e )e3, (51b)

ȧd = − 1

γ
(ad + η), (51c)

η̇ = − 1

γ
(η + u), (51d)

Ṙe = ReS(ωe), (51e)

Jω̇e = −Kωωe +KR

3
∑

i=1

ki(ei ×R⊤
e ei). (51f)

Theorem 5: The origin (p̃, ṽ, Re, ωe) = (0, 0, I, 0) of (51)

is UaGAS.

Proof: First note that (51) is a cascade of the systems

((51a)-(51d)) and ((51e)-(51f)). Since ((51e)-(51f)) is UaGAS,

we consider our stability analysis on R
6 × G, where G ⊂

SO(3)×R
3 is the uniformly almost global region of attraction

of ((51e)-(51f)).

Since ((51e)-(51f)) and (47) are UGAS on R
6 × G, it is

only required to show that the solutions remain bounded to

Description Symbol Value

Gravitational constant g 9.81 [m/s2]

Inertia matrix J diag(2.5, 2.1, 4.3) [gm2]

Translational drag coefficients D diag(0.26, 0.28, 0.42) [kg/s]

Gyroscopic torques τg [0, 0, 0]⊤

Cross drag coefficients A 0.1I

Rotational Drag coefficients C 0.5I

Maximum thrust

(mass-normalized)
Tmax 45.21 [m/s2]

Quadratic drag coefficients Dq D/50 [kg/s]

TABLE II

QUADCOPTER PARAMETERS [34] USED IN SIMULATIONS.

conclude UGAS of (51) on R
6 ×G according to Theorem 4.

The dynamics ((51e)-(51f)) are bounded since they are UGAS

on G and for ((51a)-(51d)) the boundedness of solutions is

shown in Appendix I. The result follows from Theorem 4.

Moreover, the origin (p̃, ṽ, Re, ωe) = (0, 0, I, 0) is UGAS

except for initial conditions in a set of measure zero, so that

UaGAS of (51) can be concluded according to Definition 2.

Remark 7: Note that the application of Theorem 4 on the

space G (instead of the whole space) is possible because

the inner-loop dynamics in closed-loop in ((51e)-(51f)) are

independent from the outer-loop dynamics in closed-loop in

((51a)-(51d)).

Remark 8: The fact that we have UaGAS according to

Theorem 5 gives robustness against uniformly bounded pertur-

bations, cf. Lemma 9.3 in [32]. Note that this result requires

uniform asymptotic stability.

Finally, it is shown that when UaGAS of (51) is realized, a

solution to Problem 1 is found.

Corollary 1: The controller consisting of the inputs ob-

tained from (18), (28) and (48) solves Problem 1.

Proof: In Theorem 5 UaGAS was already shown

for the closed-loop system. Furthermore, from Theo-

rem 5 it directly follows that, for all initial conditions

(p(0), v(0), R(0), ω(0)) ∈ R
3×R

3×SO(3)\M ×R
3, where

M ⊂ SO(3) is a set of measure zero, (p̃(t), ṽ(t)) → (0, 0),
which combined with ((15a)-(15b)) results in ad(t) → 0. Then,

by using (20), it follows that zB,d(t) → e3 and from (21) it

then follows that Rd(t) → I . Combining this with Re(t) → I

results in R̃(t) → I . Finally, since ȧd(t) → 0, it follows that

ωd(t) → 0, which, combined with ωe(t) → 0 and (27), results

in ω̃(t) → 0, concluding the proof.

VIII. NUMERICAL CASE STUDY

In this section the effectiveness of the proposed strategy

is illustrated through numerical examples. The dynamics in

(7) are considered with the parameters of the in-house drone

developed by the Robotics and Perception Group, University

of Zurich [34], provided in Table II. We consider three

challenging reference trajectories given in the form

r̄(t) =
[

p̄x(t) p̄y(t) p̄z(t) ψ(t)
]

, (52)

where ψ(t) is the angle between the projection of xB onto

the xW − yW plane and the xW axis, see Figure 1. This
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heading angle is only well defined when the thrust vector

is limited by 0 ≤ z⊤W z̄B(t) < 1, for t ∈ R≥0, i.e., when

the quadcopter is upright, which is the case for all reference

trajectories considered. Note that our controller does not use

the heading angle, and can handle upside-down orientations.

Any trajectory given in the form (52) fully defines the states

and inputs of the reference model in (9) by following the

differential flatness method employed in [30].

The reference trajectories are given by

A : r̄(t) =
[

2 cos(4t) 2 sin(4t) −10 + 2 sin(2t) 0.2t
]

,

B : r̄(t) =
[

cos(t) sin(t) sin(2t)− 0.5t 0
]

,

C : r̄(t) =
[

2.5 cos(4t) 2.5 sin(4t) 2 sin(t) 0
]

.

The initial conditions are set to

p(0) =
[

1.5p̄x(0) 0.75p̄y(0) p̄z(0)
]⊤
, (53a)

v(0) = v̄(0), (53b)

R(0) = Rx

(

170
π

180

)

Ry

(

30
π

180

)

Rz

(

20
π

180

)

, (53c)

ω(0) = ω̄(0), (53d)

where Rx(θ) denotes a rotation around the x-axis according

to

Rx(θ) =





1 0 0
0 cos(θ) sin(−θ)
0 sin(θ) cos(θ)





and Ry, Rz are rotations about the y and z axes defined

similarly.

For all simulations the inner-loop gains are set to Kω =
30J , KR = 70J with J the inertia matrix and [k1, k2, k3] =
[4.5, 5, 5.1]. Furthermore, a sample time of h = 0.1 seconds

is used and γ = 0.1 is set for the model used in the MPC

controller. The input is generated by solving the OCP in

(45) and transforming back to the system using (46). The

following quadratic cost function is used for each subsystem

corresponding to the x, y, z axes

J = x⊤N |kQNxN |k +
N−1
∑

ℓ=0

x⊤ℓ|kQxℓ|k + u⊤ℓ|kRuℓ|k,

with N = 20, Q = diag(100, 1, 1, 1), QN = 10Q and R =
0.01. The function used for the stabilizing constraints in (44)

is given by β(x) = εx
1+x , with ε = 0.1min( dh ,∆). Note that

this function can be chosen independently of those of the cost

function as long as β(x) ≤ min( dhx,∆) (cf. Remark 5 and

Assumption 2).

A. Quadcopter Simulation

A simulation of the cascaded system, consisting of the

outer and inner loop, is performed for trajectory A. The

resulting trajectory is visualized in Figure 8, where it can be

seen that the quadcopter is able to recover from an upside-

down initial attitude and converges to the reference trajectory.

The corresponding position and attitude errors are shown in

Figures 5 and 6, respectively. For the attitude errors the metric

used is the Frobenius norm, i.e., η(R1, R2) = ‖R1 −R2‖F
and the distance of both the desired attitude Rd and the

reference attitude error R̃ to I are evaluated. Note that the

p̃
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Fig. 5. Position errors p̃ = [p̃x, p̃y, p̃z]⊤ for each axis.
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dashed). The insert highlights the first second.

simulation was performed with the dynamics presented in (7),

so violating Assumption 1.

B. Robustness to unmodeled dynamics and

measurement uncertainties

To demonstrate the robustness of our method against un-

modeled dynamics and measurement uncertainties, we perform

simulations in the scenario where the real system model

contains a quadratic drag term on the velocity, i.e., the system

simulated is that in (7) with (7b) replaced by

v̇ = gzW − TzB −RDR⊤v −Dqv|v| (54)

with Dq the quadratic drag coefficient shown in Table II.

Moreover, measurement noise is added to the position and

velocity vectors, i.e., we use the following measurements

instead of the true states

pm = p+ ρ,

vm = v + ν,

where ρ ∼ N (0, 0.01I), ν ∼ N (0, 0.001I) and N (a,B)
represents a Gaussian distribution with mean a and covariance

matrix B. We simulate all three trajectories. The initial condi-

tions for the translational and angular velocities are started on

the reference, as in (53), however the position and rotational
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Fig. 7. Thrust T during the A (red), B (magenta) and C (blue)
trajectories together with the maximum thrust Tmax (black, dashed). The
bold line represents the mean value over the 50 simulations, and the
colored area is between the maximum and minimum value over the 50
simulations. This shows that the thrust stays below the maximum value
and thus satisfies the constraint (8).

matrices are initialized according to

p(0) = N (p̄avg, 2),

R(0) = Rx

(

N (0, 50)
π

180

)

Ry

(

N (0, 50)
π

180

)

Rz

(

N (0, 50)
π

180

)

,

that is, the position is started randomly according to a Gaussian

distribution around the mean of the trajectory with a variance

of 2 meters in each direction, and the rotation matrix is

initialized in a random orientation with a variance of 50

degrees about each axis. The MPC settings remain the same,

except for the horizon and sample time, which are set to N = 5
and h = 0.05 seconds, respectively. Note that we still generate

the control input using (45), i.e., we use the linear drag model

in our controller. We simulate each trajectory 50 times for 25

seconds each.

Figure 7 displays the thrust during each trajectory, with the

mean value over the 50 simulations shown with the line and the

area of the same color represents the bound within which the

thrust falls for all simulations. This shows that the thrust stays

below the maximum value and thus satisfies the constraint (8)

for all trajectories and all simulations. In Figure 9 boxplots

of the root-mean-square (RMS) errors for each trajectory and

each axis are shown, where we only consider the final 2

seconds of each trajectory to compute the RMS value, ensuring

that the quadcopter has converged to the trajectory. From this

figure it becomes clear that despite the noisy measurements,

varying initial conditions and model uncertainties (linear ver-

sus quadratic drag terms), the quadcopter always converges

to the reference trajectory, and achieves a low RMS error.

Finally, we note that the average and maximum computation

times for the MPC algorithm during the 50 simulations of

the ‘Original’ trajectory were 0.026 and 0.21 milliseconds,

respectively, computed on a laptop with an Intel Core i7-

6700HQ processor with 8 GB RAM using MATLAB R2021a,

demonstrating the low computational effort required to deploy

our method.

IX. CONCLUSIONS

In this paper a new cascaded controller has been presented,

that enables guaranteed trajectory tracking for quadcopters

while taking into account the limited thrust capabilities of

quadcopters. The method uses the differential flatness property

of the quadcopter dynamics in combination with a uniformly

almost globally asymptotically stable inner-loop controller and

a novel, MPC-based, uniformly globally asymptotically stable

outer-loop controller. This combination allows for providing

convergence guarantees for trajectory tracking, incorporation

of future reference information and constraint handling. More-

over, the methodology used allows the MPC strategy to be

formulated as three quadratic problems, each with just four

states and one input, and only linear constraints on the first

input of the horizon, allowing for fast computation times.

The advantages of the method are shown in a numerical

case study, where it is demonstrated that our method can

deal with measurement uncertainties, varying initial conditions

and model uncertainties (specifically, quadratic versus linear

drag terms). Note that while our method is presented here

for quadcopters specifically, it is applicable to any VTOL

aircraft that has a configuration where the thrust provided

by all the rotors can be decomposed into a body thrust and

torques around the principal axes and follows the dynamics as

presented in (7).

Future work includes verifying our method on a hardware

quadcopter platform, as well as expanding our method, if

possible, to be able to guarantee stability for a quadratic

drag model. The latter would entail expanding the stability

proof for the outer loop controller from a linear, constrained,

sampled-data system with inter-sample constraint satisfaction

to a nonlinear, constrained, sampled-data system with inter-

sample constraint satisfaction, which is not straightforward.

A second avenue of future research concerns the conser-

vatism introduced in our approach in order to achieve the

formal stability guarantees. One improvement would be the

development of less conservative constraints on the desired

acceleration ad, by, for example, relaxing the need for decou-

pling and/or providing tighter bounds on the evolution of the

desired acceleration in between sample times.

Finally, an output-based variant, together with the incorpo-

ration of measurement inaccuracies in the development of the

controller, will make the method more suitable for practical

applications.

APPENDIX I
PROOF OF BOUNDEDNESS OF SOLUTIONS FOR

((51a)-(51d))

Consider the dynamics in (51), which, using (47), can be

written as

˙̄x(t) = Āx̄(t) + B̄u(x̄(kh)) +









0
I3
0
0









TR(I −RT
e )e3

for t ∈ [kh, kh+ h) with x̄(t) ∈ R
12. Using the observation

that the x, y and z dynamics were decoupled, these dynamics

can be considered separately, and using the fact that T is

(globally) bounded and the (Re, ωe) dynamics are locally ex-

ponentially stable, only boundedness (and therefore stability)
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Fig. 8. Three dimensional plot of the quadcopter trajectory. The position trajectory of the reference and quadcopter are shown by the red and blue
lines, respectively. Snapshots of the quadcopter during the first 3 seconds of the trajectory are shown, where the orange, yellow and brown lines
depict the xB , yB and zB axes, respectively. The right most snapshot is the initial condition. Note that the quadcopter is able to recover from an
initial upside-down attitude and converges to the reference.

of the following dynamics needs to be studied:

ẋ(t) = Ax(t) + BµMPC(x(kh)) +









0
1
0
0









φ(t)

for t ∈ [kh, kh+ h) with x(t) ∈ R
4, A and B are the system

matrices for a single axis and where |φ(t)| ≤ ce−λt for some

constants λ > 0 and c > 0, where c depends on the initial

condition (Re(t0), ωe(t0)).
First step is to show boundedness of x̂k,4 for the dynamics

x̂k+1,4 = x̂k,4 +
h

d
uMPC(xk) + 2ĉe−λkh. (55)

For the function Vk = x̂2k,4 we obtain

Vk+1 − Vk ≤ 2
√

Vk ĉe
−λkh ≤ 2

√

Vk ĉe
−λkh + ĉ2e−2λkh.

(56)

Observe that the difference equation

Fk+1 = Fk + 2
√

Fk ĉe
−λkh + ĉ2e−2λkh (57)

is solved by

Fk =

(

ĉ
1− e−λkh

1− e−λh
+
√

F0

)2

(58)

and therefore

Vk =

(

ĉ
1− e−λkh

1− e−λh
+
√

V0

)2

≤
(

ĉ

1− e−λh
+
√

V0

)2

This shows boundedness of x̂4,k. From the ISS properties of

the other states in the transformed dynamics (42), we can

conclude boundedness of p̃, ṽ, ad and η in ((51a)-(51d)) at

sample times. From continuity also boundedness in between

sample times follows in this case.
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